Løsningsforslag for øvningsoppgaver: Kapittel 14

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag for øvningsoppgaver: Kapittel 14"

Transkript

1 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet som kula henger i, danner da vinkel 30 med loddlinja. a) Tegn en figur som viser alle krefetene som virker på kula. b) Finn kraften på kula fra tauet. (1) S y G = 0 () S x 90N = 0 () S sin(30 ) = 90N () S = 180N 1

2 c) Bestem tyngdekraften på kula. (1) S y = mg (1) 180N cos(30 ) = mg = G (1) G = 155, 88N 14.0 En båt blir trukket oppover ei elv ved hjelp av to tau. Tauene drar i båten med kreftene F 1 og F, som har retning slik figuren viser. Verdien av F 1 er 6, 0kN. Båten går rett fram med konstant fart. a) Hvor stor er F? Konstant fart betyr at akslerasjon(a) = 0 m s Dette betyr at kraftsummen må bli 0N. F 1 = F 1 F = F (1) F 1x = 6000N cos(30 ) () F 1y = 6000N sin(30 ) (3) F x = F cos(60 ) (4) F y = F sin(60 ) F = ma Y rettning: F 1y F y = N sin(30 ) F sin(60 ) = N sin(30 ) = F sin(60 ) F = 6000N sin(30 ) sin(60 ) = N

3 b) Finn friksjonskraften fra elva på båten. X rettning: F 1x + F x = R 6000N cos(30 ) + F cos(60 ) = R R = 6000N cos(30 ) + (3464.1N) cos(60 ) = N En leketog består av et lokomotiv med messen 0, 0kg og to vogner som hver har massen 0, 15kg. Vognene er feste med snorer til lokomotivet slik figuren viser. Lille Bjørn drar i lokomotivet med en kraft på F =, 0N. Bestem de to snorragene. F = ma Vi finner akslerasjonen til hele toget:, 0N = (0, kg + 0, 15kg + 0, 15kg)a a =, 0N 0, 5kg = 4m s snordrag 1 = (0, 15kg + 0, 15kg)(4 m ) = 1, N s snordrag = (0, 15kg)(4 m ) = 0, 6N s Bildet viser en konteiner som blir trukket opp på en lastevogn. Ved hjelp av en stålvaier trekker en elektrisk motot konteinere med konstant fart. Verdien av trekkraften er 78, 4kN. Lasteplanet har helningsvinkelen 8, og konteinere har massen 9, tonn. 3

4 T = 78400N, α = 8, m = 900kg b) Finn friksjonstallet mellom lasteplanet og konteineren. T = R T = Nµ = mgcos(8 )µ 78400N sin(8 ) = (900kg)(9, 81 m s )cos(8 )µ µ = (78400N sin(8 )) (900kg)(9, 81 m )cos(8 s = 0, 461 ) En planpendel er 1, 0m lang, og kula har massen 0, 5kg. Vi løfter kula slik at snora er vannrett, og så slipper vi den. a) Tegn figur med de kreftene som virker på kula i det laveste punktet. 4

5 b) Finn farten og akelerasjonen til kula i dette punktet. E 1 = E E top = E bunn mgh mv 1 = mgh + 1 mv V 1 = 0 m s, h = 0m V = mgh 1 = 1 mv gh 1 = 1 V gh1 = V (9, 81 m s )(1, m) = 4, 85m s 5

6 c) Hva er snordraget i det laveste punktet? F = ma S G = ma S = ma + G S = m( V r ) + mg S = 0, 5kg( (4, 85 m s ) 1, m + 9, 81m s ) S = 14, 7N 14.0 En leketøysbil med massen 50g kjører inn i en vertikal sirkel (en loop) med diameter lik 4cm. Idet bilen kommer inn i loopen, er farten v 0 = 3, 1 m s. a) Hvor stor er kraften på bilen fra underlaget i det øverste punktet i banen? Vi må først finne ut hva farten til leketøysbilen er på det øverste punktet i banen. Det kan vi gjøre med enrgibevaringsloven: E 1 = E. mgh mv 1 = mgh + 1 mv m = 0, 05kg, V 1 = 3, 1 m s, h 0 = 0, h 1 = 0, 4m V = 1 mv 1 = mgh + 1 mv 1 V 1 = gh + 1 V V1 gh = V (3, 1 m s ) (9, 81 m s )(0, 4m) =, 14m s Nå kan vi bruke F = ma til å regne ut kraften på bilen fra underlaget. N + G = m( V r ) 6

7 N = m( V N = m( V N = 0, 05kg( (, 14 m s ) 0,4m r ) mg r g) 9, 81 m ) = 1, 55N s b) Hvor stor må farten v 0 minst være for at bilen ikke skal minste kontakten med banen? Vi lar normalkraften N være 0. V = N + G = m( V r ) mg = m( V r ) g = V r gr = V 0, 1m 9, 81 m s = 1, 085m s Nå har vi farten i toppen av loopen. Med denne farten kan vi regne ut startfarten som er nødvendig. V = 1, 085 m s, h = 0, 4m V 1 = mgh mv 1 = mgh + 1 mv 1 mv 1 = mgh + 1 mv 1 V 1 = gh + 1 V V1 = gh + V V 1 = gh + V (9, 81 m s )(0, 4m) + (1, 085m s ) =, 46 m s 7

8 c) I hvilken høyde må vi slippe bilen for at den skal få farten i b? E 1 = E mgh mv 1 = mgh + 1 mv mgh 1 = 1 mv gh 1 = 1 V h 1 = V g h 1 = (, 46 m s ) (9, 18 m s ) = 0, 3m 14.4 Willhelm Tell skyter en pil inn i et eple på sønnens hode. Pila har 10g og en horisonta fart på 1 m s når den treffer eplet. Eplet har massen 40g, og sønnen er 140cm høy. Pila blir sittende fast i eplet, og eplet med pila daler i en bue ned på bakken Hvor langt unna sønnen treffer eplet med pila bakken? p for = p etter m pil V pil + m eple V eple = (m pil + m eple )V (0, 1kg)(1 m s ) + (0, 4kg)(0m s ) = (0, 36kg)V, 5 m s kg = 0, 36kgV V =, 5 m s kg 0, 36kg = 7m s Nå har vi funnet farten til pila etter at den treffer eplet. Vi kan nå bruke bevegelses likningene for x og y rettning til å finne ut hvor langt pila gikk før den traff bakken: 8

9 V x = 7 m s, V y = 0, a x = 0, a y = 9, 81 m s Når pila treffer bakken: S y = 1, 4m S x =? S y (t) = 1 (9, 81m s )t = 1, 4m t 1, 4m = 1 (9, 81 m ) s t = 0, 85s = 0, 534s S x (0, 534s) = 7 m s 0, 534s = 3, 74m Ei lita jente aker på en kjelke nedover en isete bakke og utover på en horisontal, snødekt slette. Bakken er 3, 0m høy og 6, 0m lang. Anta at friksjonstallet er 0, 15 i bakken. a) Finn farten til kjelen nederst i bakken. 9

10 Vinkelen i bakken: sin 1 ( 3 6 ) = 30 Akslerasjonen til kjelken: F = ma F a = m a = G sin(30 ) R m a = mg sin(30 ) mg cos(30 )µ m a = g(sin(30 ) cos(30 )µ) a = (9, 81 m )(0, 5 (0, 866)(0, 15)) s a = 3, 63 m s Nå kan vi bruke den tidløse bevegelsesformelen: V 1 = as = V1 V0 as = V 1 0 (3, 63 m s )(6m) = 6, 6m s Den strekningen som kjelken glir på sletta før den stanser, blir målt til 1, 5m. 10

11 b) Er frksjonstallet på sletta større enn, mindre en eller like stort som i bakken? Vi finner akslerasjonen slik: as = V1 V0 as = 0 V 0 a = V 0 s a = (6, 6 m s ) (1, 5m) = 1, 74m s Nå kan vi bruke Newtons. lov: F = ma R = ma mgµ = ma gµ = a µ = a g µ = 1, 74 m s 9, 81 m s = 0, 177 0, 15 < 0, 17 Friksjonen på sletta er større enn på bakken. 11

Løsningsforslag for øvningsoppgaver: Kapittel 2

Løsningsforslag for øvningsoppgaver: Kapittel 2 Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 13.01.2015 2.03 Tyngdekraften på strikkhoppern på bildet er 540N. Kraften fra striken i fotoøyeblikket er 580N. a) Tegn figur og beregn

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 5

Løsningsforslag for øvningsoppgaver: Kapittel 5 Løsningsforslag for øvningsoppgaver: Kapittel 5 Jon Walter Lundberg 3..25 5. To personer står på så glatt is at vi kan se bort fra friksjon. Den ene har massen 5kg, den andre 8kg. De skyter ti hverandre

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid RST 1 7 Arbeid og energi 38 7.201 Levende pendel måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid Eksperimenter Ta en bevegelsessensor og logger med i gymnastikksalen eller et sted

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 29. mars 2012 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider inkludert forsiden

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

5.201 Modellering av bøyning

5.201 Modellering av bøyning RST 2 5 Kraft og bevegelse 26 5.201 Modellering av bøyning lage en modell for nedbøyning av plastikklinjaler teste modellen Eksperimenter Fest en lang plastikklinjal til en benk med en tvinge e.l. slik

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

T 1 = (m k + m s ) a (1)

T 1 = (m k + m s ) a (1) Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYPIADEN 0 0 Andre runde: / 0 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: 3 klokketimer Hjelpemidler:

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

6. Rotasjon. Løsning på blandede oppgaver.

6. Rotasjon. Løsning på blandede oppgaver. 6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN 006 007 Andre runde: / 007 Skriv øverst: Navn, fødselsdato, e-postadresse, hjemmeadresse og skolens navn Varighet:

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

Fysikkonkurranse 1. runde 6. - 17. november 2000

Fysikkonkurranse 1. runde 6. - 17. november 2000 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 01 017 Andre runde: 7. februar 017 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

Vektorstørrelser (har størrelse og retning):

Vektorstørrelser (har størrelse og retning): Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN Andre runde: 3/ Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:3 klokketimer Hjelpemidler:Tabell

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: YS1000 Eksamensdag: 26. mars 2015 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 7 sider Vedlegg: ormelark (2

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

EKSAMEN. Stille lengde. Universitetet i Agder Fakultet for helse- og idrettsfag. Emnekode: Emnenavn: IDR124 Kropp,trening, helse

EKSAMEN. Stille lengde. Universitetet i Agder Fakultet for helse- og idrettsfag. Emnekode: Emnenavn: IDR124 Kropp,trening, helse Universitetet i Agder Fakultet for helse- og idrettsfag EKSAMEN Emnekode: Emnenavn: IDR124 Kropp,trening, helse Dato: 08. mars 2012 Varighet: 3 timer Antallsider inkl.forside 7- Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark

Detaljer

Arbeid mot gravitasjon mekanisk energi (lærerveiledning)

Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Arbeid mot gravitasjon mekanisk energi (lærerveiledning) Vanskelighetsgrad: Middels, noe vanskelig Short English summary In this exercise we shall measure the work (W) done when a small cart is lifted

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Løsningsforslag eksamen TFY desember 2010.

Løsningsforslag eksamen TFY desember 2010. Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget

Detaljer

En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. , der a g og v 0 0 m/s.

En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. , der a g og v 0 0 m/s. Fy1 - Ekstra vurdering - 06.01.17 Løsningsskisser Bevegelse og krefter Oppgave 1 En blomsterpotte faller fra en veranda 10 meter over bakken. Vi ser bort fra luftmotstand. a) Hvor lang tid tar det før

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Bevegelse med friksjon nedover en kuleoverflate

Bevegelse med friksjon nedover en kuleoverflate Bevegelse med friksjon nedover en kuleoverflate Geir-Arne Fuglstad Geir Bogfjellmo 9. oktober 2006 Innhold 1 Generelle lover 2 1.1 Newtons 2. lov............................ 2 1.2 Friksjonsarbeid............................

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

Høgskolen i Agder Avdeling for EKSAMEN

Høgskolen i Agder Avdeling for EKSAMEN Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,

Detaljer

Løsningsforslag til eksamen i FYS1000, 19/8 2016

Løsningsforslag til eksamen i FYS1000, 19/8 2016 Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 6

Løsningsforslag for øvningsoppgaver: Kapittel 6 Løsningsforslag for øvningsoppgaver: Kapittel 6 Jon Walter Lundberg 06.02.2015 6.02 En rett sylinder av magnesium har disse målene: diameter 2, 471cm og høyde 5, 5cm. Sylindern veier(har massen) 46, 133g.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 10. juni 2014 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

3. Krefter. Newtons lover.

3. Krefter. Newtons lover. sikk for ingeniører Klassisk mekanikk 3 Krefter ewtons lover Side 3-3 Krefter ewtons lover Krefter og kreftenes betdning for å sette ting i bevegelse har fascinert menneskene i flere tusen år I dette kapitlet

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver: Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. NITH 11. oktober 013 Oppgave 1 Skissér kraftutvekslingen i følgende situasjoner: En mann som dytter en bil: (b) En traktor som trekker en kjerre

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( ) Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker

Detaljer

Fysikk på TusenFryd. Elevhefte med regneoppgaver for videregående skole 2FY og 3FY. Naturfagsenteret Nasjonalt senter for naturfag i opplæringen

Fysikk på TusenFryd. Elevhefte med regneoppgaver for videregående skole 2FY og 3FY. Naturfagsenteret Nasjonalt senter for naturfag i opplæringen Fysikk på TusenFryd Elevhefte med regneoppgaver for videregående skole 2FY og 3FY Naturfagsenteret Nasjonalt senter for naturfag i opplæringen Forord Heftet inneholder tre deler: Før besøket Under besøket

Detaljer

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE HØGSKOLEN I SØR-TRØNDELAG ADELING FOR TEKNOLOGI HØGSKOLEN I SØR-TRØNDELAG TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE Dato: Onsdag 07.05.08 arighet: 09.00-14.00 Klasser: 1FA 1FB 1FC 1FD Faglærere: Guri

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning)

Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Friksjonskraft - hvilefriksjon og glidefriksjon (lærerveiledning) Vanskelighetsgrad: liten Short English summary This exercise shows a study of the friction between a small wooden block and a horizontal

Detaljer

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK

Detaljer

Individuell skriftlig eksamen. IBI 240- Basal biomekanikk. Tirsdag 16. desember 2014 kl

Individuell skriftlig eksamen. IBI 240- Basal biomekanikk. Tirsdag 16. desember 2014 kl Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016 Individuell skriftlig eksamen i IBI 240- Basal biomekanikk Tirsdag 16. desember 2014 kl. 10.00-13.00 Hjelpemidler: kalkulator formelsamling

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

5 Bevegelsesmengde. 5.1 Bevaringsloven for bevegelsesmengde 5.106 + 5.101 5.102 5.107 5.103 5.104 5.108 + 5.105

5 Bevegelsesmengde. 5.1 Bevaringsloven for bevegelsesmengde 5.106 + 5.101 5.102 5.107 5.103 5.104 5.108 + 5.105 5 Bevegelsesmengde 39 5 Bevegelsesmengde 5.1 Bevaringsloven for bevegelsesmengde 5.101 Hva har størst bevegelsesmengde? 1) En golfball på 60 g som like etter slaget har farten 70 m/s. 2) En fotballspiller

Detaljer

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst? TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

DATALOGGING AV BEVEGELSE

DATALOGGING AV BEVEGELSE Elevverksted: DATALOGGING AV BEVEGELSE Astrid Johansen, 2009 Grafisk framstilling av en fysisk størrelse er viktig og brukes mye i realfag, og kanskje spesielt mye i fysikk. Det å kunne forstå hva en graf

Detaljer

Fysikkolympiaden 1. runde 23. oktober 3. november 2017

Fysikkolympiaden 1. runde 23. oktober 3. november 2017 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 3. oktober 3. november 017 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

Auditorieøving 6, Fluidmekanikk

Auditorieøving 6, Fluidmekanikk Auditorieøving 6, Fluidmekanikk Utført av (alle i gruppen): Oppgave 1 En beholder er åpen i ene enden og har et hull i bunnen, påsatt et innadrettet rør av lengde l og med sirkulært tverrsnitt A 0. Beholderen,

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

Fysikk-OL Norsk finale 2006

Fysikk-OL Norsk finale 2006 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 6 3. uttakingsrunde Fredag 7. april kl 9. til. Hjelpemidler: Tabell/formelsamling og lommeregner Oppgavesettet består av 6 oppgaver

Detaljer

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

Fysikkolympiaden 1. runde 29. oktober 9. november 2007

Fysikkolympiaden 1. runde 29. oktober 9. november 2007 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 9. oktober 9. november 007 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen Nat104 / Grimstad Forelesningsnotater Våren 2011 Netons 3 lover UiA / Tarald Peersen 1 Netons 3 lover 1.1 Forelesning: Netons tre fundamentale lover for bevegelse I leksjon 1 lærte vi språket som beskriver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.

Detaljer