Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Like dokumenter
betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TMA4245 Statistikk Eksamen desember 2016

Fasit for tilleggsoppgaver

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TMA4240 Statistikk Høst 2015

HØGSKOLEN I STAVANGER

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

Eksamensoppgave i TMA4240 Statistikk

Econ 2130 uke 16 (HG)

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere

ÅMA110 Sannsynlighetsregning med statistikk, våren

TMA4240 Statistikk Høst 2009

TMA4245 Statistikk Eksamen desember 2016

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

TMA4240 Statistikk Høst 2015

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

TMA4240 Statistikk H2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

ST0202 Statistikk for samfunnsvitere

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

STK Oppsummering

Formelsamling i medisinsk statistikk

Løsningskisse seminaroppgaver uke 15

Kapittel 9 og 10: Hypotesetesting

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

TMA4240 Statistikk Eksamen desember 2015

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

TMA4240 Statistikk Høst 2015

Hypotesetesting. mot. mot. mot. ˆ x

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ECON240 VÅR / 2016 BOKMÅL

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

ST0202 Statistikk for samfunnsvitere

TMA4240 Statistikk Høst 2016

i x i

TMA4240 Statistikk 2014

STK1100 våren 2019 Mere om konfidensintevaller

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

UNIVERSITETET I OSLO Matematisk Institutt

Kapittel 2: Hendelser

Tilleggsoppgaver for STK1110 Høst 2015

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

Kapittel 9 og 10: Hypotesetesting

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

LØSNINGSFORSLAG ) = Dvs

Eksamensoppgave i ST0103 Brukerkurs i statistikk

TMA4240 Statistikk Høst 2018

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

TMA4240 Statistikk Høst 2009

Statistikk og dataanalyse

Kapittel 3: Studieopplegg

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

TMA4240 Statistikk Høst 2015

ST0202 Statistikk for samfunnsvitere

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

TMA4240 Statistikk H2010 (22)

TMA4240 Statistikk Høst 2007

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk

Inferens i fordelinger

Hypotesetest: generell fremgangsmåte

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

TMA4240 Statistikk H2010 (20)

Notat 3 - ST februar 2005

Regneøvelse 22/5, 2017

Løsningsforslag statistikkeksamen desember 2014

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

Antall oppgavesider: 4 Vedlegg: Ett internt notat (8 sider)

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

Regler i statistikk STAT 100

6.2 Signifikanstester

HØGSKOLEN I STAVANGER

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

TMA4240 Statistikk H2010

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Transkript:

ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave. La begivenhetene BC,, være slik at og B er uavhengige mens og C er disjunkte. I tillegg vet vi at P ( ) = 0, 4, PB ( ) = 0,, PC ( ) = 0, og PB ( C) = 0,. Finn sannsynlighetene (i) P ( B) (ii) PC ( B ) (iii) PB ( C) [Hint: Merk at B ( C) = ( B ) ( B C) ] ---------------------------- << (i) P ( B) = P ( ) + PB ( ) P ( B) = 0, 4 + 0, (0, )(0, 4) = 0,5 PB ( C) 0, (ii) PC ( B) = = = PB ( ) 0, P ( B) + PB ( C) 0,08 + 0, 8 9 (iii) PB ( C) = = = = = 0, 57 P ( ) + PC ( ) 0, 4 + 0, 70 5 >> ---------------------------- B. La BC,, være som i punkt. Venn-diagrammet i figur viser hvordan B C er sammensatt av 5 disjunkte delmengder merket med tallene til 5. (i) Uttrykk hver av delmengdene,,,5 ved hjelp av,b,c og union, snitt og komplement (for eksempel delmengde kan skrives B). Finn også sannsynligheten for hver av de 5 delmengdene. (ii) Finn P ( B C) og sannsynligheten for at enten B eller C (altså ikke begge to) inntreffer.

Figur B 4 5 C ----------------------------------------- << (i) P() = P ( B) = 0, P() = P ( B) = 0,08 P() = PB ( C) = PB ( ) P() P(4) = 0,0 P(4) = PB ( C) = 0, P(5) = PC ( B) = 0, (ii) P ( B C) = P() + L + P(5) = 0,7 P[( B C) ( B C)] = P() + P() + P(5) = 0, >> ------------------------------------------- C. En butikkeier som selger lyspærer skaffer lyspærene fra tre leverandører som vi kaller, og. Hun kjøper inn 0% av lyspærene fra, 45% fra og 5% fra. v erfaring vet hun at ca. % av lyspærene fra er defekte. Når det gjelder og er % fra og % fra defekte. En tilfeldig valgt lyspære fra beholdningen viser seg å være defekt. Hva er sannsynligheten for at den kommer fra leverandør? ------------------------------------------- << Bayes regel. La D = defekt. Leverandør P ( i ) PD ( i ) PD ( i ) 0,0 0,0 0,00 0,45 0,0 0,0045 0,5 0,0 0,005 Sum 0,05

P PD ( ) 50 ( D) = = = = 0, 4 PD ( ) + PD ( ) + PD ( ) 5 5 >> ------------------------------------------ Oppgave I et tilfeldig utvalg på n = 88 ferske mødre fra US i 988, viste det seg at x = hadde røkt regelmessig under svangerskapet. nta at det i US i 988 totalt var en andel 00p% av gravide kvinner som røkte under svangerskapet der p er ukjent.. La X være antall som røkte under svangerskapet i et tilfeldig utvalg på n = 88 ferske mødre. nta at X er binomisk fordelt ( np., ) (i) ngi kort hva som bør være oppfylt for at dette skal være en rimelig antakelse i situasjonen skissert i innledningen. (ii) Beregn et estimat for p og beskriv kort noen statistiske egenskaper ved estimatoren du har brukt. ------------------------------------ << (i) Den viktigste forutsetningen er vel at utvalget kan anses som et rent tilfeldig utvalg fra hele populasjonen (og ikke bare et sjikt) av nybakte mødre. I så fall er X hypergeometrisk og dermed binomisk (med god tilnærmelse) siden populasjonen er stor. (ii) Estimator: ˆp = X n. Egenskaper: Forventningsrett med standardfeil p( p) n, tilnærmet normalfordelt. Estimat: p ˆ = 88 = 0,5. >> ------------------------------------- B. Beregn et (tilnærmet) 95% konfidensintervall for p. Forklar kort hva konfidensgraden 95% betyr. ------------------------------------- << 95% KI: pˆ ±,96 pˆ( pˆ) = 0,5 ± (,96)(0, 0097) = [0,4; 0,7] 88 >> -------------------------------------- Oppgave. nta at Z og Z er uavhengige og normalfordelte der Z ~ N (, ) og Z ~ N (, ). (i) Sett U = Z Z. Forklar hvorfor U ~ N (, 8). (ii) Finn sannsynlighetene PZ ( < Z), PZ ( = Z), PZ ( > Z) [Hint: Uttrykk begivenhetene ved hjelp av U.] ----------------------------------- << (i) Regel 5.7 i boka gir U ~ N( E( U ), SD( U )) = N(, 8)

4 (ii) PU ( < 0) = G = G( 0,5) = 0,6, PU= ( 0) = 0 og 8 PU ( > 0) = PU ( < 0) = 0, 668 >> ----------------------------------- B. Innledning: Det er velkjent at røyking under svangerskapet kan være skadelig for fosteret. Her skal vi konsentrere oss om å se på effekten røyking under svangerskapet har på fødselsvekten. Datagrunnlaget er utvalget av ferske mødre fra US (988) introdusert i oppgave. Foruten fødselsvekt ble en rekke andre variable observert som vi ikke skal ta opp her. Dataene er oppsummert i tabell som viser gjennomsnittlig fødselsvekt, utvalgsstørrelse og standardavvik for barn av de mødrene som ikke hadde røkt under svangerskapet (gruppe ) og for de som hadde røkt (gruppe ). Tabell Fødselsvekt Gruppe : Har ikke røkt under svangerskapet ntall 76 Gjennomsnitt 404 Gruppe : Har røkt under svangerskapet n = y = (gram) n = x = (gram) 5 Standardavvik s = 574,59 s = 54, 79 La X i betegne fødselsvekten for barnet til en mor som ikke har røkt under svangerskapet og Y i fødselsvekten for barnet til en mor som har røkt under svangerskapet. Vi antar at X, X, K, Xn ( n = 76 ) er uavhengige og normalfordelte med Xi ~ N ( µ, ). Likeledes antas at Y, Y, K, Yn ( n = ) er uavhengige (og uavhengig av X i -ene) og normalfordelte med Yi ~ N ( µ, ). For enkelthets skyld antar vi i tillegg at populasjons-standardavviket,, har samme verdi som er kjent lik 570 i de to gruppene. Oppgave: Vi er spesielt interessert i parameteren θ = µ µ som her tolkes som et uttrykk for reduksjonen i gjennomsnittlig fødselsvekt i populasjonen som kan skyldes røyking under svangerskapet. (i) Gjør rede for at estimatoren, ˆ θ = X Y er forventningsrett og normalfordelt som følger ˆ θ ~ N θ, + n n der standardfeilen (dvs. standardavviket til estimatoren) er (ii) Utled og beregn et 95% konfidensintervall for θ. ˆ SE( θ) = +. n n

5 ------------------------------ << (i) E( ˆ θ ) = EX ( Y) = EX ( ) EY ( ) = µ µ = θ ˆ θ = X Y = X + Y = + Var( ) Var( ) Var( ) Var( ) n n Siden XYer, uavhengige og normalfordelte, er ˆ θ normalfordelt. (ii) Estimat: ˆ θ obs = 5. Standardfeil: ˆ SE( θ ) = 808,8 = 4,50. ˆ θ θ v ~ N(0, ) følger på vanlig måte 95% KI: SE( ˆ θ ) ˆ θ ±.96 SE( ˆ θ) = 5 ± (,96)(4,50) = 5± 8 = [70, 6] >> ------------------------------ C. Tyder dataene på at fødselsvekten gjennomgående er lavere for barn av mødre som har røkt under svangerskapet enn for de som ikke har røkt? Med andre ord: (i) Test hypotesen H0 : θ 0 mot H: θ > 0 under samme betingelser som i punkt B. Bruk signifikansnivå 0,0. (ii) Er p-verdien for testen din større eller mindre enn 0,00?. ------------------------------- ˆ θ ˆ θ << Testobservator: Z = =. Forkast H 0 hvis Z z0,0 =,6. SE( ˆ θ ) 4,50 5 Observert: Z obs = = 5,95. I følge tabellen i boka er 0 (,090) 0,00 4,50 P Z θ = > = P-verdien: P-verdi = Pθ= 0( Z > 5,95) < Pθ= 0( Z >, 090) = 0, 00. >> ------------------------------- D. nta Z, Z, K, Zn er uavhengige og normalfordelte med Zi ~ N ( µ, ) for i =,, K, n. Både µ og er ukjente, og vi ønsker å estimere. La n ˆ = S = ( Zi Z) være den vanlige estimatoren (den såkalte sampelvariansen). I følge en regel i boka gjelder at er kji-kvadrat-fordelt med n i= ( n ) S n frihetsgrader. I henhold til definisjonen av en kji-kvadrat-fordeling i boka er forventningen til en kji-kvadrat-fordelt variabel lik antall frihetsgrader og variansen lik ganger antall frihetsgrader. Dermed gjelder ( n ) S E = n og ( n ) S Var = ( n ) 4 (i) Bruk dette til å vise at E( ˆ ) = og Var( ˆ ) = ( n ). (ii) Verdien 570 for brukt i punkt B og C er i virkeligheten et estimat basert på estimatoren

6 ˆ ( n ) S + ( n ) S 75 S + S = = n + n 86 der S, S er sampel-variansene for gruppe og henholdsvis. En alternativ estimator er % = ( ) S + S Påvis at begge estimatorene er forventningsrette og sammenlign variansene til dem. Hvilken av de to estimatorene er å foretrekke? [Hint: Bruk de konkrete verdiene for n og n ] ------------------------------------- ( n ) S n << (i) E = E( S ) = n som gir ( n ) S ( n ) Var = Var( S ) = ( n ) 4 E( ˆ ) =. 4 gir Var( ˆ ) = ( n ). (ii) 75 E( S ) + E( S) 86 E( ˆ ) = = = 86 86 E( % ) = (E( S ) + E( S)) = = 75 ˆ = vs + vs der v = og v =. 86 86 Var( ˆ ) v v = + 0, 0044 n n = Var( ) 0, 00795 4 n n % = + = >>