Analysis of ordinal data via heteroscedastic threshold models

Størrelse: px
Begynne med side:

Download "Analysis of ordinal data via heteroscedastic threshold models"

Transkript

1 Analysis of ordinal data via heteroscedastic threshold models JL Foulley/Applibugs 1

2 Example Koch s 1990 data on a clinical trial for respiratory illness Treatment (A) vs Placebo (P) 111 patients (54 in A; 57 in P) Outcome: score from 0 (bad) to 4 (excellent) Explanatory variables Center: 1,2 Treatment: A,P Gender: M,F Age: 3 classes Visit: 4 Baseline: H,L JL Foulley/Applibugs 2

3 Example /Data JL Foulley/Applibugs 3

4 Threshold concept JL Foulley/Applibugs 4

5 Threshold model l ir : observation r in stratum i 1 2 j J -1 ir i 1 i 1 i i1 = i1 = Pr( Lir 1) = Pr( ) = Φ σ i σ i σ i ( 0, 1) 2 ( µ σ ) One assumes the existence of a latent continuous variable L ~ N, with thresholds: τ, τ,..., τ,..., τ κ π τ κ L µ τ µ τ µ τ µ = π + π = L τ = Φ 2 i i2 i1 i2 Pr( ir 2) σ i N ir i i JL Foulley/Applibugs 5

6 Threshold model/continued ' ' * 1) Equivalence with lir = xβ i + ziu + σ ieir and yijr = 1 τ j 1 < lir τ j ( ) 2) Usually, one assumes σ = σ = 1, κ = Φ τ µ i ij j i [ x ] 3) Φ may be replaced by other CDF's: logit, studit, gompit log( log(1 ) Note : probit, logit, studit: palindromic invariance JL Foulley/Applibugs 6

7 Models for scaling parameters Model for scale factors: ln i ( σ ) Extension to include random effects ln i = pδ p :vector of covariates with coefficients δ (Mc Cullagh, 1980) ' i ( σ ) = pδ + q v ' ' i i i (Foulley et al,1992 for continuous data; Foulley & Gianola, 1996) JL Foulley/Applibugs 7

8 Statistical Inference Full Bayesian Inference [ β, uδvτg,,,,, Λ y] [ y β uδvτ] [ u G][ v Λ] [ β][ δ] [ τ],,,, : Product Multinomial : Gaussian [ G Λ] : Flat :Product uniform on the τ ' s, : Inverse Wishart (Gamma) k JL Foulley/Applibugs 8

9 Graph of the model Λ Gamma (Wishart) inv Gamma (Wishart) inv G v delta normal uniform Covariates: year, breed sire beta uniform u normal sigma mu tau n theta data multinomial JL Foulley/Applibugs 9

10 Estimation «Fixed Model»/SAS logistic vs Winbugs JL Foulley/Applibugs 10

11 Model comparison JL Foulley/Applibugs 11

12 Estimation: Standard TM/Bugs vs Glimmix JL Foulley/Applibugs 12

13 Estimation: Standard vs Heteroskedastic JL Foulley/Applibugs 13

14 Predictions JL Foulley/Applibugs 14

15 Posteriors JL Foulley/Applibugs 15

16 Priors for dispersion parameters 2 1) σ ~ U 0, ( ) v 2) σ ~ I A*C 0,1 A ~ 0, ( ) ( ) U 0 ( σ A ) 3) σ ~ U(0, ) si A + Gelman, ) log σ ~ N 0, s ( ) ( ) 5) σ ~ G ½ η,½ησ 2 2 η σ η ( ε ε ) L 2 et connus en particulier petit ie 2 σ 2 6) ~, G ε petit à calibrer σ U [ ] ε 2 ln ~ -,+ si π ( σ ) 2 2 en fonction de e ( u ) 1/ σ ( Jeffreys) JL Foulley/Applibugs 16

17 Conclusion Better efficiency of H-TM vs S-TM Large flexibility for scale models Fixed and random effects Inference Feasibility with Bayes via MCMC JL Foulley/Applibugs 17

18 References Derquenne C (1995) Heteroskedastic Logit Model, 5oth Session of the ISI, Being, China. Foulley JL, San Cristobal M, Gianola D, Im S (1990) Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models. Computational Statistics & Data Analysis, 13, Foulley JL, Gianola D (1996) Statistical analysis of ordered categorical data via a structural heteroskedastic threshold model. Genetics Selection Evolution, 28, Foulley JL, Jaffrézic F (2009) Modelling and estimating heterogeneous variances in threshold models for ordinal discrete data via Winbugs/Openbugs. Computer Methods and Programs in Biomedicine, in print Jaffrézic F, Robert-Granié C, Foulley JL (1999) A quasi-score approach to the analysis of ordered categorical data via a mixed heteroskedastic threshold model. Genetics Selection Evolution, 31, Lee Y, Nelder JA (2006) Double hierarchical generalized linear models. Applied Statistics, 55, McCullagh P (1980) Regression models for ordinal data. JR Statistical Society, B 42, Liu I, Agresti A (2005) The analysis of ordered categorical data: an overview and a survey of recent developments. Societas de Estadistica e Investigacion Operativa, 14, Meza C, Jaffrézic F, Foulley JL (2009) Estimation in the probit model for binary outcomes using the SAEM algorithm. Computational Statistics & Data Analysis, 53, JL Foulley/Applibugs 18

Implementing Bayesian random-effects meta-analysis

Implementing Bayesian random-effects meta-analysis Implementing Bayesian random-effects meta-analysis Christian Röver 1, Beat Neuenschwander 2, Tim Friede 1 1 Department of Medical Statistics University Medical Center Göttingen 2 Novartis Pharma AG, Basel,

Detaljer

Checking Assumptions

Checking Assumptions Merlise Clyde Duke University November 16, 2016 Linear Model Linear Model: Y = µ + ɛ Assumptions: µ C(X) µ = Xβ ɛ N(0 n, σ 2 I n ) Focus on Wrong mean for a case or cases Wrong distribution for ɛ Cases

Detaljer

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test) Kategoriske data, del I: Kategoriske data - del (Rosner, 10.3-10.7) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng

Detaljer

Forelesning 9 STK3100/4100

Forelesning 9 STK3100/4100 Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser

Detaljer

CBMS Lecture 5. Alan E. Gelfand Duke University

CBMS Lecture 5. Alan E. Gelfand Duke University CBMS Lecture 5 Alan E. Gelfand Duke University Univariate point-level modeling Basic Model: Y (s) = x T (s)β + w(s) + ɛ(s) The residual is partitioned into two pieces: one spatial, w(s), and one non-spatial,

Detaljer

Forelesning 9 STK3100/4100

Forelesning 9 STK3100/4100 p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 2/3 Modell med

Detaljer

Modeling Longitudinal Dyadic Data in the SEM Framework

Modeling Longitudinal Dyadic Data in the SEM Framework DEPARTMENT DATA ANALYSIS Modeling Longitudinal Dyadic Data in the SEM Framework Fien Gistelinck Promoter: Tom Loeys CONTENT Longitudinal dyadic data Modeling framework Fien Gistelinck RSSB - 2018 3/18

Detaljer

Forelesning 8 STK3100/4100

Forelesning 8 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -

Detaljer

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R Blanda modellar i R Jorunn Slagstad Universitetet i Bergen 20. desember 2006 1 Introduksjon 2 Lineære blanda modellar 3 Generaliserte lineære blanda modellar 4 Analyser av modellar 5 Eit randproblem 6

Detaljer

Checking Assumptions

Checking Assumptions Checking Assumptions Merlise Clyde STA721 Linear Models Duke University November 20, 2017 Linear Model Linear Model: Y = µ + ɛ Assumptions: µ C(X) µ = Xβ ɛ N(0 n, σ 2 I n ) Focus on Wrong mean for a case

Detaljer

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques

Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Exploratory Analysis of a Large Collection of Time-Series Using Automatic Smoothing Techniques Ravi Varadhan, Ganesh Subramaniam Johns Hopkins University AT&T Labs - Research 1 / 28 Introduction Goal:

Detaljer

Forskningsprosjektet. Repeterte målinger på én time. Eksempel 1. Eksempel 2. Eksempel

Forskningsprosjektet. Repeterte målinger på én time. Eksempel 1. Eksempel 2. Eksempel Forskningsprosjektet Repeterte målinger på én time Kathrine Frey Frøslie Statistiker Nasjonal kompetansetjeneste for kvinnehelse, OUS Rikshospitalet. Eksempel 1 Eksempel 2 Eksperimentelt design RCT med

Detaljer

Forelesning 10 STK3100

Forelesning 10 STK3100 Momenter i multinomisk fordeling Forelesning 0 STK300 3. november 2008 S. O. Samuelsen Plan for forelesning:. Multinomisk fordeling 2. Multinomisk regresjon - ikke-ordnede kategorier 3. Multinomisk regresjon

Detaljer

Forelesning 6 STK3100

Forelesning 6 STK3100 Scorefunksjon og estimeringsligninger for GLM Forelesning 6 STK3100 29. september 2008 S. O. Samuelsen Plan for forelesning: 1. Observert og forventet informasjon 2. Optimeringsrutiner 3. Iterative revektede

Detaljer

TIDE DISTRIBUTIVE EFFECTS OF INDIRECT TAXATION:

TIDE DISTRIBUTIVE EFFECTS OF INDIRECT TAXATION: ARTIKLER FRA STATISTISK SENTRALBYRÅ NR. 77 SØTRYKK FRA "THE SWEDISH JOURNAL OF ECONOMICS", VOL. 77 (1975), HO. 1, PP.1-12 TIDE DISTRIBUTIVE EFFECTS OF INDIRECT TAXATION: AN ECONOMETRIC MODEL AND EMPIRICAL

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 91838665 Eksamensdato: 7. desember 2015 Eksamenstid (fra-til): 9.00-13.00

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning 11 STK3100/4100 Plan for forelesning: 1. november 2012 Geir Storvik 1. Generaliserte lineære blandede modeller Eksempler R-kode GLMM - generell formulering av modell Likelihood og estimering

Detaljer

Eksamensoppgave i TMA4267 Lineære statistiske modeller

Eksamensoppgave i TMA4267 Lineære statistiske modeller Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 22. mai 2014 Eksamenstid (fra til): 09.00-13.00

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Introduksjon til Generaliserte Lineære Modeller (GLM) p. 1/25 Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-23. august 2010 Sven Ove Samuelsen/Anders Rygh Swensen Plan for første forelesning:

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 3. oktober 20 Geir Storvik. Generaliserte lineære blandede modeller Eksempler R-kode - generell formulering av modell Tillater innbygging av avhengigheter mellom

Detaljer

7. november 2011 Geir Storvik

7. november 2011 Geir Storvik Forelesning 13 STK3100/4100 Plan for forelesning: 7. november 2011 Geir Storvik Generaliserte lineære blandede modeller 1. Sammenlikning ulike estimeringsmetoder 2. Tolkning parametre 3. Inferens Konfidensintervaller

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller p. 1/34 Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller STK3100/4100-23. august 2011 Geir Storvik (Oppdatert

Detaljer

Multisample Inference del 2 (Rosner )

Multisample Inference del 2 (Rosner ) Multisample Inference del (Rosner.5.7) Inger Johanne Baen Enhet for anvendt linis forsning, NTNU og Avdeling for forebyggende helsearbeid, SINTEF Inference oversettes med Sluttsats inference n. a. The

Detaljer

BJØRG HERINGSTAD, GUNNAR KLEMETSDAL OG JOHN RUANE Institutt for husdyrfag, Norges Landbrukshøgskole, Postboks 5025, 1432 Ås.

BJØRG HERINGSTAD, GUNNAR KLEMETSDAL OG JOHN RUANE Institutt for husdyrfag, Norges Landbrukshøgskole, Postboks 5025, 1432 Ås. Avl mot mastitt BJØRG HERINGSTAD, GUNNAR KLEMETSDAL OG JOHN RUANE Institutt for husdyrfag, Norges Landbrukshøgskole, Postboks 5025, 1432 Ås. Introduksjon Dette innlegget er i hovedsak et sammendrag av

Detaljer

Invitasjon til dr.polit./forskerkurs i LISREL

Invitasjon til dr.polit./forskerkurs i LISREL NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Institutt for sosiologi og statsvitenskap Alle relevante fagmiljøer Telefon 73 59 1710 Vår dato: Vår

Detaljer

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Enhet for anvendt klinisk forskning, NTNU Inference oversettes med slutning inference n. a. The act or process of deriving logical conclusions

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Forelesning 7 STK3100/4100 p. 1/2 Forelesning 7 STK3100/4100 8. november 2012 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Forelesning

Detaljer

Innhold. Multisample inference - del 2 (Rosner, ) Data Effect of Lead Exposure (Eks. i Rosner Kap mm)

Innhold. Multisample inference - del 2 (Rosner, ) Data Effect of Lead Exposure (Eks. i Rosner Kap mm) Innhold Multisample inference - del (Rosner,.5 -.7) Stian Lydersen.5.: Sammenheng mellom enveis ANOVA og multippel lineær regresjon: Indiatorvariable.5. samt Vicers & Altman (BMJ Nov 00): Kovariansanalyse

Detaljer

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision

A Benchmark of Selected Algorithmic. Machine Learning and Computer Vision A Benchmark of Selected Algorithmic Differentiation Tools on Some Problems in Machine Learning and Computer Vision FILIP SRAJER ZUZANA KUKELOVA ANDREW FITZGIBBON AD2016 11.9.2016 Version for public release

Detaljer

Lattice Simulations of Preheating. Gary Felder KITP February 2008

Lattice Simulations of Preheating. Gary Felder KITP February 2008 Lattice Simulations of Preheating Gary Felder KITP February 008 Outline Reheating and Preheating Lattice Simulations Gravity Waves from Preheating Conclusion Reheating and Preheating Reheating is the decay

Detaljer

Neuroscience. Kristiansand

Neuroscience. Kristiansand Neuroscience Kristiansand 16.01.2018 Neuroscience Frank E. Sørgaard Medisinsk rådgiver «Hvordan kan MS medikamentenes effekt og sikkerhet sammenlignes»? Neuroscience Når det ikke finne head to head studier

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Strategies for Adaptive MCMC

Strategies for Adaptive MCMC Department of Statistical Science Duke University ITA Workshop February 10, 2011 Metropolis Algorithm General case: π(dx) = π(x)µ(dx) for some σ-finite µ on X. To draw samples from π(x): Choose proposal

Detaljer

Data Assimilation. Second Edition

Data Assimilation. Second Edition Data Assimilation Second Edition Geir Evensen Data Assimilation The Ensemble Kalman Filter Second Edition 123 Prof. Geir Evensen Statoil Research Centre PO box 7200 5020 Bergen Norway and Mohn-Sverdrup

Detaljer

On multigrid methods for the CahnHilliard equation with obstacle potential

On multigrid methods for the CahnHilliard equation with obstacle potential On multigrid methods for the CahnHilliard equation with obstacle potential ubomír Ba as Department of Mathematics Imperial College London Joint work with Robert Nürnberg http://www.ma.ic.ac.uk/~lubo lubo@imperial.ac.uk

Detaljer

Returns, prices and volatility

Returns, prices and volatility Returns, prices and volatility Susan Thomas IGIDR, Bombay 22 September, 2017 Goals From expected returns to prices Price volatility Variance tests of pricing models Pricing models Expected returns to valuation

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Gamma regresjon Forelesning 7 STK3100/4100 26. september 2008 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Modell: Har y Gamma(µ,ν),

Detaljer

STK 4020, autumn 2008 Bayesians Statistics. Course Notes and Exercises by Nils Lid Hjort

STK 4020, autumn 2008 Bayesians Statistics. Course Notes and Exercises by Nils Lid Hjort STK 4020, autumn 2008 Bayesians Statistics Course Notes and Exercises by Nils Lid Hjort This version: as of 1 December 2008 1. Estimating a binomial probability: flat prior Vi skal se på det berømte hovedeksemplet

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 91838665 Eksamensdato: Eksamenstid (fra-til): Hjelpemiddelkode/Tillatte

Detaljer

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)

Detaljer

On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models

On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models Journal of Multivariate Analysis 76, 134 (001) doi:10.1006jmva.000.1905, available online at http:www.idealibrary.com on On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models Brajendra

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Forelesning 6 STK3100/4100

Forelesning 6 STK3100/4100 Forelesning 6 STK3100/4100 p. 1/4 Forelesning 6 STK3100/4100 4. oktober 2012 Presentasjon av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning

Detaljer

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp) HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Literatur / program Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-20. august 2007 Sven Ove Samuelsen Plan for første forelesning: 1. Introduksjon, Literatur, Program 2. ksempler 3. Uformell

Detaljer

GeWare: A data warehouse for gene expression analysis

GeWare: A data warehouse for gene expression analysis GeWare: A data warehouse for gene expression analysis T. Kirsten, H.-H. Do, E. Rahm WG 1, IZBI, University of Leipzig www.izbi.de, dbs.uni-leipzig.de Outline Motivation GeWare Architecture Annotation Integration

Detaljer

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Examination paper for SOS3003 Applied Social Statistics

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Examination paper for SOS3003 Applied Social Statistics Institutt for sosiologi og statsvitenskap Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Examination paper for SOS3003 Applied Social Statistics Faglig kontakt under eksamen:

Detaljer

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Institutt for sosiologi og statsvitenskap Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Faglig kontakt under eksamen: Arild Blekesaune Telefon: 911 89 768 Eksamensdato: 10.12.2015

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard Regresjonsmodeller HEL 8020 Analyse av registerdata i forskning Tom Wilsgaard Intro Mye forskning innen medisin og helsefag dreier seg om å studere assosiasjonen mellom en eller flere eksponeringsvariabler

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3150/4150 Elementær økonometri Exam: ECON3150/4150 Introductory econometrics Eksamensdag: Tirsdag 30. mai 006 Sensur kunngøres: Torsdag 15. uni Date

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

Datahandling and presentation. Themes. Respekt og redelighet Masterseminar, Frode Volden

Datahandling and presentation. Themes. Respekt og redelighet Masterseminar, Frode Volden 7.04.008 Datahandling and presentation Masterseminar, 8.04.08 Frode Volden Themes Ethics Data loss and security Software Data presentation and analyses Respekt og redelighet Forskeren har et ansvar for

Detaljer

Evaluating Call-by-need on the Control Stack

Evaluating Call-by-need on the Control Stack Evaluating Call-by-need on the Control Stack Stephen Chang, David Van Horn, Matthias Felleisen Northeastern University 1 Lazy Abstract Machines Sharing implemented with: heap 2 Lazy Abstract Machines Sharing

Detaljer

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University

Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Dean Zollman, Kansas State University Mojgan Matloob-Haghanikar, Winona State University Sytil Murphy, Shepherd University Investigating Impact of types of delivery of undergraduate science content courses

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Optical Properties of Plasmas Based on an Average-Atom Model

Optical Properties of Plasmas Based on an Average-Atom Model Optical Properties of Plasmas Based on an Average-Atom Model Walter Johnson, Notre Dame University Claude Guet, CEA/DAM Ile de France George Bertsch, University of Washington Motivation for this work:

Detaljer

NGF 2008 Ekstreme hendelser sett med en statistikers øyne

NGF 2008 Ekstreme hendelser sett med en statistikers øyne NGF 2008 Ekstreme hendelser sett med en statistikers øyne Magne Aarset Handelshøyskolen BI Høyskolen i Ålesund 1 FN s klimapanel IPCC The Intergovernmental Panel on Climate Change Forecasts by Scientists

Detaljer

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

Oppgaver i STK3100/4100.

Oppgaver i STK3100/4100. Oppgaver i STK3100/4100. Datasettene som brukes i oppgavene er tilgjengelig fra kursets hjemmeside Exercise 1 Les igjennom kapittel 4 i boka. Dette stoffet vil videre i kurset antas å være kjent. Exercise

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Kap 15: Spørreundersøkelser

Kap 15: Spørreundersøkelser Kap 15: Spørreundersøkelser Se også Lopez-Feldman (2012) for implementering i Stata Hvilke data er det realistisk å få tilgang på? Kostnader Betalingsvillighet Markedssvikt Økonomifaget har mye fokus på

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014)

Satellite Stereo Imagery. Synthetic Aperture Radar. Johnson et al., Geosphere (2014) Satellite Stereo Imagery Synthetic Aperture Radar Johnson et al., Geosphere (2014) Non-regular sampling Missing data due to lack of correlation, shadows, water, Potentially 3D as opposed to purely 2D (i.e.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir

Detaljer

Robust multivariate transformations to normality: Constructed variables and likelihood ratio tests

Robust multivariate transformations to normality: Constructed variables and likelihood ratio tests Statistical Methods & Applications (2004) 13: 179 196 DOI: 10.1007/s10260-004-0095-1 c Springer-Verlag 2004 Robust multivariate transformations to normality: Constructed variables and likelihood ratio

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Literature. Regression towards the mean. Erling Berge POL3507 IMPLEMENTERING OG EVALUERING AV OFFENTLEG POLITIKK.

Literature. Regression towards the mean. Erling Berge POL3507 IMPLEMENTERING OG EVALUERING AV OFFENTLEG POLITIKK. Erling Berge POL3507 IMPLEMENTERING OG EVALUERING AV OFFENTLEG POLITIKK Regresjonsanalyse Ref.: L. B. Mohr 1995 Chapter 5 and 6 Spring 2007 Erling Berge 2007 1 Literature Breen, Richard 1996 Regression

Detaljer

SOME EMPIRICAL EVIDENCE ON THE DECREASING SCALE ELASTICITY

SOME EMPIRICAL EVIDENCE ON THE DECREASING SCALE ELASTICITY ARTIKLER FRA STATISTISK SENTRALBYRÅ NR. 71 SÆRTRYKK FRA ECONOMETRICA, VOL. 42, NO. 1 (JANUAR 1974) SOME EMPIRICAL EVIDENCE ON THE DECREASING SCALE ELASTICITY By Vidar Ringstad NOEN RESULTATER FOR PRODUKTFUNKSJONEP.

Detaljer

Energy Calibration for the Forward Detector at WASA-at-COSY

Energy Calibration for the Forward Detector at WASA-at-COSY Energy Calibration for the Forward Detector at WASA-at-COSY Kay Demmich Westfälische Wilhelms-Universität Münster, Institut für Kernphysik DPG Spring Meeting (HK 42.7) 5. März 23 K. Demmich (WWU) Calibration

Detaljer

On Capacity Planning for Minimum Vulnerability

On Capacity Planning for Minimum Vulnerability On Capacity Planning for Minimum Vulnerability Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia University of Toronto DRCN - October 2011 Kakow - Poland 1 Outline Introduction Network Criticality and

Detaljer

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

OECD GUIDELINE FOR THE TESTING OF CHEMICALS TG 442C OECD GUIDELINE FOR THE TESTING OF CHEMICALS In Chemico Skin Sensitisation: Direct Peptide Reactivity Assay (DPRA) INTRODUCTION in chemico in chemicoin vitro in silico in chemico in vitro OECD,

Detaljer

Lifetime (duration of a state)

Lifetime (duration of a state) Lifetime (duration of a state) Survival analysis (Levetidsanalyse) Rosner.8-. By Stian Lydersen Lecture april Examples: Time to death (from birth, from diagnosis, from treatment start) Time to a diagnosis

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Casio. Et oppdatert Casio Manual som tar av seg litt av faget MA-155. En basis guide for bruk av Casio. Denne manualen er skrevet av «EFN»

Casio. Et oppdatert Casio Manual som tar av seg litt av faget MA-155. En basis guide for bruk av Casio. Denne manualen er skrevet av «EFN» Casio Et oppdatert Casio Manual som tar av seg litt av faget MA-155. En basis guide for bruk av Casio. Denne manualen er skrevet av «EFN» Denne manualen bruker eksempler fra utgaven 2017: Statistikk En

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Prediction and Classification of Non-stationary Categorical Time Series*

Prediction and Classification of Non-stationary Categorical Time Series* Journal of Multivariate Analysis 67, 277296 (1998) Article o. MV981765 Prediction and Classification of on-stationary Categorical Time Series* Konstantinos Fokianos - The Ohio State University and Benjamin

Detaljer

3.1.1 Eksempel: "Student's" t-fordeling Lognormal-fordeling... 7

3.1.1 Eksempel: Student's t-fordeling Lognormal-fordeling... 7 Kristian R. Hansen Innhold 1 Innlending... 3 1.1 Hjelp og dokumentasjon... 3 1.2 Kommandolinje... 3 1.3 Dokumentasjon... 3 1.4 Data import og eksport... 3 1.4.1 Regneark... 3 1.4.2 Import Wizard... 3 1.4.3

Detaljer

Neutrino astrophysics with the ANTARES telescope

Neutrino astrophysics with the ANTARES telescope Neutrino astrophysics with the ANTARES telescope Vladimir Kulikovskiy Supervisor: Dr. Marco Anghinolfi (INFN Genova) External supervisor: Prof. Antoine Kouchner (APC, Paris) Overview Thesis work: a search

Detaljer

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det

Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det Hva skal vi dimensjonere rør og flomveier for i fremtiden og hvordan gjør vi det Tone M. Muthanna Associate Professor Department of Hydraulic and Environmental Engineering NTNU 20% 10% (Lindholm, 2012)

Detaljer

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Kontakt under eksamen: Ingelin Steinsland (92 66 30 96) EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Tirsdag

Detaljer

Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner.

Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Førsteamanuensis Jarle Tufto Telefon: 99 70 55 19 Bioberegninger, ST1301 30.

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

First observational tests of eternal inflation. Hiranya Peiris

First observational tests of eternal inflation. Hiranya Peiris First observational tests of eternal inflation Hiranya Peiris University College London arxiv:1012.1995, 1012.3667 With: Stephen Feeney (UCL), Matt Johnson (Perimeter Institute), Daniel Mortlock (Imperial

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =

Detaljer

Multiblokkseminaret: LS-PLS. Bjørn-Helge Mevik

Multiblokkseminaret: LS-PLS. Bjørn-Helge Mevik Multiblokkseminaret: LS-PLS Bjørn-Helge Mevik Oversikt Introduksjonseksempel Motivasjon og prinsipp Algoritmer og implementasjon Et levende eksempel Egenskaper Varianter og generaliseringer Credits og

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Peder Bacher

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Peder Bacher Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Eksponensielle klasser

Eksponensielle klasser Eksponensielle klasser, de Jong & Heller, Kap. 3 Eksponensielle klasser STK3100-1. september 2008 Sven Ove Samuelsen En stokastisk variabel Y sies å ha fordeling i den eksponensielle fordelingsklasse dersom

Detaljer

Fasit og løsningsforslag STK 1110

Fasit og løsningsforslag STK 1110 Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 8 desember 1997 Eksamensstad: Dragvoll, paviljong C, rom 201 Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer