Vektorer. En overflate i et tredimensjonalt rom kan skrives som funksjonen:

Størrelse: px
Begynne med side:

Download "Vektorer. En overflate i et tredimensjonalt rom kan skrives som funksjonen:"

Transkript

1 og vektorregning Halvor Aarnes, UiO, 2014 Vektorer Innhold Vektorer... 1 Kule og kulekoordinater... 3 Skalarprodukt... 4 Vektorprodukt... 7 Vektorfelt... 9 Gradient Divergens Sirkulasjon Greens og Stokes teorem Vektorer René Decartes ( ) innførte begrepet analytisk geometri. I planet velges to koordinatakser som står vinkelrett på hverandre. En horisontal x-akse (abscisse) og en vertikal y-akse (ordinat) som møtes i et skjæringspunkt, origo. To tall (x,y) representerer et punkt i planet, et todimensjonalt rom, R 2, hvor x og y kalles koordinater. Koordinatene viser avstanden fra punktet til aksene. Tre tall (x,y,z) er en trippel og reprenterer et punkt i et tredimensjonalt rom, R 3, hvor z-aksen står rettvinklet på planet og alle tre aksene skjæres i origo. De tre tallene kan også skrives som (x 1,x 2,x 3 ). (x 1,x 2,x 3,x 4 ) er en kvadruppel i et firedimensjonalt rom. (x 1,x 2,x 3, x n ), n- tuppel, er et punkt i et n-dimensjonalt rom, R n. En overflate i et tredimensjonalt rom kan skrives som funksjonen:,, 0 Derivere er å trekke tangenter til kurver, integrere er å beregne areal under kurver, og med partiellderiverte kan man studere kurver i rommet. Lagrange publiserte i 1788 Mécanique analytique (Analytisk mekanikk). 1

2 Seinere innførte den irske matematikeren William Rowan Hamilton ( ) Theory of quaternions, en helt ny måte å forstå fysikk. I fysikk har man begreper som kraft, forflytning, hastighet og aksellerasjon, alle disse har størrelse og retning og kan presenteres som en vektor. En vektor kan presenters geometrisk fra et startpunkt til et sluttpunkt, eller analytisk via koordinatene for endepunktet. Vi har en vektor A= (a 1,a 2, a 3 ) hvor a 1, a 2 og a 3 er er komponentene til vektoren. Vi har retningsvinklene til vektoren: 1 Vi har to vektorer A og B:,,,,,,. Summen av de to vektorene A+B er lik:,,, 00, 0, 0,

3 2 Regneregler for vektorer., Addisjon og multiplikasjon av todimensjonale vektorer kan vises geometrisk i planet. Summen er diagonalen i parallellogrammet dannet av de to vektorene A og B. Figur. Summen av vektorene A=[-1, 1] og B=[2, 2], hvor A + B=[1, 3] Multiplikasjon av vektoren A med 2 dobler lengden, multiplikasjon med ½ halverer lengden. Generelt vil c A gi et punkt i samme retning som A, men c ganger avstanden. Hvis c er et negativt tall snur vektoren retning. Determinanter kan brukes til å finne arealet av et parallellogram. Arealet er lik absoluttverdien til determinanten til vektorene A og B. Determinanten for A=[-1, 1] og B=[2, 2] vist over blir: Arealet blir lik 4. Dette kan vi kontrollregne ved å bruke Pytagoras setning. Kule og kulekoordinater Funksjonen for en kule med radius r og sentrum i origo: 3

4 En kule med origo i [x 0,y 0,z 0 ]: Vektorer Vi kjenner kulekoordinatene (sfæriske koordinater) (u,v) til et punkt P(x,y,z) på en kule, hvor u tilsvarer breddegraden o o o o [-90, 90 ] og v lengdegraden [0, 360 ]. Hvis vi lar kula være Jorden så er meridianer lik storsirkler som går gjennom nord- og sydpol. Lengdegraden måles fra nullmeridianen og østover. For himmelkulen tilsvarer deklinasjonen breddegraden og rektascensjonen lengdegraden. Et punkt P 0 i ekvatorialplanet har koordinater [x,y,0]. For Jorden med sentrum i origo og radius r =6378 km får koordinatene for et punkt P=[x, y, z] cos cos cossin sin tan sin Hvis en kule har sentrum i [x 0,y 0,z 0 ] så blir parameterfremstillingen: cos cos cossin sin Skalarprodukt Vi innfører en ny type multiplisering hvor skalarproduktet gir et reelt tall. Skalarproduktet A B av to vektorer er,,, Skalarproduktet av en vektor med seg selv er kvadratet av lengden av vektoren: 4

5 Skalarproduktet av to vektorer er lik produktet av lengden av de to vektorene multiplisert med cosinus til vinkelen θ mellom dem: Vet vi lengden og skalarproduktet kan vi finne vinkelen mellom to vektorer. Vi har at A B = B A. Hvis de to vektorene A og B står normalt på hverandre blir A B=0, fordi cosθ=0. Vi sier at nullvektoren står normalt på alle vektorer. Ortogonale vektorer står på hverandre i 90 o vinkel. Hvis nullvektoren er A=0 så er A A=0. Vi kan finne vinkelen mellom to vektorer A=[1,-1,0] og B=[1,0,1] Skalarproduktet er svært nyttig i fysikk hvor vektoren A kan representere en konstant kraft som virker på et legeme som beveger seg som en vektor B. Arbeidet som utføres blir lik skalarproduktet A B Hvis c er et tall så vil c A bli:,,, 5

6 Lengden eller normen til en vektor er A : Hvis A og B er to vektorer så gjelder trekantulikheten: I det tredimensjonale rommet er det tre enhetskoordinatvektorer i=[1,0,0], j=[0,1,0], og k=[0,0,1] alle med lengde 1, og som ligger langs x-,y- og z-aksen. Vektorene i, j og k danner basis i 3D. Alle vektorer kan uttrykkes i form av enhetsvektorene: Hvis det er samme lengdeakse på aksene kalles koordinatsystemet ortonormert. Bevegelse kan beskrives av posisjon (P(x,y,z), forflytning, hastighet (v=dx/dt) og aksellerasjon (a=dv/d t), og i denne sammenheng benytter vi vektorer. En rett linje i et tredimensjonalt rom (R 3 )som går gjennom punktet P 0 (x 0,y 0,z 0 )og har retningsvektor (a,b,c) kan framstilles i parameterform som: Vi plotter en linje som har parameterframstilling:

7 Vi kan finne vinkelen mellom to linjer i rommet ved å finne vinkelen mellom retningsvektorene Disse linjene har retningsvektorer r 1 (2, 2, -4) og r 2 (-2, 1, 2). Vektorprodukt Vi må skille skalarprodukt fra vektorprodukt. Vektorprodukt vil si å finne en vektor som står normalt (vinkelrett) på to andre vektorer. Vi får vektorproduktet mellom to vektorer A og B lik A x B. Vektorproduktet kan peke opp eller ned. A x B har motsatt retning av B x A. Lengden av vektorproduktet A x B, hvis vi kaller vinkelen mellom vektorene A og B for α er Lengden av vektorproduktet A x B er lik arealet av et parallellogram bestemt av A og B, og som er lik absoluttverdien av determinanten. Vektorene A og B bør ligge i samme koordinatplan, enten xy-, xz- eller yz-planet slik at vektorproduktet peker ut i den tredje dimensjonen. Hvis vektorene A og B ligger i xy-planet: A=[x 1,y 1,0] og B=[x 2,y 2,0] så blir vektorproduktet A x B lik:,,0,,0 0, 0, 7

8 Vi kan finne vektorproduktet for A=[2, 3, 0] og B=[1, 4, 0] er lik [0, 0, 5] Hvis vi har basisvektorene eller enhetsvektorene i, j og k med lengde 1 i henholdsvis x-, y- og z-retning, så har vi generelt for vektorproduktet A x B hvor A=[x 1,y 1,z 1 ) og B=[x2,y 2,z 2 ],,,,,, Vektorproduktet er velegnet til å finne arealer av trekanter og parallellogram dannet av vektorene i vektorproduktet. Arealet av parallellogram: A x B Arealet av trekant; ½ A x B På samme vis kan vi bestemme volumet av en parallellpiped dannet av tre vektorer A=[x 1,y 1,z 1 ), B=[x 2,y 2,z 2 ] C=[x 3,y 3,z 3 ]. Volum av parallellpiped er lik absoluttverdien til determinanten Hvis vi har vektorene A=[4,3,2], B=[2,4,1] og C=[2,2,4] så blir volumet av parallellpiped dannet av de tre vektorene lik determinanten Hvis de tre vektorene A, B og C utgår fra samme punkt omslutter de en pyramide. Da vil volumet av pyramiden bli lik 1/3 av absoluttverdien til determinanten: 1 : 3 Hvis de tre vektorene A, B og C er like lange og utgår fra samme punkt omslutter de et tetraeder. Da vil volumet av tetraederet bli lik 1/6 av absoluttverdien til determinanten: 8

9 : 1 6 Vektorfelt Vektorfelt benyttes i studiet av elektromagnetisme (Maxwells ligninger) eller strømninger i vækse eller gass. Det kan være hastighet og retning på hvordan gasser beveger seg i atmosfæren, eller hvordan en væske forflytter seg og lager strømningsfelt. Vektorfelt for en magnet kan demonstreres med jernfilspon. Michael Faradays klassiske studier av feltlinjer rundt en magnet var opprinnelsen til studiet av feltteori. Via Maxwells ligninger kan man si noe om størrelse og retning på ladninger og hvordan dette gir elektromagnetiske felt. Gravitasjonskreftene forårsaket av masse, en av universets svake krefter, lager gravitasjonsfelt. Vektorfelt framstilles grafisk som piler som viser bevegelsesretningen og hastigheten. Linjer hvor feltet er tangenter til hvert punkt i rommet kalles feltlinjer (integralkurver). Feltlinjene er ikke avhengig av størrelsen på feltet, sier ingenting om hastigheten (størrelsen av vektoren), men bare retningen på feltet, hvilken vei vektorene for ethvert punkt peker. Et vektorfelt F i en undermengde av det euklidske tredimensjonale rom R 3 som tilordner en vektor F(x,y,z) for hvert punkt (x,y,z) i rommet. En vektor kan tegnes som en pil som har retning og lengde eller hastighet. Ethvert punkt i rommet tilordnes en vektor. Regningen med vektorfelt baserer seg på integral- og differensialregning. Et vektorfelt kan også betraktes i et todimensjonalt plan (R 2 ) som tangenter til en overflate. Vektorfelt kan også betraktes i n-dimensjonale rom som n-dimensjonale vektorer. En vektorverdifunksjon F kan uttrykkes som: : hvor R n er en undermengde av R m. En vektor kan flyttes til et annet koordinatsystem. Mens vektorfelt har en vektor for ethvert punkt i rommet har et skalarfelt en skalar. Skalarfelt kan ikke transformeres. De tre delene (komponentene) av vektorfeltet F er skalare funksjoner F 1 (x,y,z), F 2 (x,y,z), F 3 (x,y,z) og vektorfeltet F(x,y,z) kan uttrykkes som: 9

10 ,,,,,,,, med enhetsvektorene (i,j,k). Vektorfeltet er satt sammen av skalarfelter. Vektorfeltet kalles glatt hvis de skalare funksjoner har kontinuerlige partiellderiverte. Vektorfelt kan uttrykkes i form av polarkoordinater F(r,θ) med radial komponent F r (r,θ) og transversal kompoent F θ (r,θ):,,, hvor r-hatt og theta-hatt er enhetsvektorene (basis) For noen felt kan man finne feltlinjene via differensialligninger med polarkoordinater. Gradient Hvis vi har en funksjon med n variable f(x 1,x 2,,x n ) så vil gradienten til f være gitt ved de partiellderiverte:,,, Hvis vi har,,,, i et domene D, så vil F være et konservativt vektorfelt i D, og phi (φ) er skalarpotensialet for F. Et konservativt vektorfelt hvor funksjonen f er potensialet til F.,en omvendt delta, er gradientoperatoren. Vi har gradienten gitt i form av de partiellderiverte:,,,, Hvis vi har et konservativt vektorfelt i planet,,, så vil ethvert punkt i domene D i xy-planet tilfredsstille:,, Tilsvarende blir det i rommet xyz (R 3 ). For eksempel er gravitasjonsfeltet til punktformete masser konservativt. Man kan integrere et kontinuerlig vektorfelt langs en parametrisert kurve med endelig lengde. 10

11 Linjeintegralet over domene C blir 0 Kurveintegralet (linjeintegralet) for et konservative vektorfelt i en lukket kurve C i planet er lik 0: Flateintegral vil si å integrere over en flate. Divergens Divergensen til F divf er funksjon (skalarfelt) og er det samme som flukstetthet: Vi kan også uttrykke dette som Vi ser at divergensen til F er et skalarfelt Divergensen til vektorfeltet F i punktet P sier noe om hvordan feltet sprer seg vekk fra P, divergerer, en fluks per enhetsvolum ut fra små sfærer med sentrum i P: 3 lim 4 Divergensen sier noe om punktet er en kilde eller sink for vektorfeltet. Sirkulasjon Sirkulasjonen til F curlf angir hvordan vektorfeltet (flyt av objekter) roterer rundt punktet P i rommet R 3 : 11

12 Hvis punktene i rommet med tilhørende vektor er representert med parameterligning r=r(t) så vil tangentvektoren dr/dt være parallel med vektorfeltet F(r(t)). For noen vektorfelt er det mulig å finne feltlinjene via differensialligninger som kan bli multiplisert med funksjoner:,,,,,, Greens og Stokes teorem Hvis F=F1(x,y)i +F2(x,y) er et glatt felt i en lukket region R i planet med grenser C så har vi ifølge Greens teorem:,, Stokes teorem (George Gabriel Stoke ) er den tredimensjonale utgaven av Greens teorem (George Green ). Stokes teorem sier at hvis S er en glatt tredimensjonal flate med normalfelt og F er et glatt vektorfelt som en mengde som inneholder S så vil: Maxwells fire berømte ligninger for elektromagnetisme i et tredimensjonalt rom er: 12

13 Vektorer 0 hvor feltene E og H er tidsavhengig, J er strømtettheten hvor curlh=j er Ampères lov. Litteratur: Apostol, T.M. Calculus ( Vol I + II). Blaisdell Publ. Comp R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN , URL Rottmann, Karl: Matematische Formelsammlung. Bibliographisces Insitutt. Hochschultaschenbücher-Verlag Wikipedia 13

Integrasjon. Hvis f(x) er en gitt funksjon så er integralet av f(x) en samling med alle antideriverte til f(x). Integraltegnet står for en sum

Integrasjon. Hvis f(x) er en gitt funksjon så er integralet av f(x) en samling med alle antideriverte til f(x). Integraltegnet står for en sum Integrasjon Halvor Aarnes, UiO, 2014 Innhold Numerisk integrasjon og Simpsons regel... 5 Areal ved Riemann sum... 5 Areal ved trapesmetoden... 6 Numerisk integrasjon og Simpsons regel... 8 Volum ved rotasjon...

Detaljer

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 1 Geometri Innhold Kompetansemål Geometri, R2... 3 1.1 Vektorer... 4 1.2 Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 Multiplikasjon av vektor med tall... 6 Parallelle vektorer...

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

1 Geometri R2 Oppgaver

1 Geometri R2 Oppgaver 1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

1 Geometri R2 Løsninger

1 Geometri R2 Løsninger 1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

MAT mars mars mars 2010 MAT Våren 2010

MAT mars mars mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

4 Vektorer. Vektorregning Vektorer...2. Skalarprodukt og vektorprodukt...14

4 Vektorer. Vektorregning Vektorer...2. Skalarprodukt og vektorprodukt...14 4 Vektorer 4_Vektorer_2015.odt 31.08.2015 (cc)tg Vektorer...2 Skalarer og vektorer...2 Like, motsatt like, parallelle vektorer...2 Sum og differanse...3 Produkt av tall og vektor...4 Vektorer på koordinatform...5

Detaljer

Pilkast og kjikvadrat fordelingen

Pilkast og kjikvadrat fordelingen Pilkast og kjikvadrat fordelingen Halvor Aarnes, IBV, 014 Innhold Pilkast... 1 Simulering av pilkast... Kjikvadratfordelingen og gammafordelingen... 3 Rayleigh-fordelingen... 5 Pilkast brukt til å estimere

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

Geometri R2, Prøve 2 løsning

Geometri R2, Prøve 2 løsning Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4

Detaljer

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Vektorvaluerte funksjoner

Vektorvaluerte funksjoner Versjon per 8.09.05. Parametriserte kurver Vektorvaluerte funksjoner Hans Petter Hornæs Forelesningsnotat til Matematikk 0 ved HiG, høst 005. Grafen til en kontinuerlig funksjon f av en variabel kan som

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

2 Vektorer. 2.1 Algebraiske operasjoner på vektorer

2 Vektorer. 2.1 Algebraiske operasjoner på vektorer Vektorer Begrepet vektor dukker opp i mange sammenhenger både i matematikk og i fysikk, og står generelt for et objekt som er bestemt ved en størrelse og en retning. Eksempler fra fysikk er forflytning,

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011 R 011/1 - Kapittel : 19. september 19. oktober 011 Plan for skoleåret 011/01: Kapittel : 17/9-0/10. Kapittel 3:5/10 19/11. Kapittel 4: 19/11 1/1. Kapittel 5: 1/1 11/. Kapittel 6: 11/ 9/3. Kapittel 7: 19/3

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

Løsning eksamen R1 høsten 2009

Løsning eksamen R1 høsten 2009 Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed

Detaljer

Øvelse, eksamensoppgaver MAT 1050 mars 2018

Øvelse, eksamensoppgaver MAT 1050 mars 2018 Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

R2 - Vektorer Løsningsskisser

R2 - Vektorer Løsningsskisser K.. -.5 I R2 - Vektorer 25.09.09 Løsningsskisser Gitt vektorene u,2,3 og v 2, 3,5. Regn ut: a) u v b) u v c) u v d) 5u 2v e) v f) Vinkelen mellom u og v Oppgave I: Krever lavt kompetansenivå: Grunnleggende

Detaljer

Notater til eksamensforelesning i TMA4105

Notater til eksamensforelesning i TMA4105 Notater til eksamensforelesning i TMA4105 Åsmund Eldhuset Definitivt ikke ferdig! Dette er ikke ment som en frittstående tekst, men kun som supplement til læreboken. Hvis det er uoverensstemmelse mellom

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5 Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Løsningsforslag til øving 3

Løsningsforslag til øving 3 Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

TFE4120 Elektromagnetisme

TFE4120 Elektromagnetisme NTNU IET, IME-fakultetet, Norge teknisk-naturitenskapelige uniersitet TFE412 Elektromagnetisme Løsningsforslag repetisjonsøing Oppgae 1 a) i) Her er alternati 1) riktig. His massetettheten er F, il et

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t

Matematikk 4, ALM304V Løsningsforslag eksamen mars da 1 er arealet av en sirkel med radius 2. F = y x = t t r = t t v = r = t t Oppgave r( t) v( t) dt t dt, t dt, t dt t +, t +, t +. d d d a( t) v '( t) t, t, t,6 t,t dt dt dt F ma m t t Gitt en hastighetsvektor v( t) t, t, t.,6, Oppgave Greens setning: δq δ P I ( Pdx + Qdy) ( )

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Eksamensoppgaver 75002 og 75012 Matematikk 1B

Eksamensoppgaver 75002 og 75012 Matematikk 1B Eksamensoppgaver 75 og 75 Matematikk B Eksamensoppgaver 75 og 75 Matematikk B Samlet for SIF55 Matematikk våren Samlingen inneholder utvalgte oppgaver gitt i 75 og 75 Matematikk B ved NTH/NTNU i tiden

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål Eksamen 7.11.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

R2 - Vektorer i rommet

R2 - Vektorer i rommet R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

MAT3010. Rapport - skoleprosjekt Gruppe R 3. Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime.

MAT3010. Rapport - skoleprosjekt Gruppe R 3. Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime. MAT3010 Rapport - skoleprosjekt Gruppe R 3 Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime. Any fool can know. The point is to understand. Albert Einstein Av: Randi

Detaljer

Eksamen 03.12.2009. REA3024 Matematikk R2

Eksamen 03.12.2009. REA3024 Matematikk R2 Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

R1 Eksamen høsten 2009

R1 Eksamen høsten 2009 R1 Eksamen høsten 2009 Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x b) Deriver funksjonen gx x 3 ln2 x 3 2 c) Likningen 2x 10x 2x 10 0 har tre løsninger. Vis at x1 1 er en løsning og finn de to andre.

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer