MODELLERING AV PARTIKKELSPREDNING I FJORDER - FØRDEFJORDEN OG REPPARFJORDEN

Like dokumenter
Modellering av partikkelspredning i fjorder utført ved Havforskningsinstituttet. Notat, 2. juni Lars Asplin, Havforskningsinstituttet

Fysisk oseanografiske forhold i produksjonsområdene for akvakultur

MODELLERING AV PARTIKKELSPREDNING I FJORDER - FØRDEFJORDEN OG REPPARFJORDEN

Havforskningsinstituttets arbeid med lakselusovervåkning og rådgiving samt utvikling av bærekraftsmodell lus Pål Arne Bjørn (koordinator)

Bruk av strømmodellering ved Havforskningsinstituttet.

Strømning i dypet av Repparfjorden. Notat Havforskningsinstituttet, desember Lars Asplin, Jofrid Skardhamar, Anne Sandvik og Jon Albretsen

Lars Føyn FKD, Frank Jacobsen FiskeriDir, Hanne Marie Utvær FiskeriDir. Erik Olsen, Guldborg Søvik, Einar Svendsen, HI postmottak

Forvaltningsstøtte Fiskeridirektoratet: Strømhastigheter ved lokalitet Skorpo i Hardangerfjorden 10. august 2014, samt generelt om strøm.

Fysisk oseanografiske forhold i produksjonsområdene for akvakultur

Hydrodynamisk spredningsmodell for lakselus og konsentrasjon av smittsomme kopepoditter

Hydrodynamisk spredningsmodell for lakselus og konsentrasjon av smittsomme kopepoditter langs Norskekysten

ALMINNELIG HØRING - REGELVERK FOR Å IMPLEMENTERE MELD. ST. 16 ( ) - NYTT SYSTEM FOR KAPASITETSJUSTERINGER I LAKSE- OG ØRRETOPPDRETT

Bestilling av forvaltningsstøtte for evaluering av soneforskrifter -

Modell for spredning av lakselus

Bruk av fjord- og kystmodeller

Spredning av sigevannsutslipp ved Kjevika, Lurefjorden

RAPPORT FRA HAVFORSKNINGEN. Smittepress fra lakselus på vill laksefisk estimert fra luselarvefelt med stor variabilitet. Nr.

Matematiske modeller som hjelpemiddel innen havbruksnæringen. Strømmodellering

NOTAT 4. mars Norsk institutt for vannforskning (NIVA), Oslo

Et modellsystem for å estimere oljeeksponering. - evaluering og applikasjoner

Foto: Moss Havn André Staalstrøm (NIVA) og Karina Hjelmervik (HIVE) Oktober

Effekter av gruveutslipp i fjord. Hva vet vi, og hva vet vi ikke. Jan Helge Fosså Havforskningsinstituttet

Fjorder som økosystem. Stein Kaartvedt King Abdullah University of Science and Technology/Universitetet i Oslo

Sjødeponi ved planlagt kobbergruve, Nussir Repparfjorden. Lis Lindal Jørgensen på veiene av Jan Helge Fosså og Terje van der Meeren

Smittepress fra lakselus på vill laksefisk - estimert fra luselarvefelt med stor variabilitet

Oppdrag i tilknytning til reguleringsplan for gruvedrift ved Nussir i Kvalsund kommune - svar fra Miljødirektoratet

RÅD - HAVBRUK - SVAR PÅ BESTILLING - EVALUERING AV LAVERE LUSEGRENSE VÅREN 2017

Strømforhold og partikkelspredning i Førdefjorden

Rapporten bagatelliserer alvorlig miljøproblem

Vurderinger av data fra tokt samlet inn i Førdefjorden, mars 2011.

Vurderinger av data fra tokt samlet inn i Førdefjorden, 1. juni 2010.

Utslippsmodelleringer

PRGHOOHULQJÃDYVO UHUÃNRPSOLVHUWHÃVDPPHQKHQJHUÃ

Hvordan forbedre vannutskiftningen i Varildfjorden?

Strømstatistikk for Lofotenområdet 1

Dato: 29. februar 2016 Deres ref: Jacob P. Meland og Håvard Hestvik

Skader fra gruveavfall på fisk er undervurdert

DET NORSKE VERITAS. Program - tilleggsutredning strøm og hydrografi Førdefjorden. Nordic Mining ASA

RÅD - BESTANDER OG RESSURSER - FISKET ETTER KYSTBRISLING 2017

AP 1: Utvikle ny Oslofjordmodell

Hvordan forbedre vannutskiftningen i Varildfjorden?

NOTAT. SMS Sandbukta Moss Såstad. Temanotat Kartlegging av strømningsforhold. Sammendrag

Sjødeponi i Førdefjorden NIVAs analyser

Bærekraftig vekst i norsk havbruk grønt, gult eller rødt lys?

Ida Almvik, Kystverket Laila Melheim, Kystverket Eivind Edvardsen, Kystverket Geir Solberg, Kystverket Aud Helland, Rambøll DATO

Visjoner om crossover og helhetlig sensorteknologi. Fra måling til handling.

Møte avklaringar/kunnskap rundt deponering ved Nordic Minings planlagte prosjekt i Engebøfjellet

Sjødeponi i Repparfjorden grunnlagsundersøkelse og konsekvensutredning

Hvilke faktorer påvirker lusen sin spredning? Hvavet vi, hvavet vi ikke? Randi N Grøntvedt Prosjektleder for FHF sin koordinering av luseforskning

Rapport. Partikkelspredning fra Jelkremsneset. Forfatter Øyvind Knutsen. SINTEF Fiskeri og havbruk AS Marin Ressursteknologi

Havstrømmodell for Nordland et nytt verktøy i kystberedskap?

Dato: 27. september 2016 Deres ref: Jacob P. Meland og Håvard Hestvik

Kyst og Hav hvordan henger dette sammen

Rapport Eikeren som ny drikkevannskilde for Vestfold

Førdefjorden. Måleprogram for tilleggsundersøkelser. Tone Nøklegaard

Det faglige grunnlaget for Trafikklyssystemet

Miljøgifter. -opprydding før 2020 eller ødelegger nye utslipp planen? Lars Haltbrekken, leder i Naturvernforbundet På Miljøgiftkonferansen 2014

Gyter torsk nær oppdrettsanlegg? Mari Myksvoll, Raymond Bannister, Terje van der Meeren og Jon Egil Skjæraasen

Mineralnæringen i Nord-Norge Sjødeponi utredning og forskning

Indre Viksfjord Vel, att: Ivar Trondsen Akvaplan-niva v/ Øyvind Leikvin og Molvær Resipientanalyse v/ Jarle Molvær

Miljøutfordringer deponering av masser fra gruveindustri på sjøbunn. Jens Skei Skei Mining Consultant (SMC)

Rapport. Strømmodellering med SINMOD i Førdefjorden. Forfatter(e) Morten Omholt Alver Finn Are Michelsen Ingrid Helene Ellingsen

POTENSIALET FOR DYRKING AV MAKROALGER I TRØNDELAG ALGESEMINAR PÅ VAL, 23. NOVEMBER 2017

Gruver og miljø. Lars Haltbrekken, leder i Naturvernforbundet

Høring om Tildeling i Forhåndsdefinerte Områder 2019 (TFO 2019).

Notat. Innledning DNV. Nussir, att: Øystein Rushfeldt

NOTAT Oppdragsnr.: Notatnr.: 1 Side: 1 av 12

Delprogram A. Er forskningsmålene nådd innen delprogram A med spesielt fokus på fysisk oseanogafi

Engebøprosjektet Informasjonsmøte om tilleggsundersøkelser

Vurderinger av data fra tokt samlet inn i Førdefjorden, 5-6 mars 2010.

Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjord. Miljøovervåking av Indre Oslofjord

Rapport. Simulering av strøm Otrøya - Gossen. 2018: Fortrolig. Forfatter(e) Øyvind Knutsen og Ole Jacob Broch

Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger

Henning Andre Urke Seksjon for Fisk og akvakultur

Vedlegg 3. Strømmodeller for simulering av interaksjonen mellom ulike oppdrettsanlegg

Ei næring med betydelige miljøutfordringer

Faglig strategi

Lakselus Villakskonferansen Alta 9 februar 2016

AP 1: Utvikle ny Oslofjordmodell

Risikovurdering norsk fiskeoppdrett

LQQYLUNQLQJ"Ã .DULQÃ%R[DVSHQÃ. HJHQEHYHJHOVHQÃWLOÃOXVDÃYLUNHÃLQQÃ+DYIRUVNQLQJVLQVWLWXWWHWÃVNDOÃQnÃNREOHÃ VSUHGQLQJHQÃ

Helgeland Havbruksstasjon AS

Framlagt på møte Styresak Saksnr. 10/00684 Arknr

Fjorder i endring. klimaeffekter på miljø og økologi. Mari S. Myksvoll,

ANSVARLIG ENHET Marint miljø og havbruk Nord. Figur 1 Skisse av foreslåtte moloalternativer(100 og 150 m lengde).

Utslipp fra fiskeoppdrett hva er problemet? Tom N. Pedersen Miljøvern- og klimaavdelinga 19. januar 2016

Forundersøkelse og alternative undersøkelser

Prosjektnotat. Tidevannsanalyse. 1 av 5. Sammenligning av harmoniske konstanter fra modell mot observasjoner

Historikk. 2 av 11. VERSJON DATO VERSJONSBESKRIVELSE Rapportering. PROSJEKTNOTATNR Prosjektnotatnummer VERSJON 1.0 PROSJEKTNR

Rapport. Modellering av strøm og vannslektskap i Sør-Troms (Malangen-Sør). Sluttrapport. Forfatter(e) Dag Slagstad Øyvind Knutsen

VURDERING OG RÅDGIVING AV FORSLAG OM BLOKKER TIL UTLYSING I 20. KONSESJONSRUNDE

A /S Norske Shell - S øknad om tillatelse til virksomhet etter forurensningsloven

Is the aquaculture production in the Hardangerfjord system beyond sustainable frames?

Miljøprosjektet laksefisk og luseovervåking i Romsdalsfjorden

Strømrapport. Rapporten omhandler: STRØMRAPPORT HERØY

Strømmåling i med RDCP 600 i perioden

PROSJEKTLEDER. Kjetil Arne Vaskinn OPPRETTET AV. Kjetil Arne Vaskinn og Wolf Marchand. Morten Søvde REGION MIDT

Klimaendringer og konsekvenser for havbruk

Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjord. Miljøovervåking av Indre Oslofjord Rapport for tokt gjennomført 8.

Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjord. Miljøovervåking av Indre Oslofjord Rapport for tokt gjennomført 15.

Transkript:

Miljødirektoratet Postboks 5672 Sluppen 7485 TRONDHEIM Deres ref: Vår ref: 2014/987 BERGEN 05.08.2014 Arkivnr. Løpenr: 8208/2014 MODELLERING AV PARTIKKELSPREDNING I FJORDER - FØRDEFJORDEN OG REPPARFJORDEN Modellering av partikkelspredning i fjorder Havforskningsinstituttet har uttalt seg i flere saker angående effekter av å bruke fjordene som avfallsplass for gruveavgang. De mest aktuelle sakene har vært utslippene fra Sydvaranger Gruve til Bøkfjorden, og Nordic Mining og Nussir sine planer om nye gruveprosjekter med utslipp til henholdsvis Førdefjorden og Repparfjorden. Instituttet har gått nøye gjennom og gitt uttalelser i flere omganger om disse sakene. Uttalelsene våre omfatter vurderinger av søknader om utslippstillatelser og konsekvensutredninger. Havforskningsinstituttet har inntil nylig ikke hatt forskning på effekter av gruveavfall i fjorder. Derfor har vi brukt vår erfaring og ekspertise innenfor de aktuelle fagdisiplinene til å kommentere på søknadene. I våre vurderinger bygger vi på den informasjonen som foreligger i søknadene og konsekvensutredningene. Hvis vi mener at vesentlige forhold ikke er godt nok utredet så har vi kommentert dette. Generelt mener vi at disse sakene representerer store planlagte utslipp med udiskutable negative påvirkninger på fjordmiljøet og dets ressurser. Vi mener derfor at planene for Repparfjorden og Førdefjorden er en ikke bærekraftig bruk av disse fjordene. Når myndighetene allikevel ser ut til å tillate at fjorder blir omgjort til gruvedeponi så er det viktige temaer som bør analyseres. Et av de temaene vi har lagt vekt på er strømforhold og partikkelspredning i de to planlagte fjorddeponiene i Førdefjorden og Repparfjorden. Vi har påpekt mangler i kunnskapene om strømforhold og i modelleringsarbeidet som er utført. Dette har medført lange og vedvarende debatter mellom Havforskningsinstituttet og gruveindustrien sammen med de institusjonene som har utført strømmålinger og modelleringene for gruveindustrien. Havforskningsinstituttet har meget god kompetanse på fjordfysikk og modellering av strømmer og spredning av partikler i fjordsystemene. Derfor har vi brukt modeller til å simulere spredning av gruvepartikler i Førdefjorden og Repparfjorden. Dette har vi gjort for å underbygge og forklare våre faglige vurderinger. Hittil har vi presentert resultatene fra strømmodelleringen i et av våre egne tidsskrifter og i aviser og foredrag. Gruveindustrien har imidlertid uformelt etterlyst en bedre dokumentasjon av modellresultatene enn det vi normalt kan gjøre i foredrag og populærvitenskapelige artikler. Derfor har instituttets eksperter på fjordmodeller, Lars Asplin m. fl., forklart bakgrunnen for vår modellering i vedlagte notat (vedlegg 1). Havforskningsinstituttet Avdeling: Akvakultur og kystøkologi Org.no. NO 971 349 077 Postboks 1870 Nordnes, 5817 Bergen Saksbehandler: Karin Kroon Boxaspen Bank: 7694.05.00849 Tlf.: 55 23 85 00 Tlf.: 950 66 856 Swift-adr.: DNBANOKK Faks: 55 23 85 31 E-post: karinb@imr.no IBAN: NO74 7694 0500 849 E-post: post@imr.no Besøk: Nordnesgaten 50 www.imr.no

2 Instituttets kritikk av eksisterende spredningsmodellering har først og fremst vært at strømmodellene har vært for enkle, flere av de viktige drivkreftene og grenseverdiene har ikke vært med, og strømdata som er innhentet fra fjorden og brukt i modellen har ikke vært gode nok. I de aktuelle tilfellene har dette ført til at spredningspotensialet er betydelig underestimert. Erfaringene fra Bøkfjorden viser dette ved at bunnens miljøtilstandsklasse har endret seg fra "god" til "svært dårlig" helt ut til 7 km fra utslippspunktet over en periode på bare 2 år. Overvåkningsrapportene viser dette tydelig. Vi mener at det foreligger for lite dokumentasjon om hvor mye finpartikler og forurensning i form av f eks tungmetaller fra et utslipp som spres. Det hevdes at kjemikaliebruken i utvinningsprosessen er med på å binde de minste partiklene sammen slik at vekten øker og de får en høyere synkehastighet, og at sjøvannet i seg selv er med på å flokkulere partiklene. Erfaringene fra Bøkfjorden viser imidlertid at avfallet sprer seg og får en negativ påvirkning på bunnøkosystemet langt utenfor det som normalt ville defineres som deponiområde, til tross for omfattende kjemikaliebruk. Spredningsmekanismene og deres innbyrdes betydning kan imidlertid diskuteres. Det kan tenkes at fine partikler i suspensjon ved bunnen kan generere tetthetsstrøm langs bunnen siden Bøkfjorden skråner utover. Hvorvidt dette er en virksom mekanisme er ikke undersøkt. Det er ikke forsket på slike strømmer i norske fjorder siden fjordene er dype og generelt sett vil eventuelle turbiditetsstrømmer bidra lite til det som foregår i vannmassene ellers. Hvis det forekommer spredning langs skrånende fjordbunner ved hjelp av turbiditetsstrømmer, så er dette bare enda en måte forurensningene kan spres på. I Førdefjorden f eks kan vi ikke tenke oss at turbididtetsstrømmer kan dannes på den flate fjordbunnen som nå finnes. Men, utslippene skal foregå i mange ti-år og det vil bygge seg opp en kjegle av gruveavfall. Dette vil føre til at det til stadighet vil rase gruveavfall ned skråningen. Det kan også tenkes at det vil dannes turbiditetsstrømmer som kan føre de fineste partiklene langt av gårde. Dette vil i tilfelle være et resultat av at dumpingen endrer bunnprofilen i det aktuelle fjordavsnittet. Det vi har gjort er å simulere spredningspotensialet for svevende partikler basert på ordinære strømmer skapt av skiftende forskjeller i tettheten av vannmasser mellom indre deler og ytre deler av fjordene. Slike tetthetsendringer forekommer regelmessig og er et naturlig fenomen knyttet til kyststrømmen. Dette fører til relativt svake (< 10 m/s), men ofte langvarige (flere dager) ensrettede strømmer som vil gi utskiftning av vann og gruvepartikler. Det er også verdt å merke seg at slike strømmer forekommer EPISODISK med noen dagers varighet, altså vil en langtidsmiddelverdi for strøm maskere denne effekten (noe Veritas f. eks. gjør i Førdefjorden: De presenterer kun langtidsmiddelverdier av det de måler, og ikke frekvens og styrke på enkeltepisoder). En partikkelspredningssimulering vil illustrere effekten av slike episoder ved at partiklene i lengre tid kan bevege seg fram og tilbake over en kort avstand pga. tidevannet for så plutselig sette avsted som om de hadde kommet seg ombord på et tog. På denne måten kan store mengder partikler spres utover et langt større område enn hva som fremkommer hvis disse episodiske strømmene ikke inkluderes i modellen. Vi har ikke utført kvantitativ modellering for å vise hvor mye gruvepartikler som blir spredt hvor langt og i hvilke konsentrasjoner, men å simulere spredning av partikler i et fast dyp illustrerer den strømmen som er på dette dypet. Det hevdes at strømmen er for svak for vesentlig spredning, men vi illustrerer at dette ikke er tilfellet. Svake, men vedvarende strømmer vil generelt gjøre områder uegnet for deponering av gruveslam. Resultatene fra vår modellering viser at i Repparfjorden er spredningspotensialet for små partikler svært høyt. I Førdefjorden vil partiklene spre seg i hele det indre bassenget og etter hvert som utslippspunktet blir grunnere (slik planene viser) vil faren for spredning ut av fjordbassenget øke betraktelig. Når figurene for Repparfjorden viser spredning langt ut i kystøkosystemet etter 120

3 døgn betyr det ikke at vi vil få skadelige konsentrasjoner utenfor Repparfjorden. Det vet vi ingenting om, modelleringen viser bare hvor åpent systemet er. Vi håper at disse opplysningene kan virke oppklarende for Miljødirektoratet når dere siden skal vurdere de miljømessige konsekvensene av de planlagte utslippene. Vennlig hilsen Karin Kroon Boxaspen Fungerende administrerende direktør Jan Helge Fosså Seniorforsker Kopi til: Nærings- og fiskeridepartementet Fiskeridirektoratet Norges fiskarlag Norsk bergindustri Klima og miljødepartementet Vedlegg Notat fra Lars Asplin med Appendiks 1 og 2

Modellering av partikkelspredning i fjorder utført ved Havforskningsinstituttet Notat, 2. juni 2014. Lars Asplin, Havforskningsinstituttet Bakgrunn Havforskningsinstituttet har de senere 10-20 årene hatt en økende oppmerksomhet rettet mot miljøvirkninger av havbruk og økologisk bæreevne i kyst- og fjordområdene i Norge. Slike problemstillinger krever god kunnskap og informasjon om det fysiske miljøet, som strømforhold og vannutveksling, temperatur og saltholdighet. Siden ca. år 2000 har derfor instituttet utviklet kompetanse og kapasitet omkring fysisk oseanografi i fjorder og særlig gjelder dette bruken av numeriske modeller for beregning av strøm og spredning. Vi driver også feltinnsamling av data så langt det lar seg gjøre innenfor de økonomiske rammene vi har. Lakselusproblematikken har vært førende for utviklingen av numeriske fjord- og spredningsmodeller. Allerede for 10-12 år siden gjennomførte instituttet de første modellsimuleringene med et koblet modellsystem, dvs. et system der de viktigste drivkreftene og randverdiene modelleres separat i en egen atmosfæremodell (vind og stråling) og en hav/kystmodell (tidevann og vannmasseendringer langs kysten). Asplin m.fl. (2004) beskriver et slikt oppsett for Sognefjorden. I dag har utviklingen gått raskt framover med tilgang på enda raskere superdatamaskiner som trengs for å kjøre strømmodellene med høyere detaljgrad. Havforskningsinstituttet tok i 2011 initiativet til å etablere kystmodellen NorKyst800 som på et 800 m romlig beregningsgitter regner ut strøm og hydrografi for hele Norskekysten (Albretsen m.fl., 2011). Utviklingen av NorKyst800 er gjort i et samarbeid med Meteorologisk institutt og Niva, og Meteorologisk institutt bruker nå denne modellen i en operasjonell rutine der de beregner 36 timers prognoser daglig. Med resultater fra NorKyst800 som randverdi, og muligheten for å hente atmosfæriske drivkrefter for et hvert tidspunkt fra ca. 1950 til og med dagen i dag, har vi et system for å kunne modellere strøm og hydrografi på et hvilket som helst sted langs Norskekysten med romlig oppløsning ned til ~50 m. Spredningsmodellene baserer seg på strømmodellresultater, og rent teknisk er slike modeller forholdsvis enkle. Den første utviklingen av en partikkelspredningsmodell ble gjort av Ådlandsvik & Sundby (1994) for å beregne spredning av torskeegg i Barentshavet. Videre har denne modellen blitt utvidet til å representere flere typer partikler, med ulik vertikaladferd og levetid. Spredningsmodellen er i økende grad brukt i forbindelse med lakselus i fjorder (Asplin m.fl., 2011; Asplin, m.fl., 2014; Johnsen m.fl., 2014), og vi tar sikte på å kjøre operasjonelle spredningssimuleringer fra våren 2015.

Spredningsmodellen og NorKyst800 danner grunnlaget for Strømkatalogen som Havforskningsinstituttet lanserer i løpet av 2014. Strømkatalogen vil være en karttjeneste der brukeren kan hente ut informasjon om strømstatistikk i en posisjon på Norskekysten. Brukeren kan også få gjennomført en spredningssimulering av partikler med avgrenset levetid fra en valgt posisjon og dermed et bilde av posisjonens influensområde overfor omgivelsene. Havforskningsinstituttet har til nå ikke utviklet spredningsmodellen for bruk med gruvepartikler, annet enn at vi har gjennomført spredning av partikler med neglisjerbar synkehastighet for å illustrere et spredningspotensiale. En gruvepartikkelspredning krever at partiklene gis synkehastighet basert på et definert størrelsesspekter og at eventuell resuspensjon inkluderes. Kjemisk omdanning er dessuten en mulig effekt som må inkluderes. Hvilke drivkrefter er viktige for å skape vannbevegelse Det aller viktigste kriteriet for å lage gode strømmodellresultater er å ha gode drivkrefter og grensebetingelser. Strømmodeller gir nesten alltid fra seg resultater som tilsynelatende ser greie ut, og det er ofte ikke tilgjengelig observasjoner for å validere resultatene. Fjordene er svært lagdelte, og utveksling vertikalt foregår i betydelig mindre grad enn horisontalt. Drivkreftene som skaper horisontal strøm er distinkte og resulterer i karakteristiske komponenter. Totalstrømmen er derimot summen av alle disse komponentene som altså varierer forskjellig i tid og rom. Totalstrømmen kan til tider være vanskelig å tyde. De viktigste drivkreftene for strøm er ferskvannsavrenning, vind, tidevann og horisontale trykkforskjeller pga. endringer av vannmassenes tyngde (f.eks. innenfor og utenfor en fjord). Ferskvannsavrenningen skaper et brakkvannslag og en strøm i de øvre ~5m av fjorden. Styrken på denne strømmen er typisk 0,1-0,2 m/s og kan ha flere dagers varighet. Vinden skaper også i første rekke strøm i det øvre laget av fjorden, kanskje ned til ~20 m avhengig av styrke og varighet. Ofte varer vindepisoder mindre enn ett døgn i fjorder, og det gjør at vinddrevet strøm har en episodisk karakter. Hastigheten vil være høyest helt i overflaten, og kan overstige 1 m/s. Nedover i dypet avtar hastigheten raskt. Tidevannet beveger seg som en lang kystfanget bølge fra Vestlandet og nordover, og påvirker fjordene ved at vannstanden heves og senkes regelmessig i fjordmunningen. En overflatebølge brer seg regelmessig inn fjorden fra kysten til fjordenden, og i smale og trange sund kan hastigheten bli høy (flere m/s). I dype og brede fjorder er derimot tidevannsstrømmen mer beskjeden med hastigheter rundt 0,1 m/s. Siden tidevannet har dominerende periode rundt 12,5 time vil ikke denne være så effektiv til vanntransport. Derimot er tidevannet en drivkraft som skaper strøm dypt nede i fjordene, noe som vil være viktig, også som blandingsmekanisme. Forskjeller i vannmassenes tyngde oppstår episodevis f.eks. enten ved vinddrevet nedstrømning eller oppstrømning av vann som drives mot/fra land, ved at det foregår en blanding av vannmasser (av f.eks. tidevannet) eller at indre bølger forpanter seg langs kysten. Når en tyngdeforskjell oppstår i et horisontalnivå nede i vannmassene utlignes denne umiddelbart ved at det skapes en strøm inn eller ut fjorden. Slike strømmer kan

være beskjedne i hastighet, typisk under ~0,1 m/s, men den kan ha en varighet på flere dager slik at denne ensrettete strømmen er en forholdsvis effektiv transportmekanisme. Metodikk og modelleringsmiljø Havforskningsinstituttet har drevet med numerisk havmodellering siden slutten av 1980-tallet. Utviklingen av denne aktiviteten har pågått i et relativt nært samarbeid med Meteorologisk institutt. Vi har valgt å bruke numeriske modeller med vid internasjonal utbredelse, da slike har store brukergrupper og en fortløpende kvalitetssikring og utvikling. I dag benytter vi først og fremst havmodellen ROMS (Regional Ocean Modelling System; www.myroms.org) som er en såkalt "community model" fra USA. ROMS løser de såkalte primitive hydrodynamiske ligningene i tre dimensjoner, noe som gir en forholdsvis komplett beskrivelse av fysikken. Beregningsgitteret består av et ortogonalt kurvilineært horisontalgitter og terreng- og overflatefølgende s-koordinater vertikalt. Typisk horisontal gitteroppløsning er fra 50 m for modelloppsett tilpasset de smaleste fjordene til 4 km for havmodellene. Vertikalt bruker vi 30-60 s-nivåer, med høy oppløsning i de øvre ~10 m (0,25 m - 1 m). Resultatene fra ROMS er bl.a. gjennomsnittsverdier i gitterboksene for tre-dimensjonal hastighet, saltholdighet, temperatur samt vannstand. For partikkelspredning lagrer vi resultater hver time. Siden drivkrefter og grenseverdier er avgjørende for strømmodellresultatene benytter vi separate modeller for å skaffe dette. Vi kjører atmosfæremodellen WRF (www.wrf-model.org) for å beregne vindstress og stråling, og kystmodellen NorKyst800 skaffer verdier av strøm, hydrografi og vannstand ved fjordmodellenes åpne grenseflate mot havet. Partikkelspredningsmodellen LADIM som er beskrevet ovenfor, og brukes til en lang rekke formål ved Havforskningsintituttet. Vi bruker og utvikler dessuten mer sammensatte økosystemmodeller, NORWECOM.e2e, hvor partikkelspredningsmodellen inngår som en modul for å beskrive zooplanktonnivået. Det koblede modellsystemet vi bruker i fjordene er skissert i Figur 1, med separate modeller for drivkrefter og beregning av strøm i fjordområdet før vi kjører partikkelspredningsmodellen.

Figur 1. Det sammensatte modellsystemet for partikkelspredning i fjorder, illustrert ved spredning av lakseluscopepoditter i Hardangerfjorden. Strømmodellen for fjorden har en romlig oppløsning horisontalt på 200 m. Havforskningsinstituttet har et stort antall forskere som er involvert i modelleringsarbeid, for tiden ca. 12 personer med professorkompetanse eller doktorgrad. Metodikken gjennomgår fortløpende evalueringer gjennom publisering av resultater i journaler med fagfellevurdering, f.eks. disse relevante arbeidene fra de siste årene: Asplin m.fl., 2014; Filgueira m.fl, 2010; Heikkilä m.fl., 2010; Hinrichsen, 2011; Johnsen m.fl., 2014; Kristiansen m.fl., 2009; Melsom m.fl, 2009; Myksvoll m.fl., 2011, 2012, 2013a,b,c; Skogen m.fl., 2009; Vikebø m.fl., 2011, 2012, 2013. Referanser Albretsen, J., Sperrevik, A.K., Staalstrøm, A., Sandvik, A.D., Vikebø F. and Asplin, L., 2011. NorKyst-800 report no. 1: User manual and technical descriptions. Fisken og Havet nr. 2/2011, 51 pages. Asplin L., K. Boxaspen & A. D. Sandvik, 2004. Modelled distribution of sea lice in a Norwegian fjord, ICES C.M. 2004/P:11, 12 pages. Asplin, L., Boxaspen, K.K. & Sandvik, A.D. 2011. Modeling the distribution and abundance of planktonic larval stages of Lepeophtheirus salmonis in Norway. In S.R.M. Jones and R.J. Beamish (eds.) Salmon Lice: An integrated

approach to understanding parasite abundance and distribution. Wiley- Blackwell, Hoboken, New Jersey, pp. 31-50. Asplin, L., Johnsen, I.A., Sandvik, A.D., Albretsen, J., Sundfjord, V., Aure, J. & K.K. Boxaspen. 2014. Dispersion of salmon lice in the Hardangerfjord. Marine Biology Research, 10:3, 216-225, DOI:10.1080/17451000.2013.810755. Filgueira R., J. Grant, Ø. Strand, L. Asplin and J. Aure, 2010, A simulation model of carrying capacity for mussel culture in a Norwegian fjord: Role of induced upwelling Aquaculture, 308, 20-27. Heikkilä U., A.D. Sandvik and A. Sorteberg, 2010, Dynamical downscaling of ERA- 40 in complex terrain using the WRF regional climate modell. Clim. Dyn., doi:10.1007/s00382-010-0928-6, Hinrichsen H.H., M. Dickey-Collas, M. Huret, M.A. Peck and F.B. Vikebø, 2011, Evaluating the suitability of coupled biophysical models for fishery management ICES J. Mar. Sci., doi:10.1093/icesjms/fsr056. Johnsen, I.A., Fiksen, Ø., Sandvik, A.D. & Asplin, L. 2014, Vertical salmon lice behavior as a response to environmental conditions and its influence on the regional dispersion in a fjord system. Aquaculture Environment Interactions. Kristiansen T., C. Jørgensen, R.G. Lough, F. Vikebø and Ø. Fiksen, 2009, Modeling rule-based behavior: habitat selection and the growth-survival trade-off in larval cod Behavioral Ecology, 20, 490-500. Melsom A., V.S. Lien and W.P. Budgell, 2009, Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation Ocean Dyn., 59, 969-981. Myksvoll M.S., S. Sundby, B. Ådlandsvik and F.B. Vikebø, 2011, Retention of Coastal Cod Eggs in a Fjord Caused by Interactions between Egg Buoyancy and Circulation Pattern Marine and Coastal Fisheries, 3, 279-294. Myksvoll M.S., A.D. Sandvik, J. Skarðhamar and S. Sundby, 2012, Importance of high resolution wind forcing on eddy activity and dispersion in a Norwegian fjord Estuarine Coastal Shelf Sci., 113, 293-304. Myksvoll M.S,, K.-M. Jung, J. Albretsen and S. Sundby, 2013a, Modelling dispersal of eggs and quantifying connectivity among Norwegian coastal cod subpopulations ICES J. Mar. Sci., doi:10.1093/icesjms/fst022, Myksvoll M.S., A.D. Sandvik, L. Asplin and S. Sundby, 2013b, Effects of river regulations on fjord dynamics and retention of coastal cod eggs ICES J. Mar. Sci., doi:10.1093/icesjms/fst113, Myksvoll M.S., K.E. Erikstad, R.T. Barrett, H. Sandvik and F. Vikebø, 2013c, Climate-Driven Ichthyoplankton Drift Model Predicts Growth of Top Predator Young PLoS ONE, 8, e79225. Skogen M.D., M. Eknes, L.C. Asplin and A.D. Sandvik, 2009, Modelling the environmental effects of fish farming in a Norwegian fjord Aquaculture, 298, 70-75. Vikebø F.B., B. Ådlandsvik, J. Albretsen, S. Sundby, E.K. Stenevik, G. Huse, E. Svendsen, T. Kristiansen and E. Eriksen, 2011, Real-Time Ichthyoplankton Drift in Northeast Arctic Cod and Norwegian Spring-Spawning Herring PLoS ONE, 6, e27367. Vikebø F.B., A. Korosov, E.K. Stenevik, Å. Husebø and A. Slotte, 2012, Spatiotemporal overlap of hatching in Norwegian spring-spawning herring and the spring phytoplankton bloom at available spawning substrata ICES J. Mar. Sci., 69, 1298-1302.

Vikebø F.B., P. Rønningen, V.S. Lien, S. Meier, M. Reed, B. Ådlandsvik and T. Kristiansen, 2013, Spatio-temporal overlap of oil spills and early life stages of fish ICES J. Mar. Sci., doi:10.1093/icesjms/fst131. Ådlandsvik B, Sundby S. 1994. Modelling the transport of cod larvae from the Lofoten area. ICES mar. Sci. Symp. 198, 379-392.

Appendix 1. Utveksling av dypvann i Repparfjorden - spredning av partikler i 50 m dyp Notat Havforskningsinstituttet, sommeren 2014. Lars Asplin, Jofrid Skardhamar, Anne Sandvik, Ingrid A Johnsen, Mari Myksvoll, Jon Albretsen og Bjørn Ådlandsvik Bakgrunn I forbindelse med at Havforskningsinstituttet i 2013 gjennomførte en strømsimulering for å vurdere lakselusspredning i Altafjorden, har vi som en bieffekt vurdert dypvannsutskiftning i Repparfjorden. Siden Repparfjorden er planlagt som deponiområde for gruveavfall, finner vi det riktig å formidle våre resultater med relevans for denne problematikken. Metodikk Vi har beregnet strøm for perioden mars-august 2013 og har anvendt et koblet modellsystem der en strømmodell med relativt høy romlig oppløsning (160m ganger 160m) danner det innerste nivået. Randverdier til denne modellen hentes fra strømmodellen NorKyst800 og atmosfæriske drivkrefter er beregnet med vindmodellen WRF. Detaljer og referanser er gitt i Havforskningsinstituttets risikovurdering for norsk fiskeoppdrett 2013 (Taranger m. fl. Fisken & Havet, særnummer 2-2014). Strømfelt time for time danner grunnlag for partikkelspredningsmodelleringen, og vi har sluppet passive partikler sentralt i deponeringsområdet i Repparfjorden i 50 m dyp. Partiklene driver fast i 50 m uten vertikalbevegelse for å illustrerer strømfeltet i dette dypet og kan bare sammenlignes med gruveavfall av minste fraksjon med neglisjerbar synkehastighet. Resultater Strømmen i 50 m dyp vil være redusert sammenlignet med de øvre vannlagene der strømmen er direkte påvirket av drivkrefter som vind og ferskvannsavrenning. Den høyeste midlere strømfarten i 50 m dyp finner vi i ytre fjord- og kystområder og der topografien skaper innsnevringer (Figur 1). De høyeste verdiene vil være over 0,2 m/s, og denne høye strømfarten skyldes i all hovedsak tidevannskraften. I Repparfjorden er middelstrømmen lavere enn utover mot kysten, med verdier omkring 0,05 m/s og med sterkest strøm langs land (Figur 2). Maksimal strømfart i simuleringsperioden mars-august 2013 viser også høyeste verdier langs land rundt 0,2 m/s (Figur 3). Med utslipp av 10 partikler i timen fra 3. mars 2013 finner vi at etter 2-3 uker tømmes fjorden for ca 80 % av de tilførte partiklene, og at det regelmessig forekommer episodisk eksport av partikler ut av fjorden (Figur 4). I snitt er mindre enn halvparten av de tilførte partiklene tilbakeholdt i fjorden. Etter 120 dagers simulering finner vi partikler spredt i en betydelig avstand fra utslippspunktet (Figur 5).

Figur 1. Midlere strømfart (m/s) i 50 m dyp i perioden mars-august 2013 fra de numeriske strømmodellresultatene. Figur 2. Utsnitt fra Repparfjorden av midlere strømfart (m/s) i 50 m dyp i perioden mars-august 2013 fra de numeriske strømmodellresultatene.

Figur 3. Utsnitt fra Repparfjorden av maksimal strømfart (m/s) i 50 m dyp i perioden mars-august 2013 fra de numeriske strømmodellresultatene. Figur 4. Relativt antall partikler inne i Repparfjorden i 50 m dyp.

Figur 5. Fordeling av partikler drivende i 50 m dyp etter 120 døgn med konstant utslipp av 10 partikler/time sentralt i fjorddeponiområdet i Repparfjorden.

Appendix 2 Potensiell spredning av passive partikler i Førdefjord-området Lars Asplin, Havforskingsinstituttet, sommeren 2014. Bakgrunn Havforskningsinstituttet skal legge til rette for at gode politiske beslutninger og forvaltningsmessige grep skal kunne tas. En av grunnene til at vi har lagt stor vekt på å uttale oss om ulike sjødeponisaker er at konsekvensutredningene som er gjennomført har benyttet en utilstrekkelig metodikk for informasjonsinnhenting av strøm med modeller og dermed underestimert i betydelig grad spredningspotensialet for gruveavfallet. Risikoen ved sjødeponering er etter vår mening dermed større enn det som er lagt til grunn i konsekvensutredningene. Spredning i Førdefjorden For området omkring Førdefjorden har vi gjennomført en strømsimulering for perioden 21.mai-30. juni 2006. Beregningene er utført med en fjordmodell med romlig oppløsning på 200 m samt et sett med ulike modeller for grenseverdier mot havet og atmosfæriske drivkrefter. Modellens bunntopografi er noe glattet, slik at de dypeste tersklene er grunnere enn i virkeligheten. Modellresultatene stemmer godt overens med de verdiene for strømfart Det Norske Veritas har samlet inn i 2013-2014 (Figur 1; Tabell 1). Vår simulering ble gjennomført i et annet prosjekt, og er derfor noe kort (40 dager). Vi er i ferd med å implementere en ny modell for Sogn og Fjordane med bedre representasjon av bunndypene og mulighet for simulering av lengre perioder. Figur 1. Posisjoner for strømmålinger i Førdefjorden 2013-2014 (DNV).

Tabell 1. Sammenligning mellom modellert midlere strømfart (21.5-30.6 2006) og observert strømfart (aug-nov/nov-feb, 2013-2104, Det Norske Veritas). Enhetene er m/s. Standardavvik i parentes. Røde tall = målte verdier. Sorte tall = modellerte verdier. Strøm1 Strøm 2 Strøm 3 Strøm 4 Strøm 5 10m 0.10 (0.07) 0.10 (0.07) 0.08 (0.06) 0.05 (0.03) 0.05 (0.03) 0.05 (0.03) 0.09 (0.06) 0.08 (0.06) 50m 0.05 (0.04) 0.06 (0.04) 0.05 (0.03) 0.07 (0.04) 0.03 (0.02) 0.02 (0.01) 0.04 (0.02) 0.05 (0.03) 0.06 (0.04) 100m 0.03 (0.02) 0.04 (0.02) 0.02 (0.01) 0.02(0.01) 0.02 (0.01) 0.05 (0.03) 0.09 (0.08) 0.09 (0.07) 200m 0.03 (0.02) 0.07 (0.04) 0.03 (0.02) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01) 0.04 (0.02) 0.03 (0.02) 0.03 (0.02) 300m 0.08 (0.02) 0.05 (0.02) Vi har gjennomført spredning av passive partikler som driver i faste dyp for perioden 21. mai til 30. juni 2006. Finpartikler fra gruveavfall består av både de som er så små at de svever og større partikler med en viss synkehastighet. Det at partikler synker i stille vann betyr slett ikke at de synker til bunns med en gang, og de kan fraktes langt av sted. Vi simulerer bare for partikler som ikke synker. Drift i fast dyp vil derimot illustrere spredningen av den aller minste delen av gruveavfallet med neglisjerbar synkehastighet. Det illustrerer også strømforholdene like over terskeldypet (som i modellen er grunnere enn i virkeligheten). Strømmene i fjorder er i stor grad horisontale, og det er mye tyngre for vannmassene å bevege seg vertikalt. Likevel forekommer vertikal transport, enten pga. langvarig blanding eller pga. episodevis vertikal strøm. Generelt vil høyere horisontale strømmer gi større muligheter for vertikal forflytning. Figur 2. Fordeling av partikler drivende i 140 m etter ca. 40 dager. Partiklene er sluppet ut med en rate på 3 i timen i posisjonen merket med blå runding.

Etter en drøy måned med kontinuerlig utslipp av partikler i 140 m dyp, noe som kanskje vil være et representativt utslippspunkt etter endel år med dumping, vil det være en jevn lekkasje av partikler ut av deponiområdet (Figur 2). Netto forflytning foregår ikke først og fremst med tidevannsstrømmene, men med trykkdrevne strømmer der forholdet mellom vannmassenes lagdeling inne i fjorden og ute på kysten spiller en rolle. Selv om strømfarten tilsynelatende er lav (~0.05 m/s) vil dette være nok til at transporten ut fjorden foregår i en kontinuerlig prosess. I 300 m dyp vil partiklene som driver horisontalt ikke unslippe bassenget utenfor Vevring, men derimot spinne rundt i en rotasjon mot klokka mens de stadig stanger mot bassengveggen. Partiklene vil henge seg fast på veggen om strømkomponenten har den retningen, men i perioder når strømmen endrer retning vil de løsrive seg og fortsette den sirkulære bevegelsen. Slike strømmer nede i deponiområdet innbyr til resuspensjon og oppvirvling av gruvepartikler, og er forhold vi generelt anser som svært lite gunstige i et deponiområde. Det betyr at det vil være mer sannsynlig med en vertikal transport av gruvepartikler oppover i vannsøylen enn om vannmassene nede i dypbassenget lå helt i ro. Havforskningsinstituttet mener disse resultatene av potensiell spredning av partikler igjen understreker at det foreslåtte deponiområdet er altfor dynamisk til at det vil kunne holde på tilstrekkelige mengder av det avfallet som plasseres der. Det er usikkerhet om måten dumpingen av a gruveavfallet skal foregå på, og det virker usannsynlig at ikke avfallet vil bli deponert relativt høyt opp i vannsøylen i løpet av ganske kort tid, og dermed eksponert for denne jevne transporten ut fjorden. Mulighetene for uhell/lekkasjer i et deponeringsrør er absolutt sannsynlig, noe som vil kunne medføre betydelig utslipp høyere opp i vannsøylen. Mest problematisk er at den ordinære produksjonen etter noen titalls år med kontinuerlig dumping vil føre til at dumpingen da vil foregå over terskeldypet.