Formel ark Mas

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Formel ark Mas130-2013"

Transkript

1 Formelark MAS0 0-v.nb Formel ark Mas0-0 Konstanter og konverterings faktorer N 0 = 6.0*0 mol - = Avregados tall k = 8.60*0-5 ev/k fi.807*0 - J/K = Boltzmanns konstant R= 8. J/(mol*K) fi.987 cal/(mol*k) = molar gass konstant u =.66*0 - g = atomær masse til gram K = C+7 = ( F-)/.8 ln x =.0 log 0 x Krystalinske materialer og krystallstrukturer (Kap ) Bravis enhetsceller; Kubisk (Enkel, romsentrert (BCC) og flatesentrert (FCC)), Heksagonal (HCP), Tentagonal (enkel og romsentrert), Ortorombisk (Enkel, grunnflatesentrert, flatesentrert og romsentrert), Romoendrisk, Monoklin (enkel og bunnflatesentrert) og Trikin. BCC - Body centerd Cubic - atom Radius (R) og atomplan avstand (a) forhold: R = Antall Atomer: atom = 8 * 8 + a s.9 Atomplan avstand (H,K,L): d hkl = a h +k +l s.0 Volum BCC celle = V BCC = a Volum atom i BCC celle: Med R : V BCC-Atom = J pr N fi Med a : V BCC-atom = p a 8 FCC - Face centerd Cubic - atom Radius (R) og atomplan avstand (a) forhold: R = a Antall Atomer : atom = 8 * * Atomplan avstand (H,K,L): d hkl = a h +k +l s.0 Volum FCC celle = V FCC = a Volum atom i FCC celle: Med R : V FCC-Atom J pr N fi Med a : V FCC-atom = p a Formelark MAS0 0

2 Formelark MAS0 0-v.nb HCP - Hexagonal close-packed Antall atomer: 6 atom = * 6 + * + Antall atomer med senter i basalplan: atom = 6 * + Volum HCP: VHCP = Hareal basel HhøydeL = H a SinH60 LL c Basalplan Areal: A = s.95 a Gitterkonstant = a Ideelt c/a forhold =.6 Resriproke verdier til tegning av plan Index Resriprok HcL a a a a a a J c N Tetthet Husk å regne om SI enheter. Atompakningstetthet: PV = Volum Atomer Volum boks s.9 Volum tetthet per m i gram:. Masse pr celle = Hatom pr.cellel Hmasse pr atom HgêmolLL. Finn tetthet : PV = HAvregados tall=no L masse pr.celle Volum pr. celle=a s. Planar tetthet: Pp = Antall atomer med senter i plan areal plan s. Linær tetthet: Pl = Antall atom diameter i linje lengde på linje s. Formelark MAS0 0

3 Formelark MAS0 0-v.nb Volumendring på tvers av strukturer DV % = VResultat -VOriginalt VOriginalt Vresultat celle = - Voriginal Celle antall atom antall atom Voriginal Celle * 00 % antall atom I a BCCflHCP Eks: VHCP -VBCC VBCC s.5 SinH60 LM c = 6 - a a Crystaline defekter (kap ) Interstitielle tomrom i kube Radius til interstitiellt tommrom med origo i kordinatene (x,y,z) c = Hx al + Hy al + Hz al fl c = r= c-r Hx * al + Hy * al + Hz * al Eksempel; Finnradius til det interstitielle tomrommet i koordinatene I,, 0M a a c = I M + I M + H0 al fl c = a a I M + I M r=c-r Diffusjon (kap 5) Vakanser i likevekt ved gitt temperatur nv N -Ev = C kt s.88 nv = Antall vakanser pr m av metall N = Totalt antall atomer pr m av metall Ev = Aktiveringsenergi til å lage vakanser (ev) T = Absolutt temperatur, Kelvin (K) k = Boltzmanns konstant: 8.60 * 0-5 ev/k C = Konstant (anta om ikke annet oppgitt (ref s.88)) Antall atom pr m av metall N= N0 * relement atom masse element s.89 r = massetettheten til element (tabell s.08) N0 = Avogadros nummer: 6.0 * 0 mol- Formelark MAS0 0

4 Formelark MAS0 0-v.nb Arrhenius-ligningen -Q -Q D = D 0 RT også sett som Reaksjons rate = C RT D= Reaksjonsrate Q=Aktiveringsenergi J mol fi cal mol R= molar gasskonstant: 8. J Hmol*KL fi.987 cal T = Absolutt temperatur (K) D 0 =rate konstant, uavhengig av temperatur Arrhenius-ligningen i logaritmeform Q Hmol*KL log 0 D = log 0 D 0 - fi ln D = ln D 0 - Q.0 RT RT.0 = konverteringsfaktor fra ln Eksempel s.05 s.90 Ficks første diffusjonslov J = -D dc dx s.9 J = Flux eller netto strøm av atomer I atom m s M D = diffusiviteten / atomisk ledningsevne / diffusjons konfiskent J m s N dc dx atom = konsentrasjons gradient I * M m m Ficks andre diffusjonslov Orginal dc x dt dc x dt dc x dx = d dx JD dc x dx N s.97 = konsentrasjonsendring i x-retning over tid t = Konsentrasjonsendring i x-retning over avstand x D = Diffusjons konstant for diffusjonerende element Løsning C s -C x C s -C 0 = erfk x Dt O s.97 C s = Overflatekonsentrasjon av element i gassen som diffuferer inn i overflaten C o = Opprinnelig innhold av diffunderende element i objekt C x = Konsentrasjon av element ved distanse x på tidspunkt t x = distanse fra overflaten (m) t = tid (s) D= Diffusivitet / reaksjonsrate ( passer til Arrhenius ligning) Løse ut erf verdier s.00 Tabell s.97. erf HzL = y ñ z = x. erf z ª z y! ª x! y ª x y Ø ª x Ø Sett in verdier fra tabell før og etter kjente fl y - y! y Ø - y! = x - x! x Ø -x! Løs ut x Formelark MAS0 0

5 Formelark MAS0 0-v.nb 5 Mekaniske egenskaper for metaller I (kap 6) Strekk test Lengdetøyning (e L L: e l = L-L 0 e fi e L l = - t 0 v Lengdetøyning s.7 Tvertøying (e t ) : e t = d-d 0 d 0 I en sylinder fi e t = b-b 0 b 0 I ett rektangelêkvadrar fi e t = -v*e l Poissons tall (v): v = - e t e l s.8 Tabell for poissons tall: Se Appendix.6 s.99 Prosentvis endring i tversnitt: DA Tversnitt = DA A 0 *00 % = a b-a 0 b 0 a 0 b 0 *00 % Gjennomsnittelig spenning i x retning: P = s x e x s. P=E= Elastitetsmodul (Pa) s x = Spenning i x retning (Pa) e x = Tøyning i x retning Tabell for Elastitetsmodul: Se Appendix.5 s.990 s.6 Elsatitetsmodul: E = s x e x s. Belastningskraft: s = P A tverr s.9 Ø s Sann = P A Sann spenning Ø s Ingeniør = P A 0 Ingeniør spenning Flyte grense (yield strength) s. US= 0.% etter plastisk deformasjon har påbegynt, dvs etter 0.% permanent forlengelse av stav Beregn sikkerheten mot flyting: N = s y s Ref.: Morten Ebbesen N = faktor for hvor mange ganger din spenning (s) går opp i flyte grensen s y = Flyte grense for metallet (se Appendix. s.987) s = Spenning påført ditt komponent Hardhetstest s. Brinell : BHN = P pd D- D -d D = Kulediameter d = avtrykk diameter Vickers: VHN =.7 P d d= gjennomsnittelig avtrykksdiameter Knoop : KHN =. p l = avtrykks lengde l microhardness Rockwell: Se side, Tabell 6. Formelark MAS0 0

6 Formelark MAS0 0-v.nb 6 Brudd (kap 7) Brudd styrke tabell se side 9 og Apendix.0 s. 005 Brudd styrke ved kant rift K IC = Y s f p a s.9 Eq 7. K IC = Brudd styrke (SI = MPa m ) s f = brudd spenning (SI = MPa) også sett som s y = flytespenning (spenning før det blir brudd) a = revn lengde fra kant (eller halv invendig revn lengde) (SI = m) Y = Geometri faktor / konstant Spennings intensitet ved kant av rift K I = Y s p a s.9 Eq 7. K I = Spennings intensitet ved kant av rift (SI = MPa m ) s = påført normal spenning (SI = MPa) a = revn lengde fra kant (eller halv invendig revn lengde) (SI = m) Y = Geometri faktor / konstant Tretthetsbrudd (fatigue) Beregn spenningsvidde (Stress range): s r = s max - s min s.98 Eq 7. s r = s a Eq 7.5 Beregn spennings amplituden: s a = s r = s max- s min s.98 Eq 7.5 Beregn middelsspenning (mean stress): s m = s max+ s min s.98 Eq 7. Beregn spenningsforhold: R = s min s max s.98 Eq 7.6 Beregn s max og s min på s m og s a : s max = s m + s a Maks spenning s min = s m - s a Min spenning Jern og stål produksjon (kap 9) Faser i Fe - Fe C s.79 a-ferritt: Ë BCC struktur jern Ë Blandingstoleranse for karbon: Ë Maks 0.0% ved 7 C Ø Min 0.005% ved 0 C Austenitt (g): Ë FCC struktur g-jern Ë Blandingstoleranse for karbon: Ë Maks.08% ved 8 C Ø Min 0.8% ved 7 C Ë Ved rask kjøling skapes Martensitt (transformasjon start = M s, slutt = M f ) Formelark MAS0 0

7 Formelark MAS0 0-v.nb 7 Cementitt (Fe C): Ë 6.67% C og 9.% Fe Ë Hardt og sprøtt d-ferritt: Ë BCC struktur d-jern med større gitterkonstant enn a-ferritt Ë Blandingstoleranse for karbon: Ë Maks 0.09% ved 65 C Vektprosent av faser ved gitte temperaturer og karboninnhold C tilstand Wt tilstand + C tilstand Wt tilstand = C tota Ï Wt tilstand + Wt tilstand = 00 % C tilstand = karbon maks til gitte tilstand ved gitte temperatur Wt= Masseprosent av gitte tilstand C total = carbon innholdet i stålet 00%= ved desmial regning Eksempel: Vanlig karbonstål med 0.65% C kjøles langsomt fra 950 C to like over 7 C Hva er vektprosenten Austentitt (g) og ferritt (a) i dette stålet? C a = 0.0%, C g =0.8%, C=0.65% (00%= ved desmial regning) C a Wt a + C g Wt g = C Ï Wt a + Wt g = 00 % Ñ Wt a = 00 % - Wt g C a I - Wt g M + C g Wt g = C Ñ Ñ Wt g = C-C a* C g -C a Ñ Wt a = - Wt g Wt g = * =0.808=80.8% fl Wt a = 9. % Kompositter (kap ) Vektprosent og tetthet i kompositter Beregne vektprosent fiber og matrise:. Finn mengde volum av hvert komponent om prosent oppgitt ta utgangspunkt i. Finn masse av hvert komponent Tettheten fl masse: r = m V fl m = r V s.657. Finn total masse av kompositt M c = m f + m m s.657 m f =fibermasse, m m= matrisemasse. Vektprosent: Wt % = m x M c *00 % m x = m f Í m m s.657 Tetthet kompositt: r c = M c V Formelark MAS0 0

8 Kraft: P c = P f + P m s.658 Eq. e c = e f = e m Eq.5 Spenning: s c = s f = s m s.66 Eq.0 Tøyning: e c = e f + e m Eq. s c =s f V f +s m V m S.659 Eq. Om "V f og V m er fraksjoner kan man skrive: e c = e f v f + e m v m Eq. Formelark MAS0 0-v.nb 8 Isotøyning (relaterende tøyning) ved kraft i fiberretning (V og A = fraksjoner) Utledning av elastitetsmodul P = kraft, s = spenning og/eller strekkfasthet, E = elastitetsmodul, A og V = Fraksjoner (eks. % 00 ) Spenning: s = P fl s c A c = s A f A f + s m A m fi s c V c = s f V f + s m V m Eq. Eq. Grunnet like lengder i matrise og fiber kan A byttes ut med V Setter vi A c til kan A og V brukes som fraksjoner av totalareal Ved god relaterende tøyning (Isotøyning) og gode bond mellom kompositt areal kan man annta Elastitetsmodul: E c = E f V f + E m V m ettersom E = s e Eq.7 og s c e c = s f V f e f + s m V m e m Andre relevante formler s = strekkfasthet Faktoren mellom krefter og størrelser i fiber og matrise er like dvs.: P f P m = s f A f s m A m = E f e f A f E m e m A m = E f A f E m A m = E f V f E m V m s.659 Eq.8 Andel tøyning i fiber(kan byttes med matrise eller fiber/matriseforhold): P f P c = E f V f E m V m+e f V f Eq.9 og Eq.8 Isospenning (relaterende spenning) ved normall spenning påført fibrene i parallelt orientert fiberlag. (V og A = fraksjoner) Utledning av elastitetsmodul Anta Hooks lov er valid: e cê f êm = s E cê f êm Eq. fl s E c = s v f E f + s v m E m Eq. fi E c = v f + v m E f E m Eq.5 Antar trykkfeil gr videre gang Elastitetsmodul blir: E c = E f E m V f R m +V m E f Eq..7 Formelark MAS0 0

EKSAMEN I: (MSK200 Materialteknologi) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 4 SIDER + 3 SIDER VEDLEGG

EKSAMEN I: (MSK200 Materialteknologi) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 4 SIDER + 3 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (MSK200 Materialteknologi) DATO: 09.12.2013 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2008 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

Løsningsforslag eksamen TMT4185 ;

Løsningsforslag eksamen TMT4185 ; Løsningsforslag eksamen TMT4185 ; 11.12.13 Oppgave1 a) i) Bindingsenergien E 0 tilsvarer minimumsenergien som finnes ved å derivere den potensielle energien E N mhp r og deretter sette den deriverte lik

Detaljer

EKSAMEN I: (MSK205 Materialmekanikk) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG

EKSAMEN I: (MSK205 Materialmekanikk) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (MSK205 Materialmekanikk) DATO: 09.12.2013 TID FOR EKSAMEN: 3 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator: HP30S,

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269 side 1 av 7 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin Ekstraordinær E K S A M E N I MATERIALLÆRE Fagkode: ILI 1269 Tid: 21.08.01 kl 0900-1200 Tillatte hjelpemidler: Kalkulator

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

E K S A M E N. MATERIALER OG BEARBEIDING Fagkode: ITE 1553

E K S A M E N. MATERIALER OG BEARBEIDING Fagkode: ITE 1553 side 1 av 4 HØGSKOLEN I NARVIK Institutt for bygnings- drifts- og konstruksjonsteknologi Studieretning: Industriteknikk E K S A M E N I MATERIALER OG BEARBEIDING Fagkode: ITE 1553 Tid: 06.06.05 kl 0900-1200

Detaljer

(.675$25',1 5 0$7(5,$// 5( )DJNRGH,/,

(.675$25',1 5 0$7(5,$// 5( )DJNRGH,/, HØGSKOLEN I NARVIK 7HNQRORJLVN$YGHOLQJ 6WXGLHUHWQLQJ$OOPHQQ0DVNLQ (.675$25',1 5 (.6$0(1, 0$7(5,$// 5( )DJNRGH,/, 7LG 7LOODWWHKMHOSHPLGOHU '%.DONXODWRUPHGWRPWPLQQH,QJHQWU\NWHHOOHU VNUHYQHKMHOSHPLGOHU (NVDPHQEHVWnUDYRSSJDYHURJQXPPHUHUWHVLGHULQNOGHQQH

Detaljer

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding.

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding. 7 DIFFUSJON I METALLER (Diffusion in metallic material) Diffusjon er bevegelse av atomer. Diffusjon er nødvendig for eksempel i varmebehandling og i størkning. Mange prosesser er betinget av diffusjonsprosesser.

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 4 SIDER VEDLEGG

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 4 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 17.12.2010 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding.

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding. 7 DIFFUSJON I METALLER (Diffusion in metallic material) Diffusjon er bevegelse av atomer. Diffusjon er nødvendig for eksempel i varmebehandling og i størkning. Mange prosesser er betinget av diffusjonsprosesser.

Detaljer

MATERIALLÆRE for INGENIØRER

MATERIALLÆRE for INGENIØRER Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 11. desember 2013 KLASSE: 13HBIMAS og 12HBIMAS-F TID: 3 timer: KL 13.00 - KL 16.00 EMNEANSVARLIG:

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI Faglig kontakt under eksamen: Øystein Grong/Knut Marthinsen Tlf.:94896/93473 EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI

Detaljer

LØSNINGSFORSLAG EKSAMEN TMT4185 DES

LØSNINGSFORSLAG EKSAMEN TMT4185 DES LØSNINGSFORSLAG EKSAMEN TMT4185 DES. 2011. Oppgave 1 i) Tilnærmet 100% Si ii) Flytende L og fast β med sammensetning på hhv: 12,6wt% Si og 99,83wt%Si. Andeler flytende L og fast primær (proeutektisk) β

Detaljer

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid:

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: Side 1 av 9 Løsningsforslag Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: 09 00-13 00 Oppgave 1 i) Utherdbare aluminiumslegeringer kan herdes ved utskillingsherding (eng.: age hardening

Detaljer

Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet.

Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet. Metall-A 1 Metaller Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet. Kjemisk er metaller kjennetegnet ved at de består

Detaljer

0$7(5,$// 5( )DJNRGH,/,

0$7(5,$// 5( )DJNRGH,/, Side 1 av 7 HØGSKOLEN I NARVIK 7HNQRORJLVN$YGHOLQJ 6WXGLHUHWQLQJ$OOPHQQ0DVNLQ (.6$0(1, 0$7(5,$// 5( )DJNRGH,/, 7LG0DQGDJNO 7LOODWWHKMHOSHPLGOHU '%.DONXODWRUPHGWRPWPLQQH,QJHQWU\NWHHOOHU VNUHYQHKMHOSHPLGOHU

Detaljer

Løsningsforslag TMT 4170 Materialteknologi 1

Løsningsforslag TMT 4170 Materialteknologi 1 1 Løsningsforslag TMT 4170 Materialteknologi 1 Eksamen holdt 16. desember 2003 Oppgave 1: Materialfremstilling. Generelt stoff som kan hentes fra kompendium og forelesning gitt av Prof. Leiv Kolbeinsen.

Detaljer

er at krystallitt eller korn. gitterstrukturen. enhetscelle regelmessighet og symmetri. Henning Johansen side 1

er at krystallitt eller korn. gitterstrukturen. enhetscelle regelmessighet og symmetri. Henning Johansen side 1 KRYSTALL STRUKTUR Metallene kan vi behandle som aggregater (sammenhopning) av atomer. Vi må kunne skjelne mellom gitterstruktur (atomstruktur) og krystallstruktur (kornstruktur). GITTERSTRUKTUR I metaller

Detaljer

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals)

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) 5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) Vi må skille mellom elastisk og plastisk deformasjon av metaller og legeringer. 5.1 Elastisk deformasjon En ytre mekanisk kraft som virker

Detaljer

Høgskolen i Gjøvik 15HBTEKD, 15HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag.

Høgskolen i Gjøvik 15HBTEKD, 15HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE EMNENUMMER: TEK2091 EKSAMENSDATO: 9. desember 2015 KLASSE: 15HBTEKD, 15HTEKDE TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG: Henning

Detaljer

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458 side 1 av 6 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin EKSAMEN I MATERIALER OG BEARBEIDING Fagkode: ILI 1458 Tid: 12.06.02 kl 0900-1400 Tillatte hjelpemidler: Kalkulator med

Detaljer

2 KRYSTALL STRUKTUR (Atomic structure) 2.1 Gitterstruktur

2 KRYSTALL STRUKTUR (Atomic structure) 2.1 Gitterstruktur 2 KRYSTALL STRUKTUR (Atomic structure) Metallene kan vi behandle som aggregater (sammenhopning) av atomer. Vi må kunne skjelne mellom gitterstruktur (atomstruktur) og krystallstruktur (kornstruktur). 2.1

Detaljer

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster. Oppgave 1.1 Hva karakteriserer en krystall? Hvilke typer enhetsceller er vanligst hos metallene? Tegn. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Detaljer

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: 2.juni 2016 Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl.

Detaljer

MATERIALLÆRE for INGENIØRER

MATERIALLÆRE for INGENIØRER Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 9. desember 2015 KLASSE: 15HBIMAS og 14HBIMAS-F TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG:

Detaljer

Tema i materiallære. TM01: Krystallstrukturer og atompakning i materialer

Tema i materiallære. TM01: Krystallstrukturer og atompakning i materialer Side 1 av 13 Tema i materiallære : Krystallstrukturer og atompakning i materialer Inndeling av konstruksjonsmaterialer Det er vanlig å dele konstruksjonsmaterialene i 4 (evt. 5 1 ) hovedgrupper: Metaller

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4

Detaljer

DEFORMASJON AV METALLISKE MATERIALER

DEFORMASJON AV METALLISKE MATERIALER DEFORMASJON AV METALLISKE MATERIALER Vi skiller mellom: - Elastisk deformasjon - Plastisk deformasjon ELASTISK DEFORMASJON En ytre mekanisk kraft vil deformere atom gitteret. Ved små spenninger beholder

Detaljer

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG SOM TOTALT BLIR 5 SIDER.

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG SOM TOTALT BLIR 5 SIDER. DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2009 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

Elastisitet, plastisitet og styrking av metaller

Elastisitet, plastisitet og styrking av metaller Elastisitet, plastisitet og styrking av metaller Mål: Forstå hvilke mekanismer som gjør materialene sterke og harde eller duktile og formbare Frey Publishing 1 Introduksjon Hvorfor danner de to svake metallene

Detaljer

Plastisk deformasjon i metaller

Plastisk deformasjon i metaller Metall-B 1 Plastisk deformasjon i metaller τ = P A S S = σcosα cosβ σ σ Figur 2. Plastisk flyt i korn. Dannelse av glidelinjer skjer først i korn der glideplanene står 45 på strekkspenningen Metall-B 2

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI LØSNINGSFORSLAG

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Oppgave 1 LØSNINGSFORSLAG Eksamen i TMT 4185 Materialteknologi Fredag 18. desember 2009 Tid: 09 00-13 00 (a) (b) Karakteristiske

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Løsning til Eksamen i: Materialteknologi Målform: Bokmål Dato: juli 2015 Emnekode: MATS1500 Side 1av 5 Oppgave 1 Figur 1a viser fasediagrammet for

Detaljer

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale Sett 3: Oppgave 1 og 2 omfatter mange av eksemplene som er gitt i kompendiet. Krystallstrukturer som er avledet av kulepakkingsmodellen opptrer for metaller (se oppgave 2), for ioniske forbindelser (f.eks.

Detaljer

HiN Eksamen IST 1484 18.12.03 Side 4

HiN Eksamen IST 1484 18.12.03 Side 4 HiN Eksamen IST 1484 18.1.3 Side 4 Materialer og mekanikk. Teller 5% av eksamen Poengangivelsen viser kun vektingen mellom de fire oppgavene. Innenfor hver oppgave er det læringsmålene som avgjør vektingen.

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl. forside): 5

Detaljer

Varmebehandling av stål Frey Publishing

Varmebehandling av stål Frey Publishing Varmebehandling av stål Frey Publishing Japanske sverdsmeder i arbeid. Gjennom generasjoner har kunnskaper om varmebehandling av metaller gått i arv fra far til sønn. Som eksempel kan vi nevne kunnskaper

Detaljer

TM03: Tema i materiallære

TM03: Tema i materiallære Inst. for bygg- drifts. og konstr. Side 1 av 11 TM03 TM03: Tema i materiallære Diffusjon og dens betydning ved fasetransformasjoner i teknologiske metaller. Diffusjon er en frivillig transport av stoff

Detaljer

Løsningsforslag til Ø6

Løsningsforslag til Ø6 Oppgave 6.1 a) Forklar kort hvilken varmebehandling som kan gi martensitt. Hvilken rolle spiller diffusjon under martensittdannelsen? Vis med en figur både gitterstruktur og mikrostruktur av martensitt

Detaljer

10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt

10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt 10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt Ikke noe annet legeringssystem kan by på så mange nyttige reaksjoner og mikrostrukturer som det der jern Fe og karbon C er

Detaljer

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik Mekanisk belastning av konstruksjonsmaterialer Typer av brudd av Førstelektor Roar Andreassen Høgskolen i Narvik 1 KONSTRUKSJONSMATERIALENE Metaller Er oftest duktile = kan endre form uten å briste, dvs.

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG Eksamen i: Materialteknologi Emnekode: MATS1500 Side 1av 6 Oppgave 1 Ved en strekkprøve blir det brukt en rund prøvestav med opprinnelig

Detaljer

Støpejern. Frey Publishing

Støpejern. Frey Publishing Støpejern Frey Publishing 1 Støperiteknikk 2 Viktige egenskaper for metaller som skal støpes Støpejern er jern og med mellom 2,5 og 4,3 % karbon. Smeltetemperaturen er viktig når vi velger materialer til

Detaljer

1 Krystallstrukturer og atompakning i materialer

1 Krystallstrukturer og atompakning i materialer 1 Krystallstrukturer og atompakning i materialer 1.1 Inndeling av konstruksjonsmaterialer Det er vanlig å dele konstruksjonsmaterialene i 4 (evt. 5 1 ) hovedgrupper: Metaller Keramer og glasser 1 Polymermaterialer

Detaljer

E K S A M E N. MATERIALER OG BEARBEIDING Fagkode: ITE 1553

E K S A M E N. MATERIALER OG BEARBEIDING Fagkode: ITE 1553 side 1 av 4 HØGSKOLEN I NARVIK Institutt for bygnings- drifts- og konstruksjonsteknologi Studieretning: Industriteknikk E K S A M E N I MATERIALER OG BEARBEIDING Fagkode: ITE 1553 Tid: 11.06.04 kl 0900-1200

Detaljer

Oppgaver. HIN IBDK RA 07.12.07 Side 1 av 6. Oppgave 1. Ved prøving av metalliske materialer kan man finne strekkfastheten,.

Oppgaver. HIN IBDK RA 07.12.07 Side 1 av 6. Oppgave 1. Ved prøving av metalliske materialer kan man finne strekkfastheten,. Side 1 av 6 Oppgaver Oppgave 1. Ved prøving av etalliske aterialer kan an finne strekkfastheten, ( eh og ) og p02. og flytegrensene e e er egentlig flytegrense, dvs. der den kan fastlegges utvetydig. p02

Detaljer

Eksamen i KJM-MENA3300 våren 2016

Eksamen i KJM-MENA3300 våren 2016 Eksamen i KJM-MENA3300 våren 016 Løsningsforslag Oppgave 1 I en løsning av upolare molekyler i polart løsningsmiddel (vann) blir hvert enkelt upolart molekyl omgitt av en «bur» av løsningsmiddelsmolekyler.

Detaljer

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt.

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt. Kjemisk likevekt Dersom vi lar mol H-atomer reager med 1 mol O-atomer så vil vi få 1 mol H O molekyler (som vi har diskutert tidligere). H + 1 O 1 H O Denne reaksjonen er irreversibel, dvs reaksjonen er

Detaljer

Arbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi:

Arbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi: Klassisk mekanikk 1.1. rbeid rbeid som utføres kan observeres i mange former: Mekanisk arbeid, kjemisk arbeid, elektrisk arbeid o.l. rbeid (w) kan likevel alltid beskrives som: rbeid = kraft vei hvor kraft

Detaljer

EKSAMENSOPPGAVE. Fag: Generell og uorganisk kjemi. Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 LO 400 K.

EKSAMENSOPPGAVE. Fag: Generell og uorganisk kjemi. Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 LO 400 K. EKSAMENSOPPGAVE Fag: Generell og uorganisk kjemi Gruppe(r): 1KA Fagnr LO 400 K Dato: 14. desember 001 Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 Eksamensoppgaven består av Tillatte

Detaljer

NORSK FINALE for uttakning til 39. internasjonale kjemiolympiaden i Moskva, Russland, juli 2007

NORSK FINALE for uttakning til 39. internasjonale kjemiolympiaden i Moskva, Russland, juli 2007 Kjemi L NRSK FINALE for uttakning til 39. internasjonale kjemiolympiaden i Moskva, Russland, 15.-24. juli 2007 Fredag 23. mars 2007 Kl. 08.30-11.30 jelpemidler: Lommeregner og Tabeller i kjemi Maksimal

Detaljer

EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, LØSNINGSFORSLAG -

EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, LØSNINGSFORSLAG - EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, 200 - LØSNINGSFORSLAG - Oppgave 1. a) Fast løsningsherding er beskrevet på side 256-257 i læreboken. Fig. 9.6 gir en skjematisk fremstilling av

Detaljer

Gjennom denne oppgaven skal elevene lære å bruke ulike måleredskaper for å beregne volum og tetthet til kuler og vurdere om svarene virker rimelig.

Gjennom denne oppgaven skal elevene lære å bruke ulike måleredskaper for å beregne volum og tetthet til kuler og vurdere om svarene virker rimelig. KULeMATEMATIKK Beskrivelse/Presentasjon Gjennom denne oppgaven skal elevene lære å bruke ulike måleredskaper for å beregne volum og tetthet til kuler og vurdere om svarene virker rimelig. Arbeidsoppdraget

Detaljer

Stålfremstilling, Masovn

Stålfremstilling, Masovn Metall-A 1 Stålfremstilling, Masovn Malm (Fe 3 O 4 ) + kullpulver + slaggmineraler = pellets Pellets + mer kull + varm luft (800 C): C + O 2 = CO 2 CO 2 + C = CO CO + Fe 3 O 4 = CO 2 + Fe Temperaturen

Detaljer

Høgskolen i Gjøvik 13HBTEKD, 13HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag.

Høgskolen i Gjøvik 13HBTEKD, 13HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE EMNENUMMER: TEK2091 EKSAMENSDATO: 11. desember 2013 KLASSE: 13HBTEKD, 13HTEKDE TID: 3 timer: KL 13.00 - KL 16.00 EMNEANSVARLIG: Henning

Detaljer

Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars Øivind Husø

Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars Øivind Husø Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars 2016 Øivind Husø Oppgave 1 1. Et karbonstål som inneholder 0,4 % C blir varmet opp til 1000 C og deretter avkjølt langsomt til

Detaljer

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side av 5 NORGES TEKNISK NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd. Blekkan, tlf.7359457 EKSMEN I

Detaljer

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster. Oppgave 1.1 Hva karakteriserer en krystall? Hvilke typer enhetsceller er vanligst hos metallene? Tegn. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Detaljer

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER konstruksjons Levetid, N = antall lastvekslinger Eksempel: Roterende aksel med svinghjul Akselen roterer med 250 o/min, 8 timer/dag, 300 dager i året. Hvis akselen

Detaljer

Løsningsforslag til Øvingsoppgave 6

Løsningsforslag til Øvingsoppgave 6 Oppgave 6.1 a) Forklar kort hvilken varmebehandling som kan gi martensitt. Hvilken rolle spiller diffusjon under martensittdannelsen? Vis med en figur både gitterstruktur og mikrostruktur av martensitt

Detaljer

Kollokvium 4 Grunnlaget for Schrödingerligningen

Kollokvium 4 Grunnlaget for Schrödingerligningen Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave

Detaljer

Fasit til norsk finale

Fasit til norsk finale Kjemi OL Fasit til norsk finale Kvalifisering til den 47. Internasjonale Kjemiolympiaden 2015 i Baku, Aserbajdsjan Oppgave 1 1) D 2) A 3) C 4) B 5) B 6) B 7) C 8) D 9) A 10) C 11) C 12) A 13) C 14) A 15)

Detaljer

4 KONSENTRASJON 4.1 INNLEDNING

4 KONSENTRASJON 4.1 INNLEDNING 4 KONSENTRASJON 4.1 INNLEDNING 1 Terminologi En løsning er tidligere definert som en homogen blanding av rene stoffer (kap. 1). Vi tenker vanligvis på en løsning som flytende, dvs. at et eller annet stoff

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

MEK4540/9540 Høsten 2008 Løsningsforslag

MEK4540/9540 Høsten 2008 Løsningsforslag MK454/954 Høsten 8 øsningsforslag Oppgave 1 a) Kan velge mellom følgende produksjonsmetoder: Spray-opplegg Håndopplegg Vakuum-bagging (i kombinasjon med håndopplegg eller andre metoder) Prepreg Vakuum-injisering

Detaljer

Kapittel 4. Ijklnmn. Merking og fasthetsklasser. Matador. Bilverktøy for den kvalitetsbevisste

Kapittel 4. Ijklnmn. Merking og fasthetsklasser. Matador. Bilverktøy for den kvalitetsbevisste Abcdefgh Teknisk informasjon Hovednavn Kapittel Ijklnmn Merking og fasthetsklasser Matador Bilverktøy for den kvalitetsbevisste 57 Teknisk informasjon Innhold kapittel Kapittel Merking og fasthetsklasser

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

Finalerunde Kjemiolympiaden 2003 Blindern 4. april 2003 Kl. 09.00-12.00

Finalerunde Kjemiolympiaden 2003 Blindern 4. april 2003 Kl. 09.00-12.00 Oppgave 1 Finalerunde Kjemiolympiaden 2003 Blindern 4. april 2003 Kl. 09.00-12.00 Oppgavesettet består av 10 sider inkludert formel- og tabellark. a) Fullfør og balanser følgende halvreaksjoner. I hvert

Detaljer

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.: NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN

Detaljer

Struktur, mikrostruktur og materialer

Struktur, mikrostruktur og materialer Struktur, mikrostruktur og materialer Materialvitenskap og teknologi er et forholdsvis nytt fagfelt. Opphavet er fysikken og kjemien som på 1960-årene avlet frem tverfagligheten som trengtes til å forstå

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet

Detaljer

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul?

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul? Oppgave 3.1 Hva er en elastisk deformasjon? Oppgave 3.2 Hvilke lov gjelder for elastisk deformasjon? Oppgave 3.3 Definer E-modulen. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl. forside): 5 Antall oppgaver: 3 Tillatte hjelpemidler:

Detaljer

Eksamen. Emnekode: KJEMI1/FAD110. Emnenavn: Kjemi 1. Dato: 27.02.2015. Tid (fra-til): 0900-1300. Tillatte hjelpemidler: Kalkulator, KjemiData.

Eksamen. Emnekode: KJEMI1/FAD110. Emnenavn: Kjemi 1. Dato: 27.02.2015. Tid (fra-til): 0900-1300. Tillatte hjelpemidler: Kalkulator, KjemiData. Bokmål Eksamen Emnekode: KJEMI1/FAD110 Emnenavn: Kjemi 1 Dato: 27.02.2015 Tid (fra-til): 0900-1300 Tillatte hjelpemidler: Kalkulator, KjemiData Faglærer(e) : Anne Brekken Sensurfrist : 20.03.2015 Antall

Detaljer

EKSAMEN I EMNE TFY4125 FYSIKK

EKSAMEN I EMNE TFY4125 FYSIKK Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar

Detaljer

Vanlige varmebehandlings metoder for stål:

Vanlige varmebehandlings metoder for stål: Vanlige varmebehandlings metoder for stål: 1. SPENNINGS- og REKRYSTALLISASJONSGLØDING (ProcessAnneal) - ferritt i stål med C < 0,25% C styrkes ved kalddeformering - gløding opphever virkningen 2. NORMALISERING

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 9.05.06 YS-MEK 0 9.05.06 man tir uke 0 3 6 3 forelesning: 30 forelesning: 6 Pinse 7 4 3 7 7. mai spes. relativitet gruppe 5: gravitasjon+likevekt repetisjon gruppe

Detaljer

EKSAMEN I TMT4105 KJEMI

EKSAMEN I TMT4105 KJEMI Fag TMT4105 KJEMI Side 1 av 14 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Studienr Studieprogram :.. Faglig kontakt under eksamen : Navn : Håvard Karoliussen Tlf. :

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

Undersøkelse av metallenes struktur (gitter- og kornstruktur) og de mekaniske og fysikalske egenskaper som har sammenheng med den.

Undersøkelse av metallenes struktur (gitter- og kornstruktur) og de mekaniske og fysikalske egenskaper som har sammenheng med den. METALLOGRAFI Undersøkelse av metallenes struktur (gitter- og kornstruktur) og de mekaniske og fysikalske egenskaper som har sammenheng med den. Vi skiller mellom: a) Bruddflateundersøkelser b) Mikroundersøkelser

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS 1 2 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

Basis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009

Basis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009 Basis dokument Jon Skarpeteig 23. oktober 2009 1 Solcelle teori De este solceller er krystallinske, det betyr at strukturen er ordnet, eller periodisk. I praksis vil krystallene inneholde feil av forskjellige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

elementpartikler protoner(+) nøytroner elektroner(-)

elementpartikler protoner(+) nøytroner elektroner(-) All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall

Detaljer

AVSPENNING, REKRYSTALLISASJON OG KORNVEKST

AVSPENNING, REKRYSTALLISASJON OG KORNVEKST AVSPENNING, REKRYSTALLISASJON OG KORNVEKST 8 Recovery, recrystallization and grain growth (lectures notes) Eksempel kaldtrekking av tråd: Trådtrekking. Plastisk deformasjon i kald tilstand: - øker hardhet

Detaljer

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter)

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 1 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 2 Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

Ofte prater vi om grovkrystallinsk, finkrystallinsk og fibrig struktur.

Ofte prater vi om grovkrystallinsk, finkrystallinsk og fibrig struktur. 3 METALLOGRAFI (Metallograpy) Metallografi er undersøkelse av metallenes struktur og de mekaniske og fysikalske egenskaper som har sammenheng med den. Med struktur mener vi så vel gitterstruktur som kornstruktur.

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

Finalerunde Kjemiolympiaden 2002 Blindern 19. april 2002 Kl

Finalerunde Kjemiolympiaden 2002 Blindern 19. april 2002 Kl Finalerunde Kjemiolympiaden 2002 lindern 19. april 2002 Kl. 09.00-12.00 ppgavesettet består av 7 sider inkludert formel- og tabellark. ppgave 1 (10%) I hele denne oppgaven ser vi bort fra overspenning

Detaljer