EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

Like dokumenter
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai SENSURFRIST: 16. juni KLASSE: HIS TID: kl

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

Fasit for tilleggsoppgaver

Eksamensoppgave i TMA4240 Statistikk

Hypotesetesting av λ og p. p verdi.

Eksamensoppgave i TMA4240 Statistikk

TMA4245 Statistikk Eksamen desember 2016

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

EKSAMEN. ANTALL SIDER UTLEVERT: 3 sider inklusiv forside.

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

Eksamensoppgave i TMA4245 Statistikk

HØGSKOLEN I STAVANGER

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

ECON240 VÅR / 2016 BOKMÅL

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

UNIVERSITETET I OSLO Matematisk Institutt

Løsningsforslag, eksamen statistikk, juni 2015

LØSNINGSFORSLAG ) = Dvs

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Oppfriskning av blokk 1 i TMA4240

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

UNIVERSITETET I OSLO

Eksamensoppgåve i TMA4240 Statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Sannsynlighet og statistikk S2 Løsninger

Eksamensoppgave i TMA4240 Statistikk

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

Løsning eksamen desember 2017

TMA4245 Statistikk Eksamen desember 2016

Bernoulli forsøksrekke og binomisk fordeling

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

TMA4240 Statistikk Høst 2007

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Eksamensoppgåve i TMA4240 / TMA4245 Statistikk

UNIVERSITETET I OSLO

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

TMA4240 Statistikk Høst 2008

Eksamensoppgave i ST0103 Brukerkurs i statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

TMA4240 Statistikk H2010 (22)

Emnenavn: Deleksamen i Statistikk. Eksamenstid: Faglærer: Tore August Kro. Oppgaven er kontrollert:

UNIVERSITETET I OSLO

Kapittel 2: Hendelser

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Konfidensintervall for µ med ukjent σ (t intervall)

DEL 1 GRUNNLEGGENDE STATISTIKK

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk 2014

Løsning eksamen desember 2016

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag oblig 1 STK1110 høsten 2014

Høgskoleni østfold EKSAMEN

Formelsamling i medisinsk statistikk

UNIVERSITETET I OSLO

TMA4245 Statistikk Høst 2016

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk

UNIVERSITETET I OSLO

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelening 1, kapittel 4 Stokastiske variable

HØGSKOLEN I STAVANGER

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Eksamensoppgave i TMA4245 Statistikk

ECON2130 Kommentarer til oblig

Matteknologisk utdanning

TMA4240 Statistikk H2010

3.1 Stokastisk variabel (repetisjon)

TMA4245 Statistikk Eksamen august 2014

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

UNIVERSITETET I OSLO

ÅMA110 Sannsynlighetsregning med statistikk, våren

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

TMA4240 Statistikk Høst 2015

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Transkript:

KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Ved innlevering skilles hvit og gul besvarelse og legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholder kandidaten. Husk kandidatnummer på alle ark.

Eksamen i Statistikk. 1. juni 28 1 Hvert av de 12 bokstavpunktene teller likt ved bedømmelsen. Oppgave 1 En kjemilærer har en saltsyreoppløsning som studentene skal bestemme konsentrasjonen av i en labøvelse, ved å måle hvor mye lut med kjent konsentrasjon som trengs for å nøyrtralisere syra. Læreren vet at syra har en konsentrasjon på μ = 12. molper kubikkmeter (.12 mol/dm 3 ). Fra lang erfaring på kjemilabben veit han også atmålefeil gir et standardavvik på σ =1.5 mol per kubikkmeter. Det vil si at en students resultat kan betraktes som en observasjon på konsentrasjonen fra en stokastisk variabel med N (12., 1.5) fordeling. Du kan regne uten benevninger. a ) Hva er sannsynligheten for at en student finner en verdi på konsentrasjonen mellom 119.5 og 12.5 i en enkelt måling? b ) Hva er sannsynligheten for at gjennomsnittsverdien av alle de 6 målingene de 2 studentene i klassen får når de målet 3 ganger hver ligger mellom 119.5 og12.5? Oppgave 2 Den samme kjemilæreren som i oppgave 1 har også en annen saltsyreoppløsning med ukjent konsentrasjon. Resultatet fra de 6 beregnede konsentrasjonene er samlet inn og oppsummert i følgende frekvenstabell: Intervall 92.5, 93.5] 93.5, 94.5] 94.5, 95.5] 95.5, 96.5] 96.5, 97.5] 97.5, 98.5] Midtpunkt 93 94 95 96 97 98 Antall 3 9 18 21 7 2 Andel.5.15.3.35.1167.333 a ) Regn ut den empiriske forventningsverdien x og det empiriske standardavviket s for dette datasettet. Siden du ikke kjenner enkeltresultatene må du regne som om alle observasjonene i et intervall er midtpunktverdien. b ) Regn ut 95% konfidensintervall for den virkelige syrekonsentrasjonen μ. Oppgave 3 En bedrift skal gjennomføre en spørreundersøkelse blant sine potensielle kunder. På et av spørsmålet blir respondentene bedt om å si hva de liker best av to alternative design på et av produktene. Dette er det nåværende, A, og en utforming B bedriften vurderer å bytte til. For å analysere dette antar bedriften at andelen potensielle kunder som foretrekker design Berp. Den stokastiske variabelen X er antall som krysser av for B blant n (ikke-blanke) svar, og de antar X er binomisk fordelt, X bin (n, p). a ) Anta i første omgang at p =1/2, og de bare analyserer n = 8 skjemaer. Hva er sannsynligheten for at nøyaktig seks av skjemaene har avkrysning for alternativ B?

Eksamen i Statistikk. 1. juni 28 2 b ) Hva er sannsynligheten for at minst 1 foretrekker design B hvis de får inn 19 skjemaer der svaralternativet er avkrysset, og p = 1/2. c ) I resten av oppgaven er p ukjent, formålet med spørreskjemaet er jo å finne denne. Hvis det er klart at p>1/2 er det et argument for å bytte design, mens for p 1/2 beholder de det gamle. De setter derfor opp følgende hypotesetest: H : p =1/2 moth 1 : p>1/2 signifikansnivå 5%. De får inn 19 (brukbare) skjemaer, og vil bruke en Z test (basert på tilnærming til normalfordeling). Finn kritisk verdi og forkastningsområde for antall avkrysninger for alternativ B. Vil de, hvis de kun baserer seg på denne testen, bytte design om de observerer 991 avkrysninger påb? d) Finn γ(.55), sannsynligheten for at testen avslører at H 1 er sann hvis p =.55. Oppgave 4 La den stokastiske variabelen X ha Poissonfordeling med parameter λ = 1(og t = 1). a ) Regn ut sannsynligheten P (X 4). b ) Regn ut den betingede sannsynligheten P (X 4 X 2). Oppgave 5 Morten skal kaste pil på en vanlig sirkulær blink med radius nøyaktig 1 (centimeter). Han er en god kaster som ofte treffer nær blinkens sentrum og aldri utenfor blinkskiva. Vi setter opp følgende modell for dette: La X være avstanden (i centimeter) fra sentrum til treffpunktet. I modellen antar vi selvfølgelig at utfallet blir et entydig reelt tall, det vil si en kontinuerlig fordeling. Denne har sannsynlighetstetthet f gitt ved for x< f(x) =.2.2x for x 1 for x>1 Siden avstanden x er minst ved treff nær sentrum omregnes denne til en poengskala som gir flest poeng y nær sentrum ved formelen y = 1 1x, slik at den stokastiske variabelen Y = 1 1X er poengene han får. a ) Regn ut sannsynlightene P (X 5) og P (Y <5). b ) Finn forventningsverdien E (X). Dette spørsmålet teller 4/1 av deloppgaven. Finn også forventningsverdien E (Y ). Dette spørsmålet teller 3/1 av deloppgaven. Hvor stor er korrelasjonen ρ mellom X og Y? Dette spørsmålet teller 3/1 av deloppgaven. Lykke til!

Løsning, eksamen i Statistikk. 1. juni 28 1 Løsningsforslaget inneholder en del kommentarer. Disse er selvfølgelig ikke en del av hva kandidatens besvarelse skal inneholde, men ment for studenter som senere bruker dette som øvelsesopgaver. Oppgave 1 12.5 12 119.5 12 P (119, 5 <X<12.5) = Φ Φ = 1.5 1.5 Φ(.33) Φ(.33) = 2Φ (.33) 1 tab.5.1 = 2.6293 1=.2586 b ) Gjennomsnittet har også μ = 12. og standardavvik 1.5/ 6 =.194 så ( ) 12.5 12 119.5 12 P 119, 5 < X<12.5 =Φ Φ =.194.194 Oppgave 2 x =93 Φ(2.58) Φ( 2.58) = 2Φ (2.58) 1 tab.5.1 = 2.9951 1=.992 3 6 +94 9 18 21 +95 +96 6 6 6 +97 7 6 +98 2 =95.4333 = 95.43 6 s 2 = 932 3+94 2 9+95 2 18 + 96 2 21 + 97 2 7+98 2 2 6 95.4333 2 6 1 =1.279 s = 1.279 = 1.13 Ved å avrunde x mer, f.eks. til 95.43, oppstår en avrundingsfeil som er litt for stor til ågifull uttelling. b ) Siden σ er ukjent bruker vi t intervall, x t α/2 s/ n, x + t α/2 s/ n, med59 6 frihetsgrader og α/2 =.5 gir tabell 5.3 t α/2 =2.: 95.43 2. 1.13/ 6, 95.43 + 2. 1.13/ 6 = 95.14, 95.72 Oppgave 3 P(X =6)= (1 ) 8 6 1 2 = 28 6 2 2 2 8 =.194 b) Med så store tall bør vi bruke tilnærming med normalfordeling. Bruker μ = np = 19 1/2 = 95 og σ = np(1 p) = 19/4 = 21.79, og lar Y N (95, 21.79). Med halvkorreksjon får vi da 999.5 95 P(X 1) = 1 P(X 999) 1 P(Y 999.5) = 1 Φ 21.79 =1 Φ(2.27) = 1.9884 =.116

Løsning, eksamen i Statistikk. 1. juni 28 2 c) Oppgaven er her løst med halvkorreksjon, men det trekkes ikke ved bedømmingen om det ikke er med i denne og neste deloppgave. Hvis H er sann er antall kryss for B tilnærmet Y N (95, 21.79) og vi er ute etter det minste heltallet k slik at P (Y >k 1/2).5. Omforming til Z N(, 1) gir da P ( Z> ) k 1/2 95 =.5 21.79 slik at k 95.5 = z.5 =1.645 k = 95.5+1.645 21.79 = 986.3 21.79 Siden k skal være heltall og sannsynligheten ikke skal være mindre enn.5 avrunder vi oppover og får kritisk verdi: k = 987. Forkastningsområdet er observasjoner minst så store,detvilsi H forkastes hvis det er minst 987 avkrysninger for B. Siden 991 >k= 987 forkastes H, bedriften beslutter å bytte til design B. d) Hvis p =.55 er μ = np = 19.55 = 145 og σ = np(1 p) = 19.55.45 = 21.69. Da er altså X N (145, 21.69), tilnærmet. H forkasteshvisviobservererx 987, og sannsynligheten for dette (tilnærmet og med halvkorreksjon) er 986.5 145 P(X 987 p =.55) = 1 P(X<987 p =.55) 1 Φ 21.69 Oppgave 4 =1 Φ( 2.7) = Φ(2.7) =.9965 P(X 4) = 1 P(X<4) = 1 (P (X =)+P(X =1)+P(X =2)+P(X =3))= 1 1! + 11 1! + 12 2! + 13 e 1 =.19 3! b ) Definisjonen av betinget sannsynlighet gir P(X 4 X 2) = P((X 4) (X 2)) P(X 2) Hendelsen (X 4) (X 2) er det samme som X 4, siden (X 4) (X 2), siden utfallet at det minst er 4 innebærer at det må væreminst2. 1 P(X 2) = 1! + 11 e 1 =1.7358 =.2642 1! og P (X 4) =.19 fra a oppgaven, så P(X 4 X 2) = P(X 4) P(X 2) =.19.2642 =.719

Løsning, eksamen i Statistikk. 1. juni 28 3 Oppgave 5 P(X 5) = F (5) = 5 f(x) dx = 5.2.2xdx = [.2x.1x 2] 5 =.2 5.1 25 =.75 y =5svarertilx =5day = 1 1x = 1 1 5. Siden y er en avtagende funksjon av x må imidlertid ulikhetstegnet snues, Y < 5 X > 5: P(Y<5) = P (X >5) = 1 P(X 5) = 1.75 =.25 b) E(X) = xf(x) dx = 1 x(.2.2x) dx = 1 [.1x 2.2/3x 3] 1 =1 6.67 = 3.33.2x.2x 2 ) dx = E(Y ) = E (1 1X) = 1 1E (X) = 1 1 3.33 = 66.7 Siden Y er eksakt en lineær funksjon av X er ρ 2 avtagende er ρ<. Dermed er ρ = 1. = 1, og siden denne funksjonen er