Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator"

Transkript

1 Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 26. september Tid : Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator - Tabeller og formler i statistikk (Kvaløy & Tjelmeland) - To ark (fire sider) egne notat. Oppgavesettet er på 10 sider ekskl. forside Kontaktperson under eksamen : Georg Elvebakk Telefon: FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Universitetet i Tromsø

2 OBS: Om ikke anna er spesifisert skal signifikansnivået i tester være 5%. Deloppgavene vil telle likt ved vurderinga. R-utskrifter, tabeller etc. til oppgavene står bak i oppgavesettet. Oppgave 1 I et pilspill blir piler kasta mot ei sirkelforma skive, der målet er å treffe nærmest mulig midten av skiva. Vi kaller avstanden fra piltreffpunktet til midten av skiva for R. Vi har at tetthetsfunksjone er gitt ved: f R (r) = r r 2 σ 2 e 2 σ 2, r > 0. En god pilkatser har en lav verdi for variansen σ 2. Kari er en ivrig pilkaster og vil gjerne finne ut hva hennes verdi er. Hun noterer derfor ned resultatet for avstanden fra midten for n = 15 kast (i cm). Disse antar hun er et tilfeldig utvalg fra fordelinga. Kast, i Avstand, r Her kan du bruke at 15 i=1 r i = 81.9 og 15 i=1 r2 i = a) Vis at forventninga til R blir σ π 2. (Hint: gammafunksjonen.) Vis at variansen til R blir 2σ 2 (1 π 4 ). I staden for å basere oss på observasjonene r vil vi fra nå av bruke kvadrerte observasjoner r 2. b) Finn fordelinga til R 2 (tetthetsfunksjon eller kumulativ fordelingsfunksjon). Hva slags fordelingstype er dette? Bruk momentmetoden til å finne en estimator for σ 2 basert på de kvadrerte dataene. Sett inn de oppgitte talla og finn et estimat. Kari vil også gjerne ha et konfidensintervall for parameteren σ 2. c) Utled et 95%-konfidensintervall for σ 2 basert på momentestimatoren. Bruk de oppgitte talla til å rekne ut intervallgrensene. (Hint: Du kan bruke oppgitte kvantiler fra standard-gammafordeling (β = 1) som står bak i oppgavesettet.) 2

3 Oppgave 2 I denne oppgava skal vi se på data fra et eksperiment som undersøker hva som påvirker prisen en bruktbilhandler tilbyr å kjøpe bilen din for. 36 forsøkspersoner prøvde å selge en bestemt bil. Disse er splitta opp etter kjønn (to nivåer) og alder (3 nivåer: ung, middels, gammel), slik at det er 6 personer i hver gruppe. Responsvariablen, Y ijk er prisen (i 100 dollar) de blei tilbudt. Her er i = 1, 2 (kjønn), j = 1, 2, 3 (alder) og k = 1,..., 6. Gjennomsnittet for hver faktorkombinasjon er også oppgitt. Ung Middels Gammel Mann Gj.snitt: Kvinne Gj.snitt: a) Sett opp en full modell med forutsetninger for dette forsøket og forklar hva elementene i modellen representerer. Forklar hva et eventuelt samspill mellom de to faktorene betyr i praksis, og lag et plott for å avdekke samspill. Skriv opp uttrykket for SS E og finn et estimat for σ 2. Sett opp og utfør tester for effekten av de to faktorene og samspillet mellom dem. Anta nå at vi konkludere at faktoren kjoenn og samspillet mellom kjoenn og alder er uten betydning. Vi står da bare igjen med faktoren alder. Responsvariablen er Y ij der er i = 1, 2, 3 (alder) og j = 1,..., 12. Ung Middels Gammel Gj.snitt: y 1 = y 2 = y 3 = j=1 (y 1j y 1 ) 2 12 = 33.00, j=1 (y 2j y 2 ) 2 = 18.25, 3 12 i=1 j=1 (y ij y ) 2 = j=1 (y 3j y 3 ) 2 =

4 b) Skriv opp den nye modellen med forutsetninger. Finn de tre kvadratsummenene i oppsplittinga SS T = SS A + SS E. Forklar sammenhengen med kvadratsummene for modellen i spørsmål a). Sett opp og utfør en test for om variansen er ulik for de tre aldersgruppene. Sett opp og utfør en test for om det er signifikant forskjell på forventningsverdiene for aldersgruppene. I hvilken rekkefølge bør testene utføres? Til slutt vil vi undersøke nærmere hvordan forventningsverdiene for aldersgruppene skiller seg fra hverandre. c) Ut fra teorier om hvilke(n) aldergruppe(r) bruktilhandlerne antar har best greie på bilens reelle verdi vil vi splitte opp i to tester: 1. Er aldersgruppe 2 ulik de to andre? 2. Er aldersgruppe 1 ulik gruppe 3? Utfør testene og oppsummer en total konklusjon for forsøket. 4

5 Oppgave 3 Vi skal se på data fra en undersøkelse om pasienter som gjennomgår en leveroperasjon. Vi her data fra 17 tilfeldig valgte pasienter om hvor lenge de levde (i dager) etter operasjonen (respons) og 8 ulike forklaringsvariabler: Y lny X1 X2 X3 X4 X5 X6 X7 X8 Overlevelsestid. Logaritmen av overlevelsestid. Indeks for blodpropp. Prognostisk indeks. Ensymfunksjonmål. Leverfunksjonsmål. Alder. Indikator for kjønn (0 = mann). Indikator for moderat alkoholforbruk (0= ikke moderat). Indikator for høgt alkoholforbruk (0 = ikke høgt). Vi velger å bruke logaritmen av Y, lny som responsvariabel i heile denne oppgava. a) Her vil vi først sette opp en lineær regresjonsmodell for lny som funksjon av alle forklaringsvariablene. Skriv opp denne modellen med forutsetninger og finn den estimerte regresjonsmodellen fra utskriftene. Om den lineære modellen stemmer hvordan var den opprinnelige sammenhengen mellom Y og forklaringsvariablene? I utskriftene ser vi at stigningstallet for X5 er estimert til med en p-verdi på Tenk deg at du skal forklare en annen person hva dette betyr. Forklar hva eksakt hva vi har estimert og testa, og hva p-verdien forteller. Vi vil gjerne finne ut hvilke variabler en bør ha med i en regresjonsmodell og har derfor rekna ut en del godhetsmål for noen aktuelle modeller: modell R2 R2adj Cp R2pred 1 X2, X X1, X2, X X1, X2, X3, X X1, X2, X3, X X1, X2, X3, X X1, X2, X3, X4, X X1, X2, X3, X5, X X1, X2, X3, X6, X X1, X2, X3, X7, X X1, X2, X3, X4, X5, X6, X7, X b) Forklar hva R 2, Radj 2, C p og Rpred 2 måler, og hvordan de brukes til modellvalg. Hvilken modell ville du ha valgt, begrunn valget ditt. Vi velger i resten av oppgava å se på modellen med X1, X2, X3 og X8. c) Skriv opp den estimerte modellen for lny. Ser det ut som det er grunn til å frykte problemer med multikolinearitet i modellen? Finn predikert verdi for lny om pasienten har x1 = 5, x2 = 50, x3 = 50, x8 = 1? Finn også et 95%-prediksjonsintervall for overlevelstida (obs!) i dager. d) Lag et 95%-konfidensintervall stigningstallet til X8 (forskjellen mellom pasienter med og uten høgt alkoholforbruk). Bruk anova-utskriften til å teste om X3 og X8 er simultant signifikante i modellen som også inneholder X1 og X2? 5

6 Kvantiler (2.5% og 97.5%) fra gammafordeling med β = 1 (scale) og α = 1, 2,..., 50 (shape): > qgamma(0.025,shape=seq(1,50),scale=1) [1] [7] [13] [19] [25] [31] [37] [43] [49] > qgamma(0.975,shape=seq(1,50),scale=1) [1] [8] [15] [22] [29] [36] [43] [50]

7 > summary(aov(pris~as.factor(alder)+as.factor(kjoenn) +as.factor(alder)*as.factor(kjoenn),cash)) Df Sum Sq Mean Sq F value Pr(>F) as.factor(alder) e-12 *** as.factor(kjoenn) as.factor(alder):as.factor(kjoenn) Residuals Signif. codes: 0 *** ** 0.01 *

8

9

10 > summary(lm(lny~x1+x2+x3+x4+x5+x6+x7+x8,liverop)) Call: lm(formula = lny ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8, data = liverop) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** X ** X e-08 *** X e-10 *** X X X X X e-05 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 45 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 8 and 45 DF, p-value: 7.8e-16 > anova(lm(lny~x1+x2+x3+x4+x5+x6+x7+x8,liverop)) Analysis of Variance Table Response: lny Df Sum Sq Mean Sq F value Pr(>F) X *** X e-10 *** X e-15 *** X X X X X e-05 *** Residuals Signif. codes: 0 *** ** 0.01 *

11 > summary(lm(lny~x1+x2+x3+x8,leverop)) Call: lm(formula = lny ~ X1 + X2 + X3 + X8, data = leverop) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** X *** X e-11 *** X e-15 *** X e-05 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 49 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 4 and 49 DF, p-value: < 2.2e-16 > anova(lm(lny~x1+x2+x3+x8,leverop)) Analysis of Variance Table Response: lny Df Sum Sq Mean Sq F value Pr(>F) X *** X e-10 *** X e-16 *** X e-05 *** Residuals Signif. codes: 0 *** ** 0.01 * > X <- cbind(leverop$x1,leverop$x2,leverop$x3,leverop$x8) > cor(x) X1 X2 X3 X8 X X X X > solve(t(x)%*%x) [,1] [,2] [,3] [,4] [1,] e e [2,] e e [3,] e e [4,] e e > x0 <- matrix(c(5,50,50,1)) > t(x0)%*%solve(t(x)%*%x)%*%x0 [,1] [1,]

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 3. juni Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 3. juni Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 3. juni 2011. Tid : 09-13. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

EKSAMENSOPPGAVE STA-2004.

EKSAMENSOPPGAVE STA-2004. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Torsdag 28. september 2017. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagsbygget. «Tabeller og formler i

Detaljer

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Detaljer

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVE. Eksamen i: STA 1002 Statistikk og sannsynlighet 2. Dato: Fredag 1. juni Tid: Kl 09:00 13:00. Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: STA 1002 Statistikk og sannsynlighet 2. Dato: Fredag 1. juni Tid: Kl 09:00 13:00. Sted: Åsgårdvegen 9 FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: STA 1002 Statistikk og sannsynlighet 2 Dato: Fredag 1. juni 2012 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150 Biostatistikk og studiedesign Eksamensdag: 5. desember 2014 Tid for eksamen: 14:30-18:30 (4 timer) Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk og studiedesign Eksamensdag: 6. desember 2013 Tid for eksamen: 14:30-17:30 (3 timer) Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Fredag 26. mai 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 27.mai 2016 Klokkeslett: 09-13 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: «Tabeller og formler i statistikk» av Kvaløy

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

Eksamensoppgave i TMA4267 Lineære statistiske modeller

Eksamensoppgave i TMA4267 Lineære statistiske modeller Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Onsdag 8. august

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Eksamensoppgåve i TMA4267 Lineære statistiske modellar

Eksamensoppgåve i TMA4267 Lineære statistiske modellar Institutt for matematiske fag Eksamensoppgåve i TMA4267 Lineære statistiske modellar Fagleg kontakt under eksamen: Øyvind Bakke Tlf: 73 59 81 26, 990 41 673 Eksamensdato: 22. mai 2015 Eksamenstid (frå

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4267 Lineære statistiske modeller

Eksamensoppgave i TMA4267 Lineære statistiske modeller Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 22. mai 2014 Eksamenstid (fra til): 09.00-13.00

Detaljer

Eksamensoppgave i TMA4267 Lineære statistiske modeller

Eksamensoppgave i TMA4267 Lineære statistiske modeller Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 4. juni 2016 Eksamenstid (fra til): 09.00

Detaljer

Fra boka: 10.32, 10.33, 10.34, 10.35, 10.3 og (alle er basert på samme datasett).

Fra boka: 10.32, 10.33, 10.34, 10.35, 10.3 og (alle er basert på samme datasett). Fra boka: 10.32, 10.33, 10.34, 10.35, 10.3 og 10.37 (alle er basert på samme datasett). ############ OPPGAVE 10.32 # Vannkvalitet. n=49 målinger i ulike områder. # Forutsetter at datasettene til boka (i

Detaljer

Variansanalyse og lineær regresjon notat til STK2120

Variansanalyse og lineær regresjon notat til STK2120 Variansanalyse og lineær regresjon notat til STK2120 Ørulf Borgan februar 2013 Formålet med dette notatet er å beskrive sammenhengen mellom variansanalyse med faste effekter og multippel lineær regresjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N 1 Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N Emnekode: Emnenavn: BE-34 Statistikk og finans Dato: 6. desember 21 Varighet: 9-13 Antall sider inkl. forside 6 Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfunnsfag Institutt for økonomi og administrasjon Statistiske metoder Bokmål Dato: Torsdag 19. desember Tid: 4 timer / kl. 9-13 Antall sider (inkl. forside): 8 Antall oppgaver: 3 Oppsettet

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Forelesning 7 STK3100

Forelesning 7 STK3100 ( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk Eksamensdag: 5. desember 2011 Tid for eksamen: 09:00-12:00 (3 timer) Oppgavesettet er på 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 6. juni 2011. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer

EKSAMENSOPPGAVE. Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9 FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Dato: Tid: Sted: Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9 Tillatte hjelpemidler: Alle trykte

Detaljer

Eksamensoppgave i TMA4275 Levetidsanalyse

Eksamensoppgave i TMA4275 Levetidsanalyse Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK1000 Innføring i avvendt statistikk Eksamensdag: Onsdag 8. oktober 2014 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Eksamensoppgåve i TMA4255 Anvendt statistikk

Eksamensoppgåve i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (frå til): 09:00-13:00

Detaljer

Forelesning 8 STK3100

Forelesning 8 STK3100 $ $ $ # Fortolkning av Dermed blir -ene Vi får variasjonen i '& '& $ Dermed har fortolkning som andel av variasjonen forklart av regresjonen Alternativt: pga identiteten Forelesning 8 STK3100 p3/3 Multippel

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE MET1002 Statistikk Grunnkurs 7,5 studiepoeng Torsdag 14. mai 2007 kl. 09.00-13.00 Faglærer: Sjur Westgaard (97122019) Kontaktperson

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Mandag 6.

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert ) Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK

Detaljer

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag

Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Oppgave 1 a) Verdien av uttrykkene blir som følger: >

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Eksamensoppgåve i TMA4255 Anvendt statistikk

Eksamensoppgåve i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00

Detaljer

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt BOKMÅL/NYNORSK EKSAMEN I: PED3001 - STATISTIKK FAGLIG KONTAKT UNDER EKSAMEN: Per Frostad

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13/10, 2004. Tid for eksamen: Kl. 09.00 11.00. Vedlegg:

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2.

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. c) EMV max = 1000000 * 0.8 + 27000000 * 0.2 = 4600000 for produkt 2. d) 0.2 * 27000000 4600000

Detaljer

Skoleeksamen i SOS Kvantitativ metode

Skoleeksamen i SOS Kvantitativ metode Skoleeksamen i SOS1120 - Kvantitativ metode Hjelpemidler Ordbok Alle typer kalkulatorer Tirsdag 30. mai 2017 (4 timer) Lærerbok (det er mulig mulig å ha med en annen, tilsvarende pensumbok, som erstatning

Detaljer