Oppgave: BOW Bowling. Regler for Bowling. norwegian. BOI 2015, dag 1. Tilgjengelig minne: 256 MB

Størrelse: px
Begynne med side:

Download "Oppgave: BOW Bowling. Regler for Bowling. norwegian. BOI 2015, dag 1. Tilgjengelig minne: 256 MB. 30.04.2015"

Transkript

1 Oppgave: BOW Bowling norwegian BOI 0, dag. Tilgjengelig minne: 6 MB Byteasar er glad i både bowling og statistikk. Han har skrevet ned resultatene sine fra noen av gangene han har spilt bowling. Desverre så har noen av tegnene han har skrevet ned blitt uklare og dermed uleselige. Byteasar ber deg om å skrive et program som kan beregne antall mulige distinkte spill som stemmer overens med notatene hans. Regler for Bowling En runde med bowling består av n ruter: n enkle ruter og en siste rute. I vanlig bowling så er n = 0. I starten av hver rute så blir 0 kjegler stillt oppreist i enden av en lang bane, og spilleren har opptill forsøk (kast) på å kaste en ball nedover banen for å velte så mange kjegler som mulig. (I noen tilfeller så vil spilleren ha 3 kast i siste rute. Se nedenfor.) Hver rute er beskrevet med (for enkle ruter) eller 3 (for den siste ruta) tegn. For hvert kast så får spilleren standardpoeng lik det totale antall kjegler han veltet på det kastet. Spillerens standardpoeng for hver rute er summen av standardpoengene for alle kast i den ruta. Dersom alle 0 kjeglene blir veltet i en enkel rute (slik at spilleren får 0 standard poeng for ruta) så vil spillenen få bonuspoeng. For en enkel rute så er reglene som følger: Dersom en spiller velter alle 0 kjeglene med sitt første kast for ruta så får han en strike og ruta avsluttes. Som bonuspoeng så får han summen av antall standardpoeng med sine neste to kast. En strike markeres med x-. Dersom en spiller bruker begge kastene sine for ruta på å velte alle 0 kjeglene, så får han en spare. Som bonuspoeng så får han standardpoengene for sitt neste kast. En spare markeres med A/, hvor A er et siffer som beskriver antall kjegler som ble veltet med det første kastet i ruta. Dersom 9 eller færre kjegler har blitt veltet etter at spilleren har gjort begge kastene sine så får spilleren bare standardpoeng og ruta markeres med AB, hvor A er antall kjegler veltet i det første kastet og B er antall kjegler veltet i det andre kastet. (A + B < 0). Merk at bonuspoengene er inkludert i poengsummen for den ruta hvor spilleren fikk enten en strike eller en spare, selv om verdien av bonusen avhenger av kast som blir gjort i senere ruter. I den siste ruta så er reglene som følger: Til å begynne med så har spilleren to kast i denne ruta. Dersom 9 eller færre kjegler blir veltet med disse to kastene så avsluttes ruta. Ellers (hvis de to første kastene er en spare eller det første kastet er en strike), får spilleren et tredje kast i ruta. Hvis spilleren velter ned alle kjeglene i ett av de tre kastene, så blir kjeglene satt tilbake til den initielle posisjonen før det neste kastet. Poengsummen for den siste ruta er det totale antall kjegler som blir veltet i den ruta (merk at det er ingen bonuspoeng for strike eller spare). Den siste ruta kan ha et av de følgende syv utfallene (hvor A og B er ensiffra tall): v. 3 Bowling /3 April 8 May 3, 0

2 Markering Beskrivelse Rutepoeng xxx tre strikes etter hverandre 30 xxa to strikes, etterfulgt av et kast hvor A kjegler har blitt veltet 0 + A xa/ en strike etterfulgt av en spare, hvor A kjegler ble veltet i det første 0 kastet av sparen xab en strike etterfulgt av to kast, hvor henholdsvis A og B kjegler ble 0 + A + B veltet (A + B < 0) A/x en spare med A kjegler i første kast, etterfulgt av en strike 0 A/B en spare med A kjegler i første kast, etterfulgt av B kjegler veltet i 0 + B siste kast AB- to kast hvor henholdsvis A og B kjegler ble veltet (A + B < 0) A + B Hvert spill er beskrevet som en sekvens av n + tegn. På slutten av hvert spill så kan det totale antall poeng man fikk for hver rute beregnes. For eksempel, for et spill med n = 0 ruter beskrevet som 08x-7//x-x-344/0/x, så er spillerens poeng for hver ramme som følger: Input Ramme Markering Standardpoeng Bonuspoeng Rammepoeng Totalt x / / x x / final 0/x Første line i input inneholder et heltall q ( q ), som betegner antall testsett i fila. De påfølgende 3q linjene beskriver testsettene. Hvert testsett er beskrevet med tre linjer. Den første linja i hvert testsett inneholder heltallet n ( n 0), som betegner antall ruter. Den neste linja inneholder en sekvens med n + tegn som beskriver spillet etter Byteasars notater. Uleselige tegn er erstattet med spørsmålstegn (? ). Den tredje linja inneholder n tall, det totale antall poeng etter hver rute. For hver rute så er enten alle sifrene lesbare, eller så er alle sifrene uleselige. Tall som er uleselige er erstattet med -. Output Programmet ditt skal skrive ut q linjer, én linje per testsett i samme rekkefølge som de er gitt i input. For hvert testsett skal programmet ditt skrive ut ett heltall: det totale antall forskjellige spill som tilsvarer testsettet. To spill regnes som forskjellige hvis og bare hvis de har en forskjell i minst ett av kastene, dvs. at den (n + )-tegns beskrivelsen av spillene er forskjellige. Du kan anta at hvert testsett har minst ett korrekt spill som stemmer overens med det. Du kan anta at du får plass til resultatet i en 64-bit signed integer. Eksempler v. 3 Bowling /3 April 8 May 3, 0

3 0 08x-7//x?x-3??/??? x-x-3?/ Forklaring av eksemplene: I det første eksempelet, i ramme etter x en, så må neste tegn være -. I ramme 8 så fikk spilleren 8 poeng totalt. Det er dermed 9 muligheter for hvordan han kunne oppnå denne summen: 0 + 8, + 7,..., Det ble ikke gitt noen bonus poeng i ramme 9. Derfor kan det ikke ha blitt gitt noen poeng for det første kastet i den siste ruta. For å få 0 poeng i den siste ruta så må spilleren dermed ha fått først en spare etterfulgt av en strike med det siste kastet. Det er dermed 9 forskjellige gyldige spill som stemmer overens med input data. I det andre testsettet så vil alle tegn fra 0 to 9 stemme overens med input data. Ekstra eksempeltester: I konkurransesystemet kan du finne ekstra eksempeltester med flere eksempeltester med n =. Grading Subtask Begrensninger (i hvert testsett Poeng det er maksimalt seks? tegn i input sekvensen 6 svaret er maksimalt ingen spillbeskrivelse med noen av tegnene x eller / vil stemme overens med input 6 data 4 input sekvensen slutter med 00- (dvs. spilleren fikk 0 poeng i siste rute), og de siste 3 min(3, n) rute-poengsummene gitt i den tredje linjen av testsettene vil alle være - ingen begrensninger 8 v. 3 Bowling 3/3 April 8 May 3, 0

4 Oppgave: EDI Editor norwegian BOI 0, dag. Tilgjengelig minne: MB Byteasar er en programmerer som jobber med et revolusjonerende program for teksteditering. I editeringsprogrammet er det to typer operasjoner: en for å redigere tekst, og den andre for angre tidligere operasjoner. En av de innovative funskjonene til editeringsprogrammet er en flernivå angreoperasjon. Den fungerer som følgende. Vi sier at redigeringsoperasjoner har nivå 0. En angreopersjon av nivå i (for i =,,...) angrer den siste operasjonen med nivå som på det meste er i og som ikke er angret. For eksempel, en operasjon med nivå kan bare angre redigeringsoperasjoner. En angreoperasjon med nivå kan angre redigeringsoperasjoner, samt angreoperasjoner med nivå (men ikke angreoperasjoner som har høyere nivå) Mer formelt, hver av de allerede utførte operasjonene kan være i en av to forskjellige tilstander: aktiv eller angret. La X være en av operasjonene. Rett etter å ha utført operasjonen X, så er den i tilstanden aktiv. Hvis X er en angreoperasjon med nivå i, så finner vi den nyligste operasjonen som er i tilstanden aktiv og som har nivå i eller lavere (betegn den med X ) og endrer tilstanden av operasjonen X til angret. Hvis X også er en angreoperasjon, må vi endre tilstanden til aktiv på operasjonen som X hadde angret (for eksempel X ). Vi fortsetter på samme måte: når tilstanden til en angreoperasjon X j som tidligere har angret en operasjon X j+ endres, må vi også endre tilstanden til operasjonen X j+ (som selsvagt kan resultere i endret tilstand på flere operasjoner). Hele kjeden med endringer blir stoppet når en redigeringsoperasjon blir nådd. For enkelhetens skyld, det nåværende innholdet av teksten i programmet vil være betegnet med et enkelt heltall s, kalt editortilstanden (er 0 på starten). Hver redigeringsoperasjon betegner editortilstanden den produserer. Editortilstanden avhenger av den siste redigeringsoperasjonen som er i aktiv tilstand. Hjelp Byteasar ved å skrive et program som holder styr på editortilstanden. La oss se dette i aksjon: den følgende tabellen viser noen operasjoner utført av Byteasar og editortilstanden etter å utført hver av dem. Symbolet E s betegner en redigeringsoperasjon som endrer på editortilstanden til s, og symbolet U i betegner en angreoperasjon med nivå i. Operasjon E E E U U U 3 E 4 U U U E Editortilstand Først utfører Byteasar tre redigeringsoperasjoner. Editortilstanden ble endret fra 0 til, så til, og til slutt til. Deretter utførte han to angreoperasjoner med nivå, som angret operasjonene E og E (endret tilstanden på de til angret). Editeringstilstanden ble dermed satt tilbake til. Den neste angreoperasjonen med nivå 3 angret den forrige operasjonen U (endret tilstanden til angret), noe som igjen førte til at operasjonen E ble gjenopprettet (endret tilstand tilbake til aktiv). Som følge av dette ble editortilstanden igjen satt til. Operasjonen U angret operasjonen E 4, operasjonen U gjorde at E ble angret igjen, den siste U operasjonen angret operasjonen E, og den siste operasjonen er E. Input Den første linjen med input innholder et positivt heltall n, antall operasjoner utført av Byteasar. De neste n linjene innholder beskrivelser av operasjonene, en per linje, hver er et heltall a i ( n a i n, a i 0). Dersom a i > 0, så betegner den en redigeringsoperasjon som endrer redigeringstilstanden til a i. Hvis a i < 0, så blir det betegnet en angreoperasjon med nivå a i. Du kan anta at for hver angreoperasjon vil det være en aktiv operasjon med lavere nivå enn angreoperasjonen. v. 3 Editor / April 8 May 3, 0

5 Output Programmet ditt skal skrive ut n linjer. Den i-ende linjen skal innholde et heltall som betegner redigeringstilstanden etter å utført de første i operasjonene fra inputten. Eksempler Grading Subtask Begrensninger Poeng n n og kun operasjonene E i og U blir brukt 3 n og kun siste tall i sekvensen trenger å stemme (men de første n 8 tallene må være heltall fra 0 til n) 4 n v. 3 Editor / April 8 May 3, 0

6 Oppgave: NET Network norwegian BOI 0, dag. Tilgjengelig minne: 6 MB Myndighetene i Byteland har bestemt at det er på tide å koble landet til Internett, slik at alle innbyggerne kan delta i programmeringkonkurranser og se på søte kattevideoer. Da de skulle bygge stamnettet i landet, ga de oppgaven med å koble sammen alle n datamaskinene i Byteland til firmaet Internett Optimistene Inc. Koblingene ble laget mellom par av datamaskiner på en slik måte at alle datamaskiner er koblet sammen med en sekvens av koblinger. Byteland er på ingen måter et rikt land. For å minimere kostnadene, så ble nettverket bygget med en trestruktur (det er altså nøyaktig n direkte koblinger mellom datamaskinene). Altfor sent innså man at dette medførte en stor ulempe. Hvis en av koblingene blir ødelagt, så vil nettverket bli delt og noen av datamaskinene vil ikke kunne kommunisere med hverandre. For å øke feiltoleransen til nettverket, så er det blitt bestemt at nettverket i hvertfall skal kunnne tolerere at én kobling kan bli ødelagt. Din oppgave er hjelpe Internett Optimistene Inc. med å forbedre nettverket på billigst mulig måte. Gitt nettverksstrukturen til Byteland (altså hvilke n par med datamaskiner som er koblet direkte sammen), finn det minste tallet med koblinger som man trenger å legge til slik at nettverket fortsatt er sammenkoblet dersom en av koblingene blir ødelagt. Input Den første linjen med input er et positiv heltall n (n 3), antallet datamaskiner i Byteland. For enkelhetens skyld er alle datamaskinene nummerert fra til n. Hver av de påfølgende n linjene innholder et par med heltall, a og b ( a, b n, a b) som betegner hvilke datamaskiner som er koblet direkte sammen. Output I den første linjen med output skal programmet ditt skrive et heltall k, det minste antallet med koblinger som må legges til nettverket. I de hver av de påfølgende k linjene skal programmet ditt skrive et par med heltall, a og b ( a, b n, a b) som betegner tallene til datamaskinene som skal kobles sammen. Koblingene kan skrives i hvilken som helst rekkefølge. Hvis det er mer enn en løsning, så kan programmet ditt skrive ut hvilken som helst av de. v. 3 Network / April 8 May 3, 0

7 Eksempler Grading Subtask Begrensninger Poeng n 0 8 n n v. 3 Network / April 8 May 3, 0

Oppgave: FIL File Paths

Oppgave: FIL File Paths Oppgave: FIL File Paths norwegian BOI 2015, dag 2. Tilgjengelig minne: 256 MB. 1.05.2015 Byteasar liker å leve farlig. Han løper med saks, leverer løsninger til konkurranseproblemer uten å teste med testdata,

Detaljer

Tannhjul. Input. Output. Norsk Informatikk Olympiade 2. runde 2015/2016. Oppgavenr.: 1

Tannhjul. Input. Output. Norsk Informatikk Olympiade 2. runde 2015/2016. Oppgavenr.: 1 Oppgavenr.: 1 Tannhjul Tannhjul Sondre er meget glad i sjokolademelk. Så selvfølgelig har han en 1000L tank i kjelleren. Siden han drikker så mye er det stadig et problem at tanken blir tom, og Sondre

Detaljer

I Spillet Mathable er et spill basert på matematiske likninger som må være dannet på spillbrettet. For å gjøre dette, må spillerne gjøre bruk av et spillebrett med normale ruter(hvite), ruter med en begrensning

Detaljer

INF109 - Uke 1b 20.01.2016

INF109 - Uke 1b 20.01.2016 INF109 - Uke 1b 20.01.2016 1 Variabler Et program er ikke til stor hjelp hvis det er statisk. Statisk betyr at programmet bare bearbeider faste data som er lagt inn i programkoden. For å gjøre programmer

Detaljer

TRINN 1: HVA ER ET SET?

TRINN 1: HVA ER ET SET? ALDER: 8 år til voksen ANTALL SPILLERE: 2 til 4 FORMÅL MED SPILLET: Å skåre flest poeng. Skår poeng ved å lage SET med din terning og de som allerede er på brettet. Jo flere SET du lager, jo flere poeng

Detaljer

Mattespill Nybegynner Python PDF

Mattespill Nybegynner Python PDF Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.

Detaljer

TDT4165 PROGRAMMING LANGUAGES. Exercise 02 Togvogn-skifting

TDT4165 PROGRAMMING LANGUAGES. Exercise 02 Togvogn-skifting TDT4165 PROGRAMMING LANGUAGES Fall 2012 Exercise 02 Togvogn-skifting Problembeskrivelse Du er sjef for å skifte vognene til et tog. Vi antar at hver vogn selv har en motor og at toget ikke har noe lokomotiv.

Detaljer

SQUARE Systemspill for online spill på hest Brukerveiledning

SQUARE Systemspill for online spill på hest Brukerveiledning SQUARE Systemspill for online spill på hest Brukerveiledning Innholdsfortegnelse INNLEDNING... 3 BETINGELSER... 4 HOVEDSIDEN... 5 VELG SPILLE OBJEKT... 6 SPILLETYPE... 6 SYSTEM... 6 BANE... 6 LØPSDATO...

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

Crosswords and More. Av LäraMera Program AB og Leripa AB. Kristina Grundström, illustratør Richard Hultgren, programmerer

Crosswords and More. Av LäraMera Program AB og Leripa AB. Kristina Grundström, illustratør Richard Hultgren, programmerer Crosswords and More Av LäraMera Program AB og Leripa AB Pedagogikk og manus Grafikk Programmering Engelsk stemme Musikk Norsk Versjon Ann Truedsson, spesialpedagog Kristina Grundström, illustratør Richard

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

BRUKERMANUAL FOR PDA HP ipaq 614C

BRUKERMANUAL FOR PDA HP ipaq 614C BRUKERMANUAL FOR PDA HP ipaq 614C for bruk til e-budbok Rev. 3.02 Ved mottakelse av PDA, skal PDA'en være innstilt med SIM-kort og korrekte innstillinger for tilkobling til mobilt nettverk. Internettknapp

Detaljer

Installasjonsveiledning DDS-CAD 7.3

Installasjonsveiledning DDS-CAD 7.3 Installasjonsveiledning DDS-CAD 7.3 - Installasjonsveiledning versjon 7.3 Vær oppmerksom på: USB-dongler ikke skal plugges i maskinen før programmet er installert. Før installasjonen: Dette hefte beskriver

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2014

TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Øving 10 Frist: 2014-04-11 Mål for denne øvinga:

Detaljer

Stigespill. Input. Output. Oppgave: Stigespill Oppgavenr.: 1. Norsk Informatikk Olympiade 2. runde 2014/2015

Stigespill. Input. Output. Oppgave: Stigespill Oppgavenr.: 1. Norsk Informatikk Olympiade 2. runde 2014/2015 Stigespill Oppgavenr.: 1 Stigespill Martin og Lise har begynt å spille Stigespillet. Spillbrettet består av 100 ruter nummerert fra 1 til 100. Hver spiller har en brikke hver som begynner på rute 1. Spillerne

Detaljer

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller.

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller. "FBI-spillet" ------------- Et spill for 4 spillere av Henrik Berg Spillmateriale: --------------- 1 vanlig kortstokk - bestående av kort med verdi 1 (ess) til 13 (konge) i fire farger. Kortenes farger

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017 Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 13. november 2014 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring

Detaljer

Intervaller. Input. Output. Eksempler. Norsk Informatikk Olympiade Finale 2015/2016. Oppgavenr.: 1

Intervaller. Input. Output. Eksempler. Norsk Informatikk Olympiade Finale 2015/2016. Oppgavenr.: 1 Oppgavenr.: 1 Intervaller Intervaller Peter Sørthug er en ivrig langrennsløper. Han deltar spesielt mye i intervallstart. Ved intervallstart går hver løper ut alene med et fast tidsintervall mellom dem.

Detaljer

Installasjonsveiledning. DDS-CAD ByggMester

Installasjonsveiledning. DDS-CAD ByggMester Installasjonsveiledning DDS-CAD ByggMester Installasjonsveiledning versjon 7 Vær oppmerksom på: USB-dongler ikke skal plugges i maskinen før programmet er installert. Før installasjonen: Dette hefte beskriver

Detaljer

INF2270. Input / Output (I/O)

INF2270. Input / Output (I/O) INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

IN uke 1. Komme i gang med programmering

IN uke 1. Komme i gang med programmering IN1000 - uke 1 Komme i gang med programmering Et lite oppdrag i bakgrunnen Under pultene på bakerste rad er det klistret post-it lapper med to tall skrevet på Regn ut summen av to nederste tall, skriv

Detaljer

Generell brukerveiledning for Elevportalen

Generell brukerveiledning for Elevportalen Generell brukerveiledning for Elevportalen Denne elevportalen er best egnet i nettleseren Internett Explorer. Dersom du opplever kompatibilitets-problemer kan det skyldes at du bruker en annen nettleser.

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Opus Systemer AS 2013

Opus Systemer AS 2013 2013 2 Opus Dental 7.0 Innholdsfortegnelse Kapittel 1 SMS - funksjonen 3 1.1... 3 Innstillinger for SMS i firmakortet 1.2... 4 Opus SMS Service Manager 1.3... 6 Personaliakortet til pasienten 1.4 7 SMS...

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

Installasjonsveiledning. DDS-CAD Arkitekt & Konstruksjon 7

Installasjonsveiledning. DDS-CAD Arkitekt & Konstruksjon 7 Installasjonsveiledning DDS-CAD Arkitekt & Konstruksjon 7 - Installasjonsveiledning versjon 7 Vær oppmerksom på: USB-dongler ikke skal plugges i maskinen før programmet er installert. Før installasjonen:

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

Forenklet bridge (f-bridge)

Forenklet bridge (f-bridge) Forenklet bridge (f-bridge) Marianne Harding og Sven-Olai Høyland 14. mai 2007 Dette ble først skrevet i forbindelse med bridgekurs for barn i alderen 9 13 år, men vi tror deg egner seg som en introduksjon

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Klargjør for dashbord i it s learning

Klargjør for dashbord i it s learning Klargjør for dashbord i it s learning Dette brevet gjelder KUN de av våre kunder som ikke allerede har aktivisert dashbordet for sin site. Kjære kunde! It s learning jobber stadig med å forbedre læringsplattformen.

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet

Detaljer

INSPERA - brukerveiledning for student skoleeksamen

INSPERA - brukerveiledning for student skoleeksamen INSPERA - brukerveiledning for student skoleeksamen Oppdatert 20. januar 2015 Pålogging Du logger deg på via uia.inspera.no (med vanlig UiA-brukernavn og passord): 1 Din oversikt over prøver og eksamener

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

5. Brukerveiledning. Experior - rich test editor for FitNesse -

5. Brukerveiledning. Experior - rich test editor for FitNesse - 5. Experior - rich test editor for FitNesse - 5.1. Forord Denne brukerveiledningen gir en oversikt over Experiors funksjonalitet og hvordan denne kan benyttes. Den kan gjerne leses i sammenheng med produktdokumentasjonen.

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Allment. Poengserie er en funksjon du finner i Ruter for å slå sammen resultatet i flere turneringer. Det kan eksempelvis dreie seg om:

Allment. Poengserie er en funksjon du finner i Ruter for å slå sammen resultatet i flere turneringer. Det kan eksempelvis dreie seg om: er en funksjon du finner i Ruter for å slå sammen resultatet i flere turneringer. Det kan eksempelvis dreie seg om: Klubbmesterskap over flere kvelder Sommerserie der eksempelvis de fem beste resultatene

Detaljer

Nytt i GK96 ved oppdatering til versjon. 2.0

Nytt i GK96 ved oppdatering til versjon. 2.0 Nytt i GK96 ved oppdatering til versjon. 2.0 En del nye funksjoner er lagt inn i denne oppdateringen av GK96 samt rettet kjente feil som er rapportert sesongen 2003-2004. Følgende moduler har fått ny funksjonalitet.

Detaljer

Moro med regning 3. 4. trinn 90 minutter

Moro med regning 3. 4. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med regning 3. 4. trinn 90 minutter Moro med regning er et skoleprogram hvor elevene får bruke sin egen kropp til utforsking av tall-området 1 100, samt å addere

Detaljer

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000 Drosjesentralen I-120: Obligatorisk oppgave 2, 2000 Frist Mandag 20. November 2000 kl.10:00, i skuff merket I120 på UA. Krav Se seksjon 4 for kravene til innlevering. Merk krav om generisk løsning for

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

OFFENTLIG-NØKKELKRYPTOGRAFI

OFFENTLIG-NØKKELKRYPTOGRAFI OFFENTLIG-NØKKELKRYPTOGRAFI S. O. SMALØ Abstract. I dette notatet, som skal inngå som pensum i etterog viderutdanningskurs i datasikkerhet, vil vi gi en kort innføring i oentlig-nøkkel-kryptogra med illustrasjoner

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2015 2016 1. runde Sponset av Uke 46, 2015 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Brukerveiledning - secure.nhh.no og secure.privnett.nhh.no

Brukerveiledning - secure.nhh.no og secure.privnett.nhh.no Brukerveiledning - secure.nhh.no og secure.privnett.nhh.no NHH tilbyr ansatte og studenter ekstern tilgang til NHH-interne ressurser slik som M-området, felles filområder, bibliotektjenester m.m. Tjenesten

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

PDF Expert for politikere

PDF Expert for politikere PDF Expert for politikere Brukerveiledning Innhold Oversikt:... 2 Hvordan fungerer Synk?... 2 Sette opp Synk... 3 Navigere og søke... 4 Markere og notere... 4 Andre tips.... 5 Notatverktøy... 6 Legge til

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

Algoritmer og datastrukturer A.1 BitInputStream

Algoritmer og datastrukturer A.1 BitInputStream Vedlegg A.1 BitInputStream Side 1 av 8 Algoritmer og datastrukturer A.1 BitInputStream A.1 BitInputStream A.1.1 Instansiering BitInputStream har fire konstruktører og to konstruksjonsmetoder (eng: factory

Detaljer

MAT1030 Plenumsregning 1

MAT1030 Plenumsregning 1 MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte

Detaljer

Import av varer fra Excel

Import av varer fra Excel Import av varer fra Excel Varefiler fra Excel til import i format Komplett. Page 2 of 10 OM DETTE DOKUMENTET VERSJONSHISTORIKK Versjon Beskrivelse Dato Hvem 1.0 Import av varer fra Excel 07.12.2012 AaGH

Detaljer

Et artig spill med smarte koblinger (A Curious Game of Clever Connections )

Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) SET CUBED Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) Instruksjoner Para instrucciones en Español por favor visiten www.setgame.com Pour des instructions en Français veuillez

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INSPERA - brukerveiledning for student skoleeksamen

INSPERA - brukerveiledning for student skoleeksamen INSPERA - brukerveiledning for student skoleeksamen Pålogging Du logger deg på via himolde.inspera.no (med vanlig Feide-pålogging): 1 Din oversikt over prøver og eksamener Så snart du har logget på, kommer

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab 1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Et lite oppdrag i bakgrunnen

Et lite oppdrag i bakgrunnen Et lite oppdrag i bakgrunnen Under pultene på bakerste rad er det klistret post-it lapper med to tall skrevet på Regn ut summen av to nederste tall, skriv denne summen under de andre tallene, og send lappen

Detaljer

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030 MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk

Detaljer

BRUKERHÅNDBOK FOR UNIVERSITETET I OSLO. (Versjon 23.4.2012)

BRUKERHÅNDBOK FOR UNIVERSITETET I OSLO. (Versjon 23.4.2012) BRUKERHÅNDBOK FOR UNIVERSITETET I OSLO (Versjon 23.4.2012) Innholdsfortegnelse Kort om håndboken... 3 Om Ephorus... 4 1. Logge inn... 4 2. Mine dokumenter... 5 3. Laste opp... 8 4. Rapporter... 9 5. Innstillinger...

Detaljer

Viktig informasjon ang. lagringsområder

Viktig informasjon ang. lagringsområder Viktig informasjon ang. lagringsområder Ved overgang fra Windows XP til Windows 7: Spørsmål ang. hjemmeområdet på nettverket og mappen Mine dokumenter Spesielle hensyn for bærbare maskiner Hvor er det

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk

Detaljer

Lablink 2.x brukerveiledning

Lablink 2.x brukerveiledning Lablink 2.x brukerveiledning Innledning Lablink er et program for å motta bestillinger som dine kunder gjør via Netlifes bestillings tjenester. Når en bestilling er gjort av en kunde, vil ordren være tilgjengelig

Detaljer

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON Mamut datax Software DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON Mamut datax Software DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN Mamut datax Software INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 4.1.1300 DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN OPPDATERE DIN VERSJON AV MAMUT DATAX SOFTWARE Mamut Kunnskapsserie, nr. 2-2004

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Skript I denne øvinga skal vi lære oss å lage skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Dette er noe vi kommer

Detaljer

IKT-BASERT EKSAMEN BRUKERVEILEDNING FOR KANDIDAT

IKT-BASERT EKSAMEN BRUKERVEILEDNING FOR KANDIDAT IKT-BASERT EKSAMEN BRUKERVEILEDNING FOR KANDIDAT Versjon 1.16 Utdanningsdirektoratet 12. mars 2015 Innhold 1. Innlogging... 2 2. Innlogging via FEIDE for de skoler bruker dette... 2 3. Identifisering...

Detaljer

Humanware Companion.

Humanware Companion. Humanware Companion. Humanware Companion er et Windows basert program. Dette brukes sammen med Victor Reader Stream eller ClassMate avspilleren for å organisere dine bøker, musikk, Podcast, innspille lydnotater

Detaljer

MULTICOM 112. Muntlig innvirkning A1: Ingen krav

MULTICOM 112. Muntlig innvirkning A1: Ingen krav MULTICOM 112 Brukerveiledning Formål Denne MULTICOM112 CD-ROM har som mål å hjelpe alarmsentralpersonell med å utvikle grunnleggende språkkunnskaper til det nivået hvor de kan identifisere et fremmende

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk

Detaljer

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13 TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får

Detaljer

Elevene skal bygge en mekanisk målskårer etter veiledningen i LEGO WeDo -programvaren. De skal skyte på en papirball med den mekanisk målskåreren.

Elevene skal bygge en mekanisk målskårer etter veiledningen i LEGO WeDo -programvaren. De skal skyte på en papirball med den mekanisk målskåreren. Lærerveiledning - mekanisk målskårer Elevene skal bygge en mekanisk målskårer etter veiledningen i LEGO WeDo -programvaren. De skal skyte på en papirball med den mekanisk målskåreren. De skal anslå/komme

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 18. august 2011 Eksamenstid 0900 1300 Sensurdato 8. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014 Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

Mac OS X 10.6 Snow Leopard Installerings- og klargjøringshåndbok

Mac OS X 10.6 Snow Leopard Installerings- og klargjøringshåndbok Mac OS X 10.6 Snow Leopard Installerings- og klargjøringshåndbok Les dette dokumentet før du installerer Mac OS X. Det inneholder viktig informasjon om installeringen av Mac OS X. Systemkrav Hvis du skal

Detaljer

Brukerveiledning www.f3cnorge.info

Brukerveiledning www.f3cnorge.info Brukerveiledning www.f3cnorge.info Pålogging: Etter at du har logget på ser du en Menyblokk til venstre med brukernavnet ditt. I blokken finner du det du har tilgang til å gjøre på site n. Generelt om

Detaljer

LO118D Forelesning 4 (DM)

LO118D Forelesning 4 (DM) LO118D Forelesning 4 (DM) Mer funksjoner + følger 28.08.2007 1 Funksjoner 2 Følger og strenger Funksjoner En funksjon f fra X til Y sies å være en-til-en (injektiv) hvis det for hver y Y er maksimalt én

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Om oppgaveteksten på noe punkt er uklar eller upresis, kan du gjøre egne presiseringer. Formulér i så fall disse tydelig i oppgavebesvarelsen din.

Om oppgaveteksten på noe punkt er uklar eller upresis, kan du gjøre egne presiseringer. Formulér i så fall disse tydelig i oppgavebesvarelsen din. UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 211 Programmeringsspråk Eksamensdag: 6. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 9 sider. Vedlegg: Ingen

Detaljer

Brukerdokumentasjon FrP «Min side»

Brukerdokumentasjon FrP «Min side» Brukerdokumentasjon FrP «Min side» INNHOLDSFORTEGNELSE MIN SIDE 3. Min side 2 3.1. Rediger mine opplysninger 3 3.2. Betal kontingent 4 3.3. Verv et medlem 5 3.4. Meld på arrangement 6 4. Diverse 7 5. Notater

Detaljer