Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Størrelse: px
Begynne med side:

Download "Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)"

Transkript

1 Kategoriske data, del I: Kategoriske data - del (Rosner, ) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng mellom behandling og utfall? (er de to variablene assosiert?) Sml to binomiske andeler (10..1), Pearson s χ ( ) eller Fisher s eksakte test (10.3) 1 Kategoriske data, del II: x tabell, parede data. McNemar s test (10.4) RxC tabell, uavh. obs. Pearson s χ (10.6) xk tabell, k ordnede kategorier, test for trend (10.6.) Litt om utvalgsstørrelse og styrkeberegninger (10.6) Litt om Goodness of fit (10.7) 3 x tabell, parede data (Mc Nemar s test) Avsnitt Treatment Table x table based on 14 patients A B Outcome Survive for Die within 5 years 5 years Feil utgangspunkt: Ikke uavhengige observasjoner! 5 Enhet: Matchet par Behandling A alder klinisk tilstand Behandling B Avhengige observasjoner (hvorfor?) 6 1

2 Typer par Table Matched pairs as sampling unit, 61 matched pairs. Trt A patient survive 5 years die within 5 years Trt B patient survive 5 die within years 5 years Concordant pair (overensstemmende par): Behandling A og B gir samme resultat Discordant pair (uoverensstemmende par): Behandling A og B gir forskjellig resultat. Antall n D Type A uoverensstemmende par: Beh. A gir hendelsen og beh. B gir ikke hendelsen. Antall n A 8 Table Matched pairs as sampling unit, 61 matched pairs. Trt A patient survive 5 years die within 5 years Trt B patient survive 5 die within years 5 years Hypotesetesting: McNemar s test p = Pr(Et uoverensstemmende par er typea) Daern A bin(n D, p) (gitt n D ) H 0 : p=1/ versus H 1 : p 1/ Under H 0 er E(n A )=n D / Forkast H 0 hvis n A avviker mye fra n D / Type A Type B 9 10 Beregning av p-verdi McNemar s test Tilnærmet: Eqn 10.1 Eksakt: Eqn SPSS: Legg inn data: En linje per case eller Data -> Weight cases Analyze -> Descriptive statistics -> Crosstabs. Velg Statistics: McNemar Eks 10.4 Brystkreft. n D =1, n A =5 Under H 0 er N A ~ bin(1, 0.5) p-verdi = Pr( N A ) Tilnærmet (Eqn 10.1): χ = 4.76, p-verdi = (OK tilnærming hvis n D 0) Eksakt (Eqn 10.13) p-verdi=

3 Estimert sannsylighet for å overleve 5 år: A: =, B: = Differanse: = % konfidensintervall: Se f.eks Agresti, A: An Introduction to Categorical data Analysis, nd edition, Wiley 007. Page ) Utvalgsstørrelse og teststyrke Avsnitt ± 1.96 (5 + 16) (5 16) / 61/ 61 = 0.018± Dvs til Utvalgsstørrelse og teststyrke Uavhengige observasjoner i x tabell (Pearson s χ eller Fisher s eksakt) Utvalgsstørrelse n 1, n ved gitt p 1, p, α, 1-β, k(=n /n 1 ): Eqn Teststyrke 1-β ved gitt p 1, p, α, n 1, n : Eqn Ikke-perfekt compliance: Eqn 10.1 Matchede par (McNemar s test): Utvalgsstørrelse Eqn Teststyrke: Eqn Ikke-ordnet rxc tabell. Avsnitt Tabell case/ control case control Brystkreft og alder ved første fødsel age group < >= ,4% 1,4% 5,9% 9,8% 35,1% 3,9% ,6% 78,6% 74,1% 70,% 64,9% 76,1% ,0% 100% 100% 100% 100% 100,0% Hvis rader og kolonner er uavhengige så er forventet antall i celle nr i,j E ij radsum kolonnesum = totalsum

4 Pearson s kjikvadratobservator er definert som χ = ( O E ) r c ij i= 1 j= 1 Eij ij ( O E ) ( O E ) ( Orc E ) = E E E rc rc Under H 0 (rader og kolonner uavhengige) så er denne tilnærmet kjikvadratfordelt med (r-1)(c-1) frihetsgrader dersom minst 80% av cellene har E ij>5 og alle cellene har E ij>1. Eksempel sum O E 416, ,6 371,9 149, , O-E -96, ,4 91,1 70,3 96,6 14,3-77,4-91,1-70,3 0 (O-E)^/E,40 15,0 6,4,3 33,01 7,04 4,7,0 7,01 10,38 130, Cochran-Armitage testen: Kjikvadrat-test for trend i binomiske andeler Ordnet xk tabell: Test for trend. Avsnitt 10.6 Sett en score S for hver gruppe: Numerisk egenskap ved gruppen, eller Gruppenr StørrelsenX 1 = A /B kan beregnes etter likning (Mye arbeid!) Under H 0 er X 1 ~ kjikvadratfordelt med 1 fr.gr. 1 Cochran-Armitage test: X 1 = nr, hvor r er Pearsons korrelasjonskoeffisient mellom score og gruppe, og n er totalt antall Ekvivalent med score-test for score i logistisk regresjon Mer generell test: Linear-by-linear test for association i dobbelt ordnet rxc tabell X 1 = (n-1)r, hvor r er Pearsons korrelasjonskoeffisient mellom score og gruppenr, og n er totalt antall Dette er Linear-by-Linear Association i SPSS. Analyze -> Descriptive statistics -> Crosstabs Tilnærmet lik test for trend i binomiske andeler

5 Eks Eks SPSS Persons Agegroup Casecont case/control case control case/control * age group Crosstabulation Expected % Expected % Expected % age group < >= ,6 1348,3 933,6 371,9 149,7 30,0 18,4% 1,4% 5,9% 9,8% 35,1% 3,9% ,4 489, , ,6% 78,6% 74,1% 70,% 64,9% 76,1% ,0 5638, , % 100% 100% 100% 100% 100,0% Hvis data ligger slik i SPSS Data Editor: Data -> Weight Cases -> Weight cases by: Persons 5 6 Eks SPSS Chi-Square Tests SPSS: Logistic regression Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases Asymp. Sig. Value df (-sided) 130,338 a 4,000 17,385 4,000 19,00 1, a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 149,70. Step 0 Variables Overall Statistics Variables not in the Equation agegroup Score df Sig. 19,01 1,000 19,01 1,000 Identisk med Cochran- Armitage test for trend 7 8 Data fra tabell 10.1: Passer data med normalfordelingen? 5000 Chi square goodness-of-fit test Avsnitt 10.7 Frequency observed expected normal < >110 9 MMHG 30 5

6 4000 Eksempel gruppe sum O E O-E (O-E)^/E 5,65 86,09 0,01 1,15 3,49 40,04 0,91 193,79 351,14 Frequency observed expected normal < >110 MMHG

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

Kort innføring i SPSS

Kort innføring i SPSS Kort innføring i SPSS Oppstart og datasett Gjør følgende for å starte opp SPSS og få fram European Social Survey: Finn Min datamaskin Finn SV-info på Luna Velg ISS Velg SOS1002. Dobbeltklikk deretter på

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Mål: SPSS. Litteratur. Noen statistikk-programpakker. Dokumentasjon fra SPSS Inc. Introduksjon til IBM SPSS Statistics 20

Mål: SPSS. Litteratur. Noen statistikk-programpakker. Dokumentasjon fra SPSS Inc. Introduksjon til IBM SPSS Statistics 20 Introduksjon til IBM SPSS Statistics 20 av Stian Lydersen NTNU Revidert 13 aug 2012 http://folk.ntnu.no/slyderse/medstat/spss/introduksjon_spss.pdf Mål: Deltakerne skal få innblikk i Oppretting av datafil.

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE SOS 00 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP Faglig kontakt under eksamen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 36 REGRESJONSANALYSE Faglig kontakt under eksamen: Kristen Ringdal Tlf.:

Detaljer

Referanser: Tegntesten (The sign test) Ikke-parametriske metoder. Ikke-parametriske metoder. Parametriske vs ikke-parametriske metoder

Referanser: Tegntesten (The sign test) Ikke-parametriske metoder. Ikke-parametriske metoder. Parametriske vs ikke-parametriske metoder 1 Referanser: Ie-parametrise metoder KLMED 8001 Aalen, O. O. et al: Statistise metoder i medisin og helsefag. Gyldendal aademis, 005. Rosner, B.: Fundamentals of biostatistics 7the ed. Broos/Cole, 010.

Detaljer

Utvalgsstørrelse, styrke

Utvalgsstørrelse, styrke Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Introduksjon til SPSS. Johan Håkon Bjørngaard Institutt for samfunnsmedisin, NTNU

Introduksjon til SPSS. Johan Håkon Bjørngaard Institutt for samfunnsmedisin, NTNU Introduksjon til SPSS Johan Håkon Bjørngaard Institutt for samfunnsmedisin, NTNU 1 Mål: Deltakerne skal få innblikk i Oppretting av datafil. Innlesing eller inntasting av data. Redigering. Presentasjon

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13/10, 2004. Tid for eksamen: Kl. 09.00 11.00. Vedlegg:

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Statistikk er begripelig

Statistikk er begripelig Statistikk er begripelig men man må begynne med ABC ANOVA ANOVA er brukt til å sammenligne gjennomsnittsverdier Slik er det, selv om det er Analysis of Variance man sier BIVARIAT Bivariat analyse er godt

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

Semesteroppgave i SVSOS107 Samfunnsvitenskapelig forskningsmetode

Semesteroppgave i SVSOS107 Samfunnsvitenskapelig forskningsmetode Institutt for sosiologi og statsvitenskap Fakultet for samfunnsvitenskap og teknologiledelse Robert Wiik, januar 2003 Semesteroppgave i SVSOS107 Samfunnsvitenskapelig forskningsmetode Generelle krav En

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

Introduksjon til SPSS

Introduksjon til SPSS Mål Introduksjon til SPSS Inger Johanne Bakken Enhet for anvendt klinisk forskning, NTNU og Avdeling for forebyggende helsearbeid, SINTEF Deltakerne skal få innblikk i: Hvordan komme i gang med SPSS, ulike

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Det lille kvantitative metodeheftet

Det lille kvantitative metodeheftet ØF-notat nr. 17/2007 Det lille kvantitative metodeheftet av Vegard Johansen ØF -notat nr. 17/2007 Det lille kvantitative metodeheftet av Vegard Johansen Tittel: Forfatter: Det lille kvantitative metodeheftet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

2006/54. Notater. Johan Heldal. Notater. Logistisk regresjon - kurskompendium i byråskolens kurs SM507. Seksjon for metoder og standarder

2006/54. Notater. Johan Heldal. Notater. Logistisk regresjon - kurskompendium i byråskolens kurs SM507. Seksjon for metoder og standarder 2006/54 Notater Johan Heldal Notater Logistisk regresjon - kurskompendium i byråskolens kurs SM507 Seksjon for metoder og standarder Innhold 1. Hva er regresjon?... 2 2. Hva er logistisk regresjon?...

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

NTNU, Norges teknisk-naturvitenskapelige universitet

NTNU, Norges teknisk-naturvitenskapelige universitet NTNU /NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 1 NTNU, Norges teknisk-naturvitenskapelige universitet EXAMINATION QUESTIONS FOR / EKSAMENSOPPGÅVE I/ EKSAMENSOPPGAVE I SVSOS3003 ANVENDT STATISTISK

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 2 gitt hausten 2003 Haust 2003 Oppgåve 2 Den avhengige variabelen i den logistiske regresjonsanalysen er freegl, som

Detaljer

Epidemiologi - en oppfriskning. Epidemiologi. Viktige begreper 12.04.2015. Deskriptiv beskrivende. Analytisk årsaksforklarende. Ikke skarpt skille

Epidemiologi - en oppfriskning. Epidemiologi. Viktige begreper 12.04.2015. Deskriptiv beskrivende. Analytisk årsaksforklarende. Ikke skarpt skille Epidemiologi - en oppfriskning Epidemiologi Deskriptiv beskrivende Hyppighet og fordeling av sykdom Analytisk årsaksforklarende Fra assosiasjon til kausal sammenheng Ikke skarpt skille Viktige begreper

Detaljer

Hvordan forstå meta-analyse

Hvordan forstå meta-analyse Hvordan forstå meta-analyse Nettverkskonferansen i kunnskapsbasert praksis 2016 Professor Birgitte Espehaug, Senter for kunnskapsbasert praksis Workshop 05.04.2016 og 06.04.2016 Agenda Kort introduksjon

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

En enkel innføring i SPSS. Øvingshefte i SOS1002

En enkel innføring i SPSS. Øvingshefte i SOS1002 En enkel innføring i SPSS Øvingshefte i SOS1002 Institutt for Sosiologi og Statsvitenskap Fakultet for Samfunnsvitenskap og Teknologiledelse Sist oppdatert august 2003 Kapittel 1: Windows 2000...4 Dørstokkmila...

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

En enkel innføring i SPSS. Øvingshefte i SOS107

En enkel innføring i SPSS. Øvingshefte i SOS107 En enkel innføring i SPSS Øvingshefte i SOS107 Institutt for Sosilogi og Statsvitenskap Fakultet for samfunnsvitenskap og teknologiledelse Håvard Strand Revidert av Arild Blekesaune, januar 2001 Kapittel

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey 2004.

Detaljer

TMA 4255 Forsøksplanlegging og anvendte statistiske metoder

TMA 4255 Forsøksplanlegging og anvendte statistiske metoder TMA 4255 Forsøksplanlegging og anvendte statistiske metoder Våren 2007 1 Om kurset Foreleser Øvingslærer Kurset er beregnet for studenter som ønsker en videreføring av grunnkurset i statistikk. Sentralt

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger Arnt Erik Tjønna og Eirik Skogvoll Institutt for sirkulasjon og bildediagnostikk, Det medisinske fakultet, NTNU Bakgrunn Inaktivitet

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Eksamen ST2303 Medisinsk statistikk Tirsdag 6 desember 2005 kl 0900-1300

Eksamen ST2303 Medisinsk statistikk Tirsdag 6 desember 2005 kl 0900-1300 side 1 av 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Faglig kontakt under eksamen Stian Lydersen tlf 73867270 / 92632393 Eksamen ST2303 Medisinsk statistikk Tirsdag

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS100 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 30. november 009 Eksamenstid:

Detaljer

Detaljerte forklaringer av begreper og metoder.

Detaljerte forklaringer av begreper og metoder. Appendiks til Ingar Holme, Serena Tonstad. Risikofaktorer og dødelighet oppfølging av Oslo-undersøkelsen fra 1972-73. Tidsskr Nor Legeforen 2011; 131: 456 60. Dette appendikset er et tillegg til artikkelen

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

Forelesningsplan for emnet SYKVIT4223, 15 studiepoeng

Forelesningsplan for emnet SYKVIT4223, 15 studiepoeng splan for emnet SYKVIT4223, 15 studiepoeng Metodefordypning Vår 2011 Metodefordypning gis i ukene 1-9 og er delt i to deler, en kvantitativ og en kvalitativ del. Hensikten med metodekurset er å gi en oversikt

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 29.05.2015 Eksamenstid

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Forelesning 5 STK3100/4100

Forelesning 5 STK3100/4100 Forelesning 5 STK3100/4100 p. 1/4 Forelesning 5 STK3100/4100 27. september 2012 Presentasjon laget av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. Poissonfordeling 2. Overspredning

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

ARBEIDSNOTAT ARBEIDSNOTAT

ARBEIDSNOTAT ARBEIDSNOTAT A r b e i d s n o t a t e r f r a H øg s k o l e n i B u s k e r u d nr. 73 ARBEIDSNOTAT ARBEIDSNOTAT Statistikk og SPSS for enkle undersøkelser Knut W. Hansson Arbeidsnotater fra Høgskolen i Buskerud

Detaljer

Data og beskrivende statistikk Introduksjon til SPSS. 7. april 2005 Tron Anders Moger

Data og beskrivende statistikk Introduksjon til SPSS. 7. april 2005 Tron Anders Moger Data og beskrivende statistikk Introduksjon til SPSS 7. april 2005 Tron Anders Moger New England Journal of Medicine, Editorial, Jan. 6, 2000, p. 42-49 The eleven most important developments in medicine

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey

Detaljer

NTNU, Norges teknisk-naturvitenskapelige universitet

NTNU, Norges teknisk-naturvitenskapelige universitet NTNU /NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Eksamensoppgåver/Eksamensoppgaver/Examination question NTNU, Norges teknisk-naturvitenskapelige universitet EXAMINATION QUESTIONS FOR / EKSAMENSOPPGÅVE

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk og studiedesign Eksamensdag: 6. desember 2013 Tid for eksamen: 14:30-17:30 (3 timer) Oppgavesettet er

Detaljer

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik?

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik? 2 verdier Forelesning 13 Analyser av gjennomsnittsverdier Valg av type statistisk generalisering i bivariat analyse er avhengig av hvilke variabler vi har Avhengig variabel kategorivariabel kontinuerlig

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

R for lingvister, del II

R for lingvister, del II R for lingvister, del II Bjørn-Helge Mevik, Diana Santos USIT/SUF/VD November 2010 Bjørn-Helge Mevik,Diana Santos (USIT/SUF/VD) R for lingvister, del II November 2010 1 / 23 Introduksjon Oversikt, dag

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000. Eksamensdag: Onsdag 17/3, 2004. Tid for eksamen: Kl. 09.00 12.00. Tillatte hjelpemidler: Lærebok: Moore & McCabe

Detaljer

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 26. september 2011. Tid : 09-13. Sted : Administrasjonsbygget. Tillatte hjelpemidler : -

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk Eksamensdag: 5. desember 2011 Tid for eksamen: 09:00-12:00 (3 timer) Oppgavesettet er på 6 sider Vedlegg:

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap SENSORVEILEDNING I SOS1002 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 30. november 2009 Eksamenstid:

Detaljer

Løsningsforslag eksamen H13 SOS1002 Oppgave 1

Løsningsforslag eksamen H13 SOS1002 Oppgave 1 Løsningsforslag eksamen H13 SOS1002 Oppgave 1 a) Median: Et mål på tyngdepunkt for variabler som minst er på ordinalnivå. Medianen er den verdi som splitter en ordnet fordeling i to like store mengder

Detaljer

Appendiks 5 Forutsetninger for lineær regresjonsanalyse

Appendiks 5 Forutsetninger for lineær regresjonsanalyse Appendiks 5 Forutsetninger for lineær regresjonsanalyse Det er flere krav til årsaksslutninger i regresjonsanalyse. En naturlig forutsetning er tidsrekkefølge og i andre rekke spiller variabeltype inn.

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Forelesningsplan for emnet Metodefordypning, SYKVIT4223, 10 studiepoeng

Forelesningsplan for emnet Metodefordypning, SYKVIT4223, 10 studiepoeng splan for emnet Metodefordypning, SYKVIT4223, 10 studiepoeng Vår 2007 Emneansvarlig: / Bodil Ellefsen / Sted: rom 223 Tid: Ukene 6-11 Mål for kurset er at studenten skal få innsikt i vesentlige prinsipper

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150 Biostatistikk og studiedesign Eksamensdag: 5. desember 2014 Tid for eksamen: 14:30-18:30 (4 timer) Oppgavesettet er

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar. Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar

Detaljer

Statistisk analyse av observasjonspunktene i ALLE MED

Statistisk analyse av observasjonspunktene i ALLE MED Statistisk analyse av observasjonspunktene i ALLE MED Inger Kristine Løge Innledning Utviklingen av ALLE MED er et resultat av et samarbeidsprosjekt mellom Senter for atferdsforskning (nå Læringsmiljøsenteret),

Detaljer

SPIQ. Bruk av enkle statistiske metoder i prosessforbedring. Software Process Improvement for better Quality

SPIQ. Bruk av enkle statistiske metoder i prosessforbedring. Software Process Improvement for better Quality SPIQ Software Process Improvement for better Quality SAMMENSTILL ANALYSER GJENNOMFØR KARAKTERISER SETT MÅL PLANLEGG Bruk av enkle statistiske metoder i prosessforbedring Versjon:...V1.0 Dato:...98-09-11

Detaljer