deeegimnoorrrsstt Sjette forelesning

Størrelse: px
Begynne med side:

Download "deeegimnoorrrsstt Sjette forelesning"

Transkript

1 deeegimnoorrrsstt Sjette forelesning 1

2 2

3 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 3

4 Bellman-Ford BFS/DFS Binære søketrær Binærsøk De gjenværende algoritmene er litt mer omfattende. (Mange av sorteringsalgoritmene Bubblesorther er ganske enkle, f.eks.) Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort 4 Sterke komponenter I tillegg: Eksempler (DP, LP) NPC-problemer Topologisk sortering

5 Gjensyn med masterteoremet 5

6 Masterteoremet 6

7 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = Θ(lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen? Det kommer an på forholdet mellom f(n) og antallet løvnoder. Antall «løvnoder»: a log b n = n log b a Husk uttrykket for antall løvnoder! 7

8 Tilfelle 1: Løvnodene dominerer Da blir kostnaden Θ(n log b a ) Det skjer når f(n) = O(n log b a ɛ ) 8

9 Tilfelle 2: «Dødt løp» Da blir kostnaden Det skjer når Θ(n log b a lg n) f(n) = Θ(n log b a ) Samme kostnad i hvert nivå (dvs. det samme som løvnodene); vi ganger med høyden. 9

10 Det finnes en c < 1 s.a. af(n/b) cf(n), for store nok verdier n Det vil intuitivt si at f-en krymper nedover i treet. 10 f(n) er da regulær

11 Tilfelle 3: Rota dominerer Da blir kostnaden Det skjer når Θ(f(n)) f(n) = Ω(n log b a+ɛ ) 11 Regulariteten innebærer, for en c < 1 og store n: a*f(n/b) c*f(n). Trenger ikke sjekkes hvis f(n) er polynomisk (dvs. n^k). f(n) må være regulær!

12 T (n) = { 1 if n = 1 2T (n/2) + n if n > 1 a = 2 b = 2 log b a = 1 n log b a = n f(n) = n = Θ(n log b a ) Her er det dødt løp, så vi får høyde * antall løvnoder = høyde * radsummen, som vi jo kjenner så godt fra treet vårt T (n) = Θ(n log b a lg n) = Θ(n lg n) 12

13 T (n) = { 1 if n = 1 2T (n/2) + n if n > 1 a = 2 b = 2 log b a = 1 n log b a = n f(n) = n = Θ(n log b a ) Her er det dødt løp, så vi får høyde * antall løvnoder = høyde * radsummen, som vi jo kjenner så godt fra treet vårt T (n) = Θ(n log b a lg n) = Θ(n lg n) 13

14 Variabelskifte 14

15 Flytter oss til «en enklere verden» Skift funksjon og variabel; går «opp i opp» T(n) = S(m) F.eks. m = lg n, S(m) = T(2m ) 15

16 T (n) = 2T ( n) + lg n [m = lg n] T (2 m ) = 2T (2 m/2 ) + m [S(m) = T (2 m )] S(m) = 2S(m/2) + m = O(m lg m) T (n) = O(lg n lg lg n) 16

17 T (n) = 2T ( n) + lg n [m = lg n] T (2 m ) = 2T (2 m/2 ) + m [S(m) = T (2 m )] S(m) = 2S(m/2) + m = O(m lg m) T (n) = O(lg n lg lg n) Legg merke til at alle venstresidene (og høyresidene, for den saks skyld) er like. 17

18 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert arrayelement-skyfling. sorteri ngsalgo ritmer. Nært Brute Force, men ikke helt. Hva vil brute force (type prøv alle muligheter e.l.) være for sortering? 18

19 Merk: Samme mønster som Bellman-Ford, på sett og vis. Tilsynelatende bare overfladisk, men egentlig et generelt mønster. Bubble Sort Normalt: Sammenlign alle par i rekkefølge fra venstre til høyre. Tenk etter: Vil det fungere om du i hver iterasjon fikser parene i tilfeldig rekkefølge? Beviset blir helt klart ikke det samme, men blir det korrekt likevel? Gjenta n ganger: Sammenlign og evt. fiks alle n 1 par Utfør fra venstre til høyre i hver iterasjon. I hver iterasjon vil da det største usorterte elementet ha falt på plass. n iterasjoner gir da fullstendig sortering. 19

20 Selection Sort Gjenta n ganger: Finn det største usorterte elementet Bytt plass med det siste usorterte Nærmest en direkte implementasjon av korrekthetsbeviset til Bubble Sort!20

21 Insertion Sort Gjenta n ganger Sett inn første usorterte blant sorterte De sorterte havner i starten. Man leter etter riktig plass. Merk at man ofte lar elementet synke ned til riktig plass, så man setter det inn mens man leter. Det kan evt. gjøres ved å bare duplisere neste element hele veien, og så sette inn elementet direkte når man har funnet rett plass. 21 Oppgave : Tenk ut din egen sorteringsalgoritme med kvadratisk kjøretid. Om du ikke klarer det, prøv en med kjøretid på O(2^n) eller O(n!) :)

22 Stå på eksamen uten å lese! 22

23 23

24 And I was really impressed with how they managed to shock the Goatse guy. 24

25 Men hvor effektivt kan det bli? Ω(n lg n) 25

26 Se kap. 8 Hver sammenligning halverer antall muligheter. Vi starter med n! mulige rekkefølger. Beste «worst-case» blir lg(n!) :"+76#'391.23("391/2.,/ 91.23!391/2! /234&5673$%36##689 /,) 91.23!391/2.,)! - 91/23-391)2! - ".0/0)#.,) "/0.0)# /,)! - Nyttig: 91.23!391/23!391)2! Stirlings - approksimasjon: / )2 ".0)0/# ")0.0/# "/0)0.# ")0/0.# n! > (n/e)^n Dermed: h lg(n!) lg(n/e)^n = n lg(n/e) = n lg n - n lg e = Omega(n lg n) 26

27 Med andre ord lg n! = Ω(n lg n) 27

28 Heapsort 28

29 < D C > E = B <? <= <> A B C D > < 29

30 < D C > E = B <? <= <> A B C D > < p(i) = i/2 l(i) = 2i r(i) = 2i + 1 < D C > E = B <? <= <> A B C D > < 30

31 Heapify 31

32

33

34

35 På tavla: Kjøretid Korrekthet (invariant) Build-Heap(A, n): for i floor(n/2) downto 1 Heapify(A, i, n) 35

36 Korrekthet vises enkelt induktivt. Eksempel på tavla. Heapsort(A, n): Build-Max-Heap(A, n) for i n downto 2 exchange A[1] and A[i] Max-Heapify(A, 1, i 1) 36

37 Operasjonene forklart på tavla. Viktig: Hvordan elementer kan «flyte» oppover eller «synke» nedover til riktig plass. Insert(S, x) Maximum(S) Extract-Max(S) Increase-Key(S, x, k) 37

38 Sortering «Selection sort» med en heap In-place, enkel O(n lg n) Heapsort 38

39 M g O e rg t r o es Dårlig worst-case, men bra average-case. Lave konstantledd. Mergesort virker på en måte «omvendt». QS er in-place; MS er det ikke. MS har bedre worst-case. Quicksort 39

40 Grunn-idé Korrekthet vises induktivt. Kjøretiden gis av vårt velkjente binærtre. Del sekvensen i to Sorter hver halvdel rekursivt Kombinér etterpå (Mergesort) eller rydd litt først (Quicksort) Tegning/forklaring på tavla. 40

41 &! " # $ % & ' (. 7 &! " # $ % & ' (.62 7 & "! # $ % & ' (.62 7 & "! # $ % & ' (. 2 7 & " $ #! % & ' (. 2 7 & " $ %! # & ' (. 2 7 & " $ % & #! ' (. 2 & " $ % & #! ' (. 2 & " $ % & (! ' # Invariant: 41 8)&*+, -./01 8)7,22,&3"*+, 401,561, : 8)2;",22,73"*+, <40=4,10,>6,?,-./01 8).,22,2*+, <40=4,10,>6,!,-./01

42 &! " # $ % & ' (. 7 &! " # $ % & ' (.62 7 & "! # $ % & ' (.62 7 & "! # $ % & ' (. 2 7 & " $ #! % & ' (. 2 7 & " $ %! # & ' (. 2 7 & " $ % & #! ' (. 2 & " $ % & #! ' (. 2 & " $ % & (! ' # Invariant: 42 8)&*+, -./01 8)7,22,&3"*+, 401,561, : 8)2;",22,73"*+, <40=4,10,>6,?,-./01 8).,22,2*+, <40=4,10,>6,!,-./01

43 Merge Enkelt eksempel på tavla. Du har to sorterte (del-)sekvenser Plukk ett av sekvens-«hodene» Velg hele tiden det minste Legg det inn på neste ledige plass i resultatet 43

44 Kjøretid Worst-case for MS og Best-case for QS T(n) = 2T(n/2) + n Selv 9-til-1-split gir Θ(n log n) for QS Average-case blir også Θ(n log n) Skjev split for QS gir kvadratisk WC Randomisering: Unngår data-avhengig WC 44

45 Average-case Intuisjon: Selv om annenhvert nivå er helt skjevt vil det bare øke kjøretiden med en konstant. 6!B6C 6!B6C? 45

46 Sortering Store/små for seg Rekursivt Kjapp O(n 2 ) WC O(n lg n) Avg. Quicksort 46

47 Sortering Splitt og hersk og flett Stabil Ikke in-place O(n lg n) Mergesort 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 Vi slår den nedre grensen ved å «spille et annet spill» Lineær sortering 55

56 Lineær sortering Counting sort 56

57 Inn: A[1 n], der A[i] {0, 1,, k} Ut: B[1 n], sortert Ekstralager: C[0 k] Vi bruker C til å telle forekomster 57

58 Tell hvor mange vi har av hver Gjør telle-tabellen (C) kumulativ Tallet angir nå posisjonen til den siste forekomsten Gå igjennom A (baklengs) og bruk C til å finne posisjon Oppdater C etter hvert (dekrementer posisjonen) 58

59 for i = 0 to k C[i] = 0 for j = 1 to n C[A[j]] = C[A[j]] + 1 for i = 1 to k C[i] = C[i] + C[i 1] for j = n downto 1 B[C[A[j]]] = A[j] C[A[j]] = C[A[j]] 1 Her gjelder det å gå systematisk til verks Her har vi «downto» for å holde sorteringen stabil. Ser du hvorfor det må være sånn? Bonusspørsmål: Klarer du å lage en versjon som *ikke* bruker downto, men som er stabil likevel? 59

60 Kø-sortering En måte å se «koblingen» på er at vi i tellesortering først holder rede på hvor lange køene er, og deretter på En lignende sak hvor køene slutter. En forskjell er at vi henter verdier fra hver kø i tilfeldig rekkefølge. Opprett en FIFO-kø for hver mulig verdi For hvert input-element: Legg bakerst i riktig kø Slå sammen køer Fyll output med verdier fra køen Denne algoritmen er også en svært nær slektning (en slags heltallsvariant) av bøttesortering (forklares litt senere). 60 Dette kan enten ses som en konseptuell forklaring av (nesten) hva som skjer i tellesortering (det kan kreve litt tenking å se «ekvivalensen») eller som en egen, enkel, lineær-tids sorteringsalgoritme.

61 Sorter heltall Eller lignende Verdier O(n) Tell forekomster Regn ut indeks Lineær Strenge krav O(n) Tellesortering 61

62 Lineær sortering Radix sort 62

63 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall siffer: Lineær kjøretid 63

64 A09>3H <:P T;< P+R R<; ];. T<; ]+T PV+ PV+ ];. T;< ]+T R<; T<; <:P P+R ]+T P+R <:P R<; T<; ];. T;< PV+ <:P T<; T;< P+R PV+ ]+T ];. R<; 64

65 A09>3H <:P T;< P+R R<; ];. T<; ]+T PV+ PV+ ];. T;< ]+T R<; T<; <:P P+R ]+T P+R <:P R<; T<; ];. T;< PV+ <:P T<; T;< P+R PV+ ]+T ];. R<; 65

66 Hva om tallene har ulikt antall siffer? Hva om det er veldig stor forskjell? Kan vi få til O(m), der m er det totale antall siffer brukt? (Det ville kunne brukes på vilkårlige strenger også.) Bryter vi i så fall den nedre grensen vår? Korrekthet kan vises ved induksjon på antall pass Kjøretid Θ(n + k) (evt. Θ((n + k)d) Hvordan bryter radix sort reglene for sammenligningssortering? Vi kan få informasjon ut over bare å sammenligne to nøkler. Vi bruker nøkler som tabellindekser! 66 Det kan vi gjøre fordi vi kjenner verdiområdet.

67 Sorter heltall Eller lignende Verdier O(n k ) Sorter siffer Stabilt Lineær Ganske strenge krav O(kn) Radikssortering 67 Evt. gruntallssortering :-)

68 Lineær sortering Bucket sort 68

69 Anta uniformt fordelte verdier i [0,1) Del [0,1) i n like store bøtter Fordél verdiene i bøttene Gå igjennom bøttene i rekkefølge Skriv ut verdiene sortert 69

70 Bøttene sorteres (med en enkel algoritme) Hver bøtte har O(1) forventet størrelse Totalt O(n) kjøretid 70

71 Sortering Uniformt [0,1) Ordnet hashing Lineær Krav O(n) Bøttesortering 71

72 Select 72

73 Seleksjon: Finn i-ende ordens statistic Eksempler: minimum, maksimum, median min/maks: enkle spesialtilfeller Vi ønsker ikke å sortere 73

74 I stedet for å sortere begge halvdeler fortsetter vi bare i den som inneholder posisjon i, som er den vi leter etter. Randomized-Select Eksempel på tavla..5 Quicksort Verste tilfelle blir som for Quicksort. Beste tilfelle blir Theta(n). Forventet kjøretid, forenklet: T(n) = T(n/2) + n 74 Regnes på tavla.

75 Select Hårete og søt 75

76 Del i grupper på 5, og finn medianen i hver Finn «medianen til medianene», rekursivt Bruk denne som pivot i Partition Select rekursivt på «halvparten» Median-av-5: Konstant tid (insertion sort, f.eks.) for hver; O(n) totalt. Median-av-medianer: T(n/5). Merk: Etter utført algoritme vil dataene allerede være partisjonerte rundt elementet vi leter etter. Så ved å kjøre select etter element k så finner vi automatisk de k minste elementene i tabellen. 76 Partition: O(n). Rekursivt kall T(7n/10 + 6), hvis T(n) er monotont stigende. Mao: Vi får en «prosent-deling» i rekursjonen.

77 Finn median Og lignende Halv Quicksort Kjapp O(n 2 ) WC O(n) Avg. Randomized Select 77

78 Finn median Og lignende Pivot = m. av m. finnes rekursivt Kjapp O(n) Select 78

79 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 79

80 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 80

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0 O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i bwfs(u, i) for each neighbor u of v if λ[u] = 0 bwfs(u, i+1) Bacwards-first search; traverserer en graf med kvadratisk worst-casekjøretid.

Detaljer

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 http://www.idi.ntnu.no/~algdat algdat@idi.ntnu.no Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 b c g a f d e h The pitch drop experiment. Foreløpig kjørt fra 1927 til nå. Åtte dråper har

Detaljer

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet 1 A B D C Prim: Kruskal: AB, BD, DC DC, AB, BD 2 0 + 1 + + n 1; antall

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy

Øvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy Øvingsforelesning 6 Sorteringsalgoritmer Kristian Veøy veoy@stud.ntnu.no 26.09.08 1 Spørsmål fra øvingsgruppene Må jeg kunne python på eksamen? (Nei) Er det lurt å gjøre alle programmeringsøvingene? (Ikke

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1 Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus martme@stud.ntnu.no Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14

Detaljer

for bare trær Andre forelesning

for bare trær Andre forelesning Formler eller bevis e.l. som er uklare? Si ifra, så kan jeg gå g jennom dem. Forelesningene er ment å være en hjelp til å forstå det man leser i boka ikke «spoon-feeding» av det samme som står der for

Detaljer

Lineær sortering. Radix sort

Lineær sortering. Radix sort Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger.

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. Hva slags kjøretid har denne sangen? Hvordan kan du formulere det som en rekurrensligning? Ninety-nine

Detaljer

Øvingsforelesning 3: Splitt og hersk. Daniel Solberg

Øvingsforelesning 3: Splitt og hersk. Daniel Solberg Øvingsforelesning 3: Splitt og hersk Daniel Solberg Plan for dagen Vi går raskt gjennom øving 2 Splitt og hersk Algoritmer: Mergesort Quicksort Binærsøk Rekurrenser, masse rekurrenser 2 Splitt og hersk

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Quicksort Lars Vidar Magnusson 29.1.2014 Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Om Quicksort Quicksort er en svært populær sorteringsalgoritme. Algoritmen har i verstefall en kjøretid

Detaljer

Algdat Eksamensforelesning. Nils Barlaug

Algdat Eksamensforelesning. Nils Barlaug Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer

Live life and be merry

Live life and be merry Om grådighet og først litt mer DP. Live life and be merry Ellevte forelesning for tomorrow you may catch some disgusting skin disease. [Edmund Blackadder] D&C Bellman-Ford BFS/DFS Binære søketrær LP Binærsøk

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon

Detaljer

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff Algdat Oppsummering, eksamen-ting Jim Frode Hoff November 18, 2012 1 Definisjoner 1.1 Ordliste Problem Probleminstans Iterasjon Asymtpoisk notasjon O(x) kjøretid Ω(x) kjøretid Θ(x) kjøretid T (x) kjøretid

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Rundt og rundt og. Trettende forelesning

Rundt og rundt og. Trettende forelesning Nettverksalgoritmer. Anvendelser og generaliseringer. Sirkulasjonsproblemet/ lineær programmering. (Kap. 29.1-29.2) Rundt og rundt og Trettende forelesning 1 Merk: Ikke sikkert alt dette blir gjennomgått

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? algdat@idi.ntnu.no Sjekkliste Dette

Detaljer

Divide-and-Conquer II

Divide-and-Conquer II Divide-and-Conquer II Lars Vidar Magnusson 1712014 Kapittel 4 Analyse av divide-and-conquer algoritmer ved hjelp av rekursjonstrær Analyse av divide-and-conquer algoritmer ved hjelp av masterteoremet Løse

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Hvor raskt klarer vi å sortere?

Hvor raskt klarer vi å sortere? Sortering Sorteringsproblemet Gitt en array med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre: Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer IT1105/TDT4120 2007 06 12 1/6 Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer Eksamensdato Torsdag 6. desember Eksamenstid 1500 1900 Sensurdato Torsdag 10. januar Språk/målform Bokmål

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G TLDR RTFM Innsetting og søk. Rekursjon igjen. Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). D B F A C E G reduksjon! rekursjon dekomp. induksjon gjenbruk travers. Søk i søketre uten balansering

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010 Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Algoritmer og Datastrukturer IAI 21899

Algoritmer og Datastrukturer IAI 21899 Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity.

A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity. A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity. Previous studies suggest that the learning capacity of both people and

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Kjøretidsanalyse. Hogne Jørgensen

Kjøretidsanalyse. Hogne Jørgensen Kjøretidsanalyse Hogne Jørgensen Program Presentasjon/tips til Øving 5 Kompleksitetsanalyse Kahoot Rekurrensligninger Kahoot 2 Øving 5 Veibygging i Ogligogo Finne dyreste kant i minimalt spenntre Prim

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

Logaritmiske sorteringsalgoritmer

Logaritmiske sorteringsalgoritmer Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium

Detaljer

Agenda. 1 Sortering, heap og select. 2 Binære trær. 3 Grafer, BFS og DFS. 4 Spenntrær og Korteste vei. 5 Maks flyt. 6 Dynamisk programmering

Agenda. 1 Sortering, heap og select. 2 Binære trær. 3 Grafer, BFS og DFS. 4 Spenntrær og Korteste vei. 5 Maks flyt. 6 Dynamisk programmering Agenda 1 Sortering, heap og select Oppsummering Ola Natvig IDI - NTNU 23. november 2007 2 Binære trær 3 Grafer, BFS og DFS 4 Spenntrær og Korteste vei 5 Maks flyt 6 Dynamisk programmering 7 Grådighet 8

Detaljer

Heap og prioritetskø. Marjory the Trash Heap fra Fraggle Rock

Heap og prioritetskø. Marjory the Trash Heap fra Fraggle Rock Heap og prioritetskø Marjory the Trash Heap fra Fraggle Rock Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017

Detaljer

August

August None of us truly understands the P versus NP problem, we have only begun to peel the layers around this increasingly complex question. Perhaps we will see a resolution of the P versus NP problem in the

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning 1 Reduksjons- Eksempler 2 Clique til Independent Set 3 Partition til Bin Packing 4 Partition til Subset Sum 5 CNF-SAT til Dir. Ham. Cycle 6 Dir. Ham. Cycle til Ham.

Detaljer

INF1010 notat: Binærsøking og quicksort

INF1010 notat: Binærsøking og quicksort INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Om Kurset og Analyse av Algoritmer

Om Kurset og Analyse av Algoritmer Om Kurset og Analyse av Algoritmer Lars Vidar Magnusson 8.1.2014 Praktisk informasjon om kurset Hva er en algoritme? (kapittel 1) Hvordan analysere en algoritme? (kapittel 2) Praktisk Informasjon Introduction

Detaljer

Introduksjon til Algoritmeanalyse

Introduksjon til Algoritmeanalyse Introduksjon til Algoritmeanalyse 26. August, 2019 Institutt for Informatikk 1 Hvordan skal vi tenke i IN2010? Effektive løsninger Hvordan skalérer problemet og løsningen? 2 Terminologi Betegnelse Problem

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

for bare trær Andre forelesning

for bare trær Andre forelesning Formler eller bevis e.l. som er uklare? Si ifra, så kan jeg gå g jennom dem. Forelesningene er ment å være en hjelp til å forstå det man leser i boka ikke «spoon-feeding» av det samme som står der for

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 1 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN2010 - Algoritmer og datastrukturer HØSTEN 2018 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 3: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2010 H2018, forelesning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

INF1020 Algoritmer og datastrukturer. Dagens plan

INF1020 Algoritmer og datastrukturer. Dagens plan Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer