Kap Rotasjon av stive legemer

Like dokumenter
Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst

Sykloide (et punkt på felgen ved rulling)

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer

Arbeid og energi. Energibevaring.

Kap Rotasjon av stive legemer

Oppsummert: Kap 1: Størrelser og enheter

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Kap Rotasjon av stive legemer

Arbeid og energi. Energibevaring.

Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0

A) 1 B) 2 C) 3 D) 4 E) 5

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap Rotasjon av stive legemer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

UNIVERSITETET I OSLO

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

Repetisjon

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

Stivt legemers dynamikk

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Stivt legemers dynamikk

Kap Rotasjon av stive legemer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

UNIVERSITETET I OSLO

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

EKSAMEN i TFY4108 FYSIKK

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

UNIVERSITETET I OSLO

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

Keplers lover. Statikk og likevekt

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Stivt legemers dynamikk

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

Kap Rotasjon av stive legemer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

SG: Spinn og fiktive krefter. Oppgaver

Kap. 3 Arbeid og energi. Energibevaring.

6. Rotasjon. Løsning på blandede oppgaver.

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

EKSAMENSOPPGAVE. Dato: Fredag 01. mars Tid: Kl 09:00 13:00. Administrasjonsbygget B154

Øving 2: Krefter. Newtons lover. Dreiemoment.

Kap Rotasjon av stive legemer

Kap. 6+7 Arbeid og energi. Energibevaring.

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Vektorstørrelser (har størrelse og retning):

*6.6. Kraftmomentsetningen. Kan betraktes som "Newtons 2. lov for rotasjon".

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00

Stivt legemers dynamikk

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

Kap Rotasjon av stive legemer

9 Rotasjon. 9.1 Rotasjonsbevegelse. 9.2 Kraftmoment og vinkelakselerasjon Rotasjon

Eksamensoppgave i TFY4108 Fysikk

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Kap Rotasjon av stive legemer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

Eksamensoppgave i TFY4115 FYSIKK

Kap. 4+5 Rotasjon av stive legemer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg:

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap Newtons lover. Newtons 3.lov. Kraft og motkraft. kap 4+5 <file> Hvor er luftmotstanden F f størst?

Obligatorisk oppgave i fysikk våren 2002

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

9) Mhp CM er τ = 0 i selve støtet, slik at kula glir uten å rulle i starten. Dermed må friksjonskraften f virke mot venstre, og figur A blir riktig.

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

F B L/2. d A. mg Mg F A. Løsningsforslag til øving 5. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014.

Eksamensoppgave i TFY4108 Fysikk

Fysikkolympiaden Norsk finale 2018 Løsningsforslag

TFY4108 Fysikk, haust 2013: Løysing til ordinær eksamen 18. des.

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

Eksamensoppgave i TFY4108 Fysikk

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

Krefter, Newtons lover, dreiemoment

Eksamensoppgave i TFY4115 FYSIKK

UNIVERSITETET I OSLO

FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten Veiledning: november. Innleveringsfrist: Onsdag 16. november kl 14.

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk

Høgskolen i Agder Avdeling for EKSAMEN

Høgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk

Lab i TFY4108. Oppgave 3: Rotasjon. Institutt for fysikk, NTNU

UNIVERSITETET I OSLO

Fysikkolympiaden Norsk finale 2017

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m

Fysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =

Transkript:

Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn (dreieimpuls): L Spinnsatsen (N2-rotasjon): τ = dl/dt N2-rotasjon: τ = I dω/dt Stive legemer: L = I ω, τ = I dω/dt Eksempler: gyroskop, m.m.m Denne uka Spinn (angular momentum) Y&F 10.5-7 L&L 5.5, 5.9, 6

1 Spinn for punktlegemer 1.1 Spinn ved rotasjon L = r m v v r => L = r m v L ω 90 o A L = mr 2 ω = I ω

1 Spinn for punktlegemer 1.2 Spinn ved vilkårlig bevegelse L = r m v v ikke r mv mv => L = r m v sin Φ L L A r

1 Spinn for punktlegemer 1.3 Spinn ved rettlinjet bevegelse L = r m v L = r m v sin Φ = r 0 mv v v v v r 0 mg r mg Φ A Hvis F = 0 er v = konst => L=konst. = mvr 0 Hvis f.eks. F = mg er τ 0 => L endres L avhengig av valgt origo A (r 0 og r avhengig av A)

1 Spinn for punktlegemer 1.3 Spinn ved rettlinjet bevegelse Med partikkelbanen gjennom A (origo), er r v (r 0 =0) og: L = r m v = 0 ( = fortsatt konst. hvis v konst.) v v v v A r Φ

2 Spinn ved rotasjon av stive legemer om sym.akse L i = r i m i v i v i r => L i = r i m i v i L i = m i r i2 ω 90 o alle L i ω Stivt legeme, rot. om symmetriakse: L = Σm i r i2 ω = I ω

Rotasjon av stive legemer Treghetsmoment I = Σ r i2 m i (om en gitt akse) Rotasjonsenergi E k = ½ Σ m i v i 2 = ½ I ω 2 Kraftmoment: τ = r F stive legemer om sym.akse: Spinn (dreieimpuls) L = r m v Spinnsatsen (N2-rot): τ = dl /dt L = I ω τ = I dω/dt (N2-rot) Ingen ytre moment (N1-rot): L = konst.

Fra kap.8. Kollisjoner: Oppgave: Ei kule skytes inn i en trekloss som farer opp i lufta (fullst. uelastisk støt). Kula treffer ved A, B eller C. Hvilket treff løfter treklossen til størst høyde h? Svar: Like høyt for alle. Bevegelsesmengde bevart: Alltid samme fart for klossen: h g mv = (M+m)V cm I tillegg kommer rotasjon ved B og C (mest ved C) M Demonstrert og forklart på YouTube: www.youtube.com/watch?v=blyoylcdgpc&list=uuhnyfmqirrg1u-2mssqlbxa A B C Kule med høy fart v m

Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot (spinnsatsen): τ = dl/dt Stivt legeme om sym.akse (konst. I ): τ = I dω/dt = I α F = 0 => p = konstant (N1) stivt legeme: v = konst τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst

Eks. 4. Snelle med snor Finn aksel. a når S og θ er gitt S F N θ R + r y x 3 ukjente: F N, F f, a(=rα) F f 3 likninger: (N1y) S sin θ + F N = mg (1) (N2x) F f S cos θ = ma (2) (N2-rot) Sr F f R = Iα = (c mr 2 ) a/r (3) Trekkes mot deg ved liten vinkel θ Trekkes fra deg ved stor vinkel θ I ro ved en viss vinkel θ (cos θ = r/r) mg

Eks. 4. Snelle med snor S θ r F N R F f Trekkes mot deg ved liten vinkel θ Trekkes fra deg ved stor vinkel θ I ro ved cos θ = r/r mg Stive legemer i ro (statisk likevekt): Ingen translasjon => Σ F = 0 Ingen rotasjon => Σ τ = 0 ( τ = r F )» om enhver valgt akse

Totalt spinn ved rulling og skliing. A r ω (lik eller ulik v/r ) R v (Totalt) spinn om A: L A = r m v + I 0 ω = banespinn + egenspinn Bevis i notatet «Totalspinn». Presentert i Lien og Løvhøiden kap 6.6 og eks. 6.15. Ikke eksplisitt behandlet i Young & Freedman. Brukes i Øving 7, oppgave 1. Nå i et forelesningseksempel.

F f Skli: ω = 0 R A Eks. 5. Bowlingkule (L&L Eks. 6.15) v 0 r Skli+rot: ω < v/r Om A: L A = r m v + I 0 ω Ingen krefter har moment => L A = konst. = mrv 0 l Rulle: ω = v rull /R v rull c) Hvor langt, l, før ruller? a) Hva er v (=v rull ) når ruller? b) Hva er aksel, a, når sklir? L start = L slutt => v rull = v 0 5/7 (*) -- uten å kjenne F f!

F f F f Skli: ω = 0 R A v 0 Konst.a-likn: Eks. 5. Bowlingkule r Skli+rot: ω < v/r F f sklir F f = μ k mg (uavhengig v) v 2 -v 02 = 2al v = v 0 +at = v 0 μ k gt ω= ω 0 +α t F f Rulle: ω = v rull /R v rull c) Hvor langt, l, før ruller? a) Hva er v (=v rull ) når ruller? b) Hva er aksel, a, når sklir? rulling, konst v F f = 0 t v rull = konst. ω rull = v rull /R = konst.

F f Skli: ω = 0 B R A Eks. 5. Bowlingkule (L&L Eks. 6.15) v 0 r Skli+rot: ω < v/r Om A: L A = r m v + I 0 ω Ingen krefter har moment => L A = konst. = mrv 0 l Rulle: ω = v rull /R v rull L start = L slutt => v rull = v 0 5/7 (*) -- uten å kjenne F f! Om B: L B = I 0 ω τ B = F f R d) α under skliing e) Hvor lang tid t før rulling? => L B ikke konst. men I 0 dω/dt = F f R, må kjenne F f

Effekt = moment vinkelhastighet P = τ ω τ P f = 4000 RPM P = 70 kw τ = 160 Nm Stemmer med P = τ ω 0 Nm RPM= 60ω/2π Saab 9-3 1.8i 122hk. Effekt og dreiemoment, diagram. Den sorte kurven angir dreiemomentet i newton-meter (Nm), den oransje angir effekten i kw eller hestekrefter (bhp).

Eks. 6. Slurende snelle, med snor på underside Øv.6, opg.3: snor på overside R F N + mg sinθ + mg cosθ θ

Konstant-akselerasjonslikninger Translasjon: (konstant akselerasjon a) Rotasjon om fast akse: (konstant vinkelakselerasjon α) v = v 0 + a t ω = ω 0 + α t s = s 0 + v 0 t + ½ a t 2 φ = φ 0 + ω 0 t + ½ α t 2 v 2 v 02 = 2as s s 0 = <v>t = ½(v+v 0 ) t ω 2 ω 02 = 2αφ φ φ 0 = <ω>t = ½(ω+ω 0 ) t

Kap. 9+10. Rotasjon. Oppsummering. Vinkelhastighet ω = dφ/dt, vinkelakselerasjon α = dω /dt Sentripetalakselerasjon a c = - r ω 2 = - ωv = - v 2 / r Baneakselerasjon a t = r α Rotasjonsenergi E k = ½ I ω 2 Treghetsmoment I = Σ r i2 m i r 2 dm (om en gitt akse) Dreiemoment: τ = r F Spinn (dreieimpuls) = L = r m v (om en gitt akse) Stivt legeme om sym. akse: L = I ω Spinnsatsen: τ = dl /dt (N2-rot) Stivt legeme om sym.akse: τ = I dω/dt Friksjon er vesentlig for rulling: rein rulling: statisk friksjon F f μ s F N. Friksjonsarbeidet neglisjerbart slure/gli: kinetisk friksjon F f = μ k F N. Friksjonsarbeidet viktig Eksempler: rulling, gyroskop (sykkelhjul), barnekarusell, m.m.

Treghetsmoment (om en gitt akse): I = Σ r i2 m i r 2 dm Alle I 0 om massesentrum (cm): Ring om sentrum: I 0 = M R 2 Ring om diameter: I 0 = ½ M R 2 Sylinder eller skive om sentrum: I 0 = ½ M R 2 Kule om diameter: I 0 = (2/5) M R 2 Kuleskall om diameter: I 0 = (2/3) M R 2 Legemer som kan rulle: I 0 = c MR 2 (c=1, ½, 2/5 etc.) Lang, tynn stav om midtpunkt: I 0 = (1/12) M L 2 Rektangulær plate om midtpunkt: I 0 = (1/12) M (a 2 + b 2 ) Om annen parallell akse i avstand d ( Steiners sats): I = I 0 + M d 2 Se også Table 9.2 i Young & Freedman.

Kap. 9+10. Analogier translasjons- og rotasjonsbevegelser

Fra eksamen des 2014:

Fra eksamen des 2014: Samme problem i øving 5, oppgave 4: Svar avgitt: A 5 B 96 C 4 D 75 E 17 blank 3 Tot. 200 Snitt 38%, dvs. F

Øving 5. Oppgave 4: Kule skytes inn i stav som er hengslet ved A. Er ytre krefter lik null? Er ytre kraftmoment lik null? NEI JA Kraft fra aksling A på staven under kollisjonen Akslingskraft har null moment om A

Fra eksamen des 2014:

Fra eksamen des 2014: Svar avgitt: A 9 B 26 C 108 D 28 E 8 blank 21 Tot. 200 Snitt 56%, dvs. D

Fra eksamen des 2014:

Fra eksamen des 2014: Svar avgitt: A 43 B 15 C 52 D 26 E 12 blank 52 Tot. 200 Snitt 27%, dvs. F

Fra en eksamensoppgave annet fysikkemne: Artist + sykkel (unt. hjul) har i utgangspunkt spinn L artist = 0 Hjulene har (positivt) spinn L hjul ned i papirplanet. L tot = L hjul + L artist er bevart. a) Dersom L hjul øker må L artist peke opp av planet (steiler) b) Dersom L hjul avtar må L artist peke ned i planet (stuper) a) Hvordan vil vinkelen θ endre seg hvis motorsyklisten i svevet gir mer gass (øker turtallet til motoren og bakhjul)? Begrunn svaret. Se bort fra luftmotstanden. b) Hvordan vil vinkelen θ endre seg hvis motorsyklisten i svevet i stedet trykker inn handbremsa på framhjulet? Begrunn svaret. Se bort fra luftmotstanden.

Fra eksamen des 2014:

Fra eksamen des 2014: Tipper ved θ = 45 o (når kubens tyngdepunkt utenfor høyre nedre hjørne) Glir idet mg sin θ = F f = μ s mg cos θ, dvs. tan θ = μ s = 0,65 (θ = 33 o ) Svar avgitt: A 16 B 115 C 7 D 21 E 12 blank 29 Tot. 200 Snitt 60%, dvs. D

Rotasjon om akse ikke-parallell med symmetriakse (Ikke pensum) L 2 = I 2 ω 2 Symmetriakse I 1 ω 2 ω L = L 1 + L 2 Rotasjonsakse ω 1 ω dekomponeres langs symmetriakser Symmetriakse 2 I 2 L 1 = I 1 ω 1 Anta: I 2 > I 1 Da er ikke L parallell med ω L endrer altså retning under rotasjonen

Eks. 7. Spinn for akselererende/bremsende bil (H&S kap. 4.7.2 og 5.4.4) Detaljer på «Forelesningsplan» på web, eksempel: Bil N b l b N f l f = h m a Spinn om fast bakkepunkt A A N b r B mv N f y z x F f x Alternativt: Spinn om bilens c.m. B mg