Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Størrelse: px
Begynne med side:

Download "Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)"

Transkript

1 Kategoriske data, del I: Kategoriske data - del (Rosner, ) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng mellom behandling og utfall? (er de to variablene assosiert?) Sml to binomiske andeler (10..1), Pearson s χ ( ) eller Fisher s eksakte test (10.3) 1 Kategoriske data, del II: x tabell, parede data. McNemar s test (10.4) RxC tabell, uavh. obs. Pearson s χ (10.6) xk tabell, k ordnede kategorier, test for trend (10.6.) Litt om utvalgsstørrelse og styrkeberegninger (10.6) Litt om Goodness of fit (10.7) 3 x tabell, parede data (Mc Nemar s test) Avsnitt Treatment Table x table based on 14 patients A B Outcome Survive for Die within 5 years 5 years Feil utgangspunkt: Ikke uavhengige observasjoner! 5 Enhet: Matchet par Behandling A alder klinisk tilstand Behandling B Avhengige observasjoner (hvorfor?) 6 1

2 Typer par Table Matched pairs as sampling unit, 61 matched pairs. Trt A patient survive 5 years die within 5 years Trt B patient survive 5 die within years 5 years Concordant pair (overensstemmende par): Behandling A og B gir samme resultat Discordant pair (uoverensstemmende par): Behandling A og B gir forskjellig resultat. Antall n D Type A uoverensstemmende par: Beh. A gir hendelsen og beh. B gir ikke hendelsen. Antall n A 8 Table Matched pairs as sampling unit, 61 matched pairs. Trt A patient survive 5 years die within 5 years Trt B patient survive 5 die within years 5 years Hypotesetesting: McNemar s test p = Pr(Et uoverensstemmende par er typea) Daern A bin(n D, p) (gitt n D ) H 0 : p=1/ versus H 1 : p 1/ Under H 0 er E(n A )=n D / Forkast H 0 hvis n A avviker mye fra n D / Type A Type B 9 10 Beregning av p-verdi McNemar s test Tilnærmet: Eqn 10.1 Eksakt: Eqn SPSS: Legg inn data: En linje per case eller Data -> Weight cases Analyze -> Descriptive statistics -> Crosstabs. Velg Statistics: McNemar Eks 10.4 Brystkreft. n D =1, n A =5 Under H 0 er N A ~ bin(1, 0.5) p-verdi = Pr( N A ) Tilnærmet (Eqn 10.1): χ = 4.76, p-verdi = (OK tilnærming hvis n D 0) Eksakt (Eqn 10.13) p-verdi=

3 Estimert sannsylighet for å overleve 5 år: A: =, B: = Differanse: = % konfidensintervall: Se f.eks Agresti, A: An Introduction to Categorical data Analysis, nd edition, Wiley 007. Page ) Utvalgsstørrelse og teststyrke Avsnitt ± 1.96 (5 + 16) (5 16) / 61/ 61 = 0.018± Dvs til Utvalgsstørrelse og teststyrke Uavhengige observasjoner i x tabell (Pearson s χ eller Fisher s eksakt) Utvalgsstørrelse n 1, n ved gitt p 1, p, α, 1-β, k(=n /n 1 ): Eqn Teststyrke 1-β ved gitt p 1, p, α, n 1, n : Eqn Ikke-perfekt compliance: Eqn 10.1 Matchede par (McNemar s test): Utvalgsstørrelse Eqn Teststyrke: Eqn Ikke-ordnet rxc tabell. Avsnitt Tabell case/ control case control Brystkreft og alder ved første fødsel age group < >= ,4% 1,4% 5,9% 9,8% 35,1% 3,9% ,6% 78,6% 74,1% 70,% 64,9% 76,1% ,0% 100% 100% 100% 100% 100,0% Hvis rader og kolonner er uavhengige så er forventet antall i celle nr i,j E ij radsum kolonnesum = totalsum

4 Pearson s kjikvadratobservator er definert som χ = ( O E ) r c ij i= 1 j= 1 Eij ij ( O E ) ( O E ) ( Orc E ) = E E E rc rc Under H 0 (rader og kolonner uavhengige) så er denne tilnærmet kjikvadratfordelt med (r-1)(c-1) frihetsgrader dersom minst 80% av cellene har E ij>5 og alle cellene har E ij>1. Eksempel sum O E 416, ,6 371,9 149, , O-E -96, ,4 91,1 70,3 96,6 14,3-77,4-91,1-70,3 0 (O-E)^/E,40 15,0 6,4,3 33,01 7,04 4,7,0 7,01 10,38 130, Cochran-Armitage testen: Kjikvadrat-test for trend i binomiske andeler Ordnet xk tabell: Test for trend. Avsnitt 10.6 Sett en score S for hver gruppe: Numerisk egenskap ved gruppen, eller Gruppenr StørrelsenX 1 = A /B kan beregnes etter likning (Mye arbeid!) Under H 0 er X 1 ~ kjikvadratfordelt med 1 fr.gr. 1 Cochran-Armitage test: X 1 = nr, hvor r er Pearsons korrelasjonskoeffisient mellom score og gruppe, og n er totalt antall Ekvivalent med score-test for score i logistisk regresjon Mer generell test: Linear-by-linear test for association i dobbelt ordnet rxc tabell X 1 = (n-1)r, hvor r er Pearsons korrelasjonskoeffisient mellom score og gruppenr, og n er totalt antall Dette er Linear-by-Linear Association i SPSS. Analyze -> Descriptive statistics -> Crosstabs Tilnærmet lik test for trend i binomiske andeler

5 Eks Eks SPSS Persons Agegroup Casecont case/control case control case/control * age group Crosstabulation Expected % Expected % Expected % age group < >= ,6 1348,3 933,6 371,9 149,7 30,0 18,4% 1,4% 5,9% 9,8% 35,1% 3,9% ,4 489, , ,6% 78,6% 74,1% 70,% 64,9% 76,1% ,0 5638, , % 100% 100% 100% 100% 100,0% Hvis data ligger slik i SPSS Data Editor: Data -> Weight Cases -> Weight cases by: Persons 5 6 Eks SPSS Chi-Square Tests SPSS: Logistic regression Pearson Chi-Square Likelihood Ratio Linear-by-Linear Association N of Valid Cases Asymp. Sig. Value df (-sided) 130,338 a 4,000 17,385 4,000 19,00 1, a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 149,70. Step 0 Variables Overall Statistics Variables not in the Equation agegroup Score df Sig. 19,01 1,000 19,01 1,000 Identisk med Cochran- Armitage test for trend 7 8 Data fra tabell 10.1: Passer data med normalfordelingen? 5000 Chi square goodness-of-fit test Avsnitt 10.7 Frequency observed expected normal < >110 9 MMHG 30 5

6 4000 Eksempel gruppe sum O E O-E (O-E)^/E 5,65 86,09 0,01 1,15 3,49 40,04 0,91 193,79 351,14 Frequency observed expected normal < >110 MMHG

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0? Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

Praktisk om kursene. Øvingene (forts.) Øvingene. KLMED8005 Medisinsk statistikk del II Innhold: KLMED8006 Anvendt medisinsk statistikk

Praktisk om kursene. Øvingene (forts.) Øvingene. KLMED8005 Medisinsk statistikk del II Innhold: KLMED8006 Anvendt medisinsk statistikk KLMED8005 Medisinsk statistikk Del II, våren 008 -og - St303 Medisinsk statistikk, våren 008 6 januar 008: Praktisk om kursene Analyse av x tabeller (Avsnitt 0. 0.3) Stian Lydersen Praktisk om kursene

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Logistisk regresjon 1

Logistisk regresjon 1 Logistisk regresjon Hovedideen: Binær logistisk regresjon håndterer avhengige, dikotome variable Et hovedmål er å predikere sannsynligheter for å ha verdien på avhengig variabel for bestemte (sosiale)

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer) EKSAMEN I SOS20 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller tirsdag 4. desember

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

Praktisk om kursene. Øvingene (forts.) Øvingene. KLMED8005 Medisinsk statistikk del II Innhold: KLMED8006 Anvendt medisinsk statistikk

Praktisk om kursene. Øvingene (forts.) Øvingene. KLMED8005 Medisinsk statistikk del II Innhold: KLMED8006 Anvendt medisinsk statistikk KLMED8005 Medisinsk statistikk Del II, våren 009 -og - St303 Medisinsk statistikk, våren 009 4 januar 009: Praktisk om kursene Analyse av x tabeller (Avsnitt 0. 0.3) Stian Lydersen Praktisk om kursene

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

Univariate tabeller. Bivariat tabellanalyse. Forelesning 8 Tabellanalyse. Formålet med bivariat analyse:

Univariate tabeller. Bivariat tabellanalyse. Forelesning 8 Tabellanalyse. Formålet med bivariat analyse: Forelesning 8 Tabellanalyse Tabellanalyse er en godt egnet presentasjonsform hvis: variablene har et fåtall naturlige kategorier For eksempel kjønn, Eu-syn variablene er delt inn i kategorier For eksempel

Detaljer

Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009 kl

Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009 kl 1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Faglig kontakt under eksamen Stian Lydersen tlf 72575428 / 92632393 Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009

Detaljer

Kort innføring i SPSS

Kort innføring i SPSS Kort innføring i SPSS Oppstart og datasett Gjør følgende for å starte opp SPSS og få fram European Social Survey: Finn Min datamaskin Finn SV-info på Luna Velg ISS Velg SOS1002. Dobbeltklikk deretter på

Detaljer

Epidemiology. Epidemiology. Rosner, Chapter 13: Tabell 13.1. Disease Yes No Yes a b a+b=n 1 No c d c+d=n 2 a+c=m 1 b+d=m 2.

Epidemiology. Epidemiology. Rosner, Chapter 13: Tabell 13.1. Disease Yes No Yes a b a+b=n 1 No c d c+d=n 2 a+c=m 1 b+d=m 2. Rosner, Chapter 3: Rosner, kap 3: Design and Analysis Techniques for Epidemiologic studies Medisinsk statistikk del II 5 mars 009 Stian Lydersen. Common study designs in epidemiology. Measures of effect

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Forelesning 10 Statistiske mål for bivariat tabellanalyse. Korrelasjonsmål etter målenivå. Cramers V

Forelesning 10 Statistiske mål for bivariat tabellanalyse. Korrelasjonsmål etter målenivå. Cramers V Forelesning 10 Statistiske mål for bivariat tabellanalyse Vi har ulike koeffisienter som viser styrken på den statistiske avhengigheten mellom de to variablene. Valg av koeffisient må vurderes ut fra variablenes

Detaljer

Medisinsk statistikk Del I høsten 2008:

Medisinsk statistikk Del I høsten 2008: Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv

Detaljer

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 1. kvartil Q 1 : 25% av dataene

Detaljer

Levetid (varighet av en tilstand)

Levetid (varighet av en tilstand) Levetid (varighet av en tilstand) Levetidsanalyse (survival analysis) Rosner.8-. av Stian Lydersen Forlesning 6 april 8 Eksempler: Tid til personen dør (målt fra fødsel, fra diagnose, fra behandling) Tid

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

Fakultet for informasjonsteknologi, Institutt for matematiske fag EKSAMEN I EMNE ST2202 ANVENDT STATISTIKK

Fakultet for informasjonsteknologi, Institutt for matematiske fag EKSAMEN I EMNE ST2202 ANVENDT STATISTIKK Side av 9 NTNU Noregs teknisk-naturvitskaplege universitet Fakultet for informasonsteknologi, matematikk og elektroteknikk Institutt for matematiske fag Bokmål Faglig kontakt under eksamen Bo Lindqvist

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Innhold. Multisample inference - del 2 (Rosner, ) Data Effect of Lead Exposure (Eks. i Rosner Kap mm)

Innhold. Multisample inference - del 2 (Rosner, ) Data Effect of Lead Exposure (Eks. i Rosner Kap mm) Innhold Multisample inference - del (Rosner,.5 -.7) Stian Lydersen.5.: Sammenheng mellom enveis ANOVA og multippel lineær regresjon: Indiatorvariable.5. samt Vicers & Altman (BMJ Nov 00): Kovariansanalyse

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE SOS 00 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP Faglig kontakt under eksamen:

Detaljer

Mål: SPSS. Litteratur. Noen statistikk-programpakker. Dokumentasjon fra SPSS Inc. Introduksjon til IBM SPSS Statistics 20

Mål: SPSS. Litteratur. Noen statistikk-programpakker. Dokumentasjon fra SPSS Inc. Introduksjon til IBM SPSS Statistics 20 Introduksjon til IBM SPSS Statistics 20 av Stian Lydersen NTNU Revidert 13 aug 2012 http://folk.ntnu.no/slyderse/medstat/spss/introduksjon_spss.pdf Mål: Deltakerne skal få innblikk i Oppretting av datafil.

Detaljer

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2) Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

EXAMINATION PAPER. Exam in: STA-3300 Applied statistics 2 Date: Wednesday, November 25th 2015 Time: Kl 09:00 13:00 Place: Teorifagb.

EXAMINATION PAPER. Exam in: STA-3300 Applied statistics 2 Date: Wednesday, November 25th 2015 Time: Kl 09:00 13:00 Place: Teorifagb. EXAMINATION PAPER Exam in: STA-3300 Applied statistics 2 Date: Wednesday, November 25th 2015 Time: Kl 09:00 13:00 Place: Teorifagb.,hus 1, plan 3 Approved aids: Calculator All printed and written The exam

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Repeterte målinger. Repeterte målinger. Eirik Skogvoll. Gjentatte observasjoner på samme individ:

Repeterte målinger. Repeterte målinger. Eirik Skogvoll. Gjentatte observasjoner på samme individ: Repeterte målinger Eirik Skogvoll 1.amanuensis dr.med. Enhet for anvendt klinisk forskning (AKF) Det medisinske fakultet, februar 2008 1 Repeterte målinger Mer eller mindre synonymt med... Repeated measurements

Detaljer

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003 Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 03 Oppgave 1 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 3: Beskrivende analyse og presentasjon av data for to variabler (bivariate data) Bo Lindqvist Institutt for matematiske fag 2 Presentasjon av bivariate data

Detaljer

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Enhet for anvendt klinisk forskning, NTNU Inference oversettes med slutning inference n. a. The act or process of deriving logical conclusions

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

Korrelasjon og lineær regresjon, litt om resultatpresentasjon

Korrelasjon og lineær regresjon, litt om resultatpresentasjon Korrelasjon og lineær regresjon, litt om resultatpresentasjon 4. Mai 2005 Tron Anders Moger Forelesningen om t-tester: Så på kontinuerlige utfall som var normalfordelte Brukte t-tester for å undersøke

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

Anvendt medisinsk statistikk Vår 2010 Diagnostiske tester

Anvendt medisinsk statistikk Vår 2010 Diagnostiske tester Anvendt medisinsk statistikk Vår 2010 Diagnostiske tester Eirik Skogvoll 1.amanuensis dr.med. Enhet for Anvendt klinisk forskning (AKF) 1 Oversikt Malin Dögl: Partus-testen, blir det fødsel innen 3 døgn?

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

Utvalgsstørrelse, styrke

Utvalgsstørrelse, styrke Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

Repeterte målinger. Repeterte målinger. Eirik Skogvoll

Repeterte målinger. Repeterte målinger. Eirik Skogvoll Repeterte målinger Eirik Skogvoll Førsteamanuensis dr.med. Enhet for anvendt klinisk forskning (AKF) Det medisinske fakultet, februar 2009 1 Repeterte målinger Mer eller mindre synonymt med... Repeated

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 316 REGRESJONSANALYSE Faglig kontakt under eksamen: Kristen Ringdal Tlf.:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 004 Erling Berge 004 1 Forelesing XI Logistisk regresjon

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 36 REGRESJONSANALYSE Faglig kontakt under eksamen: Tlf.: 73 59 7 0 Eksamensdato:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer

Forelesning 9 Statistiske mål for bivariat tabellanalyse

Forelesning 9 Statistiske mål for bivariat tabellanalyse Forelesning 9 Statistiske mål for bivariat tabellanalyse Vi har ulike koeffisienter som viser styrken på den statistiske avhengigheten mellom de to variablene. Valg av koeffisient må vurderes ut fra variablenes

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.12: Varians Mette Langaas Foreleses onsdag 20.oktober, 2010 2 Norske hoppdommere og Janne Ahonen Janne

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

Multisample Inference del 2 (Rosner )

Multisample Inference del 2 (Rosner ) Multisample Inference del (Rosner.5.7) Inger Johanne Baen Enhet for anvendt linis forsning, NTNU og Avdeling for forebyggende helsearbeid, SINTEF Inference oversettes med Sluttsats inference n. a. The

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

Norske hoppdommere og Janne Ahonen

Norske hoppdommere og Janne Ahonen TMA440 Statistikk H010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.1: Varians Mette Langaas Foreleses onsdag 0.oktober, 010 Norske hoppdommere og Janne Ahonen Janne Ahonen

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell

Detaljer

Referanser: Tegntesten (The sign test) Ikke-parametriske metoder. Ikke-parametriske metoder. Parametriske vs ikke-parametriske metoder

Referanser: Tegntesten (The sign test) Ikke-parametriske metoder. Ikke-parametriske metoder. Parametriske vs ikke-parametriske metoder 1 Referanser: Ie-parametrise metoder KLMED 8001 Aalen, O. O. et al: Statistise metoder i medisin og helsefag. Gyldendal aademis, 005. Rosner, B.: Fundamentals of biostatistics 7the ed. Broos/Cole, 010.

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 36 REGRESJONSANALYSE Faglig kontakt under eksamen: Kristen Ringdal Tlf.:

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 003 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

Case Processing Summary

Case Processing Summary Case Processing Summary Cases Valid Missing N Percent N Percent N Percent oppmerksomhet om en politisk sak som mange synes er viktig? * politisk endring i dagens Norge? * politisk endring andre steder

Detaljer

Eksamen ST2303 Medisinsk statistikk Torsdag 30 november 2006 kl

Eksamen ST2303 Medisinsk statistikk Torsdag 30 november 2006 kl Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Faglig kontakt under eksamen Stian Lydersen tlf 73867270 / 92632393 Eksamen ST2303 Medisinsk statistikk Torsdag 30 november

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt uten med Kp 14 Flerfaktor-eksperiment Bjørn H Auestad Kp 14: To-faktor eksperiment 1 / 20 Kp 14: Flerfaktor-eksperiment; oversikt uten med 141 Introduction 142 Interaction in the Two-Factor Experiment

Detaljer

Statistikk er begripelig

Statistikk er begripelig Statistikk er begripelig men man må begynne med ABC ANOVA ANOVA er brukt til å sammenligne gjennomsnittsverdier Slik er det, selv om det er Analysis of Variance man sier BIVARIAT Bivariat analyse er godt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

Forelesning 17 Logistisk regresjonsanalyse

Forelesning 17 Logistisk regresjonsanalyse Forelesning 17 Logistisk regresjonsanalyse Logistiske regresjons er den mest brukte regresjonsanalysen når den avhengige variabelen er todelt Metoden kan brukes til å: teste hypoteser om variablers effekt

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 1 gitt hausten 2003 Haust 2003 Oppgåve 1 Den avhengige variabelen i regresjonsanalysen er en skala (indeks) for tillit

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap

Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Institutt for sosiologi og statsvitenskap Eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Faglig kontakt under eksamen: Arild Blekesaune Telefon: 911 89 768 Eksamensdato: 10.12.2015

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2016

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2016 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2016 Skriftlig skoleeksamen fredag 24. mai, 14:30 (4 timer). Kalkulator uten grafisk display og

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Logistisk regresjon. Regresjonsmodeller. Prediksjon versus assosiasjon. En epidemiologisk problemstilling. Et multivariabelt problem

Logistisk regresjon. Regresjonsmodeller. Prediksjon versus assosiasjon. En epidemiologisk problemstilling. Et multivariabelt problem Innføring i medisinsk statistikk del 2 Logistisk regresjon Hvorfor brukes logistisk regresjon? Multippel logistisk regresjon (Rosner, 2000; kap. 3.7 og 2006 presentasjon av Tom Ivar Lund Nilsen). Av samme

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 9 og 79 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N 1 Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N Emnekode: Emnenavn: BE-34 Statistikk og finans Dato: 6. desember 21 Varighet: 9-13 Antall sider inkl. forside 6 Tillatte hjelpemidler:

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer