Løsningsforslag TMT 4170 Materialteknologi 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag TMT 4170 Materialteknologi 1"

Transkript

1 1 Løsningsforslag TMT 4170 Materialteknologi 1 Eksamen holdt 16. desember 2003 Oppgave 1: Materialfremstilling. Generelt stoff som kan hentes fra kompendium og forelesning gitt av Prof. Leiv Kolbeinsen. Oppgave 2: Atomstruktur og atomarrangement a) Elektronsstruktur med kjærne for Natrium: Valens til Na = +1 b) Elektron negativitet: Beskriver tendensen et atom har til å ta til seg et elektron. Atomer med nesten fullstendig fyllt ytterskall, som f.eks. Cl, er sterkt elektron-negative og tar lett opp et nytt elektron. Mens atomer med nesten tomme ytterskall er elektron-positive siden de lett avgir elektroner (eks. Na). Dette medfører at forbindelsen NaCl lett dannes. Forbindelsen NaCl har ionebinding, noe som er en sterk binding. NaCl har følgelig (siden atomene ikke lar seg adskille så lett) et smeltepunkt som er høyt (801 C).

2 2 c) Antall atomer i 100g sølv: (100 g)x(6.02x10 23 atomer/mol)/ gmol -1 = 5.58x10 23 atomer. d) De to mest vanlige kubiske systemene er : FCC (flatesentrert-) og BCC (romsentrert kubisk). FCC BCC FCC: Atomer/enhetscelle = 8hj. ( 1 8 ) + 6 flater ( 1 2 ) = 4 BCC: Atomer/enhetscelle = 8hj. ( 1 ) + 1 senter (1) = 2 8 e) Plan A: x=1, y=1, z= 1, dvs. 1/1,1/1,1/ Miller indeks (111) Plan B: x=1, y=2, z=1/0, dvs. 1/1, 1/2, 1/ --- (1,1/2,0) Miller indeks (210) Plan C: Siden planet går gjennom origo (000), vil man helst flytte origo f.eks. en enhetslengde i y-retning: Da blir x=, y=-1, z= /x=0, 1/y=-1, 1/z=0 Miller indeks (0-10) Oppgave 3 : Gitterfeil a) Planet skjærer gjennom punktene (100), (0-10) og (00-1):

3 3 - Burgers vektorene tilhørende dette planet (benytter vektorsubtraksjon): b 1 = [0-10] [00-1] = [0-11] b 2 = [100] [00-1] = [101] b 3 = [100] [0-10] = [110] - Dette utgjør de tre slip-systemene: (1-1-1)x[0-11] (1-1-1)x[101] (1-1-1)x[110] - Vinkelen mellom (1-1-1)-planet og (111) planet: [1-1-1][111]= (cos x) 3 1/2 3 1/2 = (cos x) (3) cos x = (-1)/3 x=109,5 grader (eller: ,5= 70,5 grader) b) d hkl = (0.3591x10-9 m) / (3 1/2 ) = x10-10 m (1x10-6 m) / ( x10-10 m) = 4823 Det kan være ca parallelle plan av typen {111} over 1 mikrometer langs [111]. c) Atomene som skjæres gjennom av (110)-planet er vist i figuren nedenfor:

4 4 Man legger merke til at enhetscellen definerer et plan med sidekanter a 0 og 2 1/2 a 0. Plantettheten av atomer på planet (110) blir derfor: Atomer /areal = 2/[(2 1/2 )(2.866x10-10 m) 2 ] = 1.72x10 19 atomer/m 2. Plantettheten på (112) er oppgitt i oppgaven til 9.94x10 18 atomer/m 2. Dette betyr at (110)- planet er ca. 73% mere tettpakket enn planet (112) i BCC. d 110 = 2.866x10-10 /[ ] 1/2 = x10-10 m d 112 = 2.866x10-10 /[ ] 1/2 = 1.17x10-10 m Siden plantettheten og interplanavstanden for (110)-planet er større enn for (112)-planet, vil (110)-planet være det mest sannsynlige slip-plan. d) Symbolforklaringer: T = linjetensjonen (energi per lengdeenhet langs dislokasjonen. En lengere dislokasjon har høyere energi enn en kort, dvs. man utfører et strekkarbeid idet en dislokasjon forlenges, jfr. et strikk som strekkes). α = konstant G = Skjærmodulen [Gpa] b = Burgers vektor [m] F = kraften som man påfører dislokasjonen og som gir denne en større lengde idet den Bøyer ut τ = skjærkraften som virker på dislokasjonen i glideplanet I en gitt stabil utbøyning vil linjetensjonens komponent parallelt til skjærkraften τ 0 være i balanse: Tdθ = τ 0 b dl

5 5 e) Dersom man øker skjærspenningen τ vil dislokasjonen fortsette å bøye utover (se b-c i figuren nedenfor). Den maksimale motstanden den utbøyde dislokasjonen kan yte er: τ max = Gb/L Dersom denne situasjonen overvinnes ved at τ > τ max, vil dislokasjonen fortsette å bøyeutover/bakover og punktene m og n (fig. d) vil rekombinere og dislokasjonen splittes opp i en ny, fullstendig løkke mens den opprinnelige relakserer innover mot sin opprinnelige

6 posisjon (fig a) og en ny utbøyning med dertil hørende ny dislokasjon kan iverksettes, osv. Denne mekanismen produserer atså nye dislokasjoner og øker dermed ρ. Når ρ øker, vil gjennomsnittlig avstand mellom dislokasjoner reduseres (ref. l d ). Når l d minker er dette analogt til at L i likning (5) reduseres τ max øker og ytterligere økning i tøyning og dislokasjonstetthet krever enda høyere spenning (dvs. arbeidsherding): 6 Oppgave 4: Støping og størkning a) (i)total fri energi : Gtot r Gv 4 r 3 Volumleddet (negativt) Overflate-leddet (positivt) Hvor: r G tot = Total endring i fri energi. = Radius på fast fase. G v = Volum fri-energien. = Overflateenergien til kimet. (ii) Embryo er kim med smeltefase igjen. r r crit, dvs. ikke stort nok for å være levedyktig og vil gå over i Kim er fast fase med r r crit og vil ved videre vekst få en G tot som minker med r (se figuren i oppgaveteksten). (iii)

7 Homogen kimdanning: Heterogen kimdanning: Kimdanning skjer overalt på en statistisk måte. Lite sannsynlig i praksis. Kimdanning skjer på en allerede eksisterende overflate. Kritisk radius kan derfor antas å være ivaretatt med en langt mindre økning i overflateenergi (se figur til venstre). Heterogen kimdanning kan derfor skje ved relativt liten underkjøling. 7 Dersom man tilsetter kimdannere, altså små partikler (ref. Impurity i figuren ovenfor), vil kimets overflate reduseres (den stiplede overflaten er bare tenkt ). Overflate-energien reduseres tilsvarende og kimdanningen krever derfor mindre energi (lettere for å komme i gang). Dette gir en finere (mindre) kornstruktur, noe som bidrar positivt til mekaniske egenskaper. b) Man kan finne SDAS ved to ulike størkningstider t s. F.eks. kan man velge t s = s og t s = 1 s og lese av helningen direkte: m = 18.8mm/48mm = 0.39 Innsatt gir dette (velger punktet t s =300s og SDAS = 0.1mm): 0.1 = k (300) 0.39 = k (9.25) k = 0.1/9.25 = c) Strekkfasthet og bruddforlengelse leses av i figuren: t s = 7 min. 420 s: R m = 258 Mpa og ε f = 2.5% t s = 1.5 min. 90 s: R m = 293 Mpa og ε f = 8.0% Kommentar: En raskere størkningstid forbedrer strekkfasthet og bruddforlengelse med hhv. 13.6% og 220%. Altså en klar forbedring i egenskaper samtidig som at en raskere størkning gir en mere kostnadseffektiv produksjon. d) Ut fra de kjente opplysningene kan man finne konstantene k og n i likning 7: 12mm = k(5min) 1/2 c eller c = k(5) 1/ mm= k(20min) 1/2 c = k(20) 1/2 (k(5) 1/2 12) 36=k[(20) 1/2 (5) 1/2 ] +12 k= c= (10.733)(5) 1/2-12 = 12 Størkningen er fullført når d= 50 mm (halv boltdiameter), setter inn i likning 7 : 50 = (t) 1/2 12 (t) 1/2 = 5.78 t= min.

8 I praksis vil størkningstiden være noe lengere siden varmebortledningen avtar som følge av at kokilleveggen oppvarmes. 8 Oppgave 5: Mekanisk testing og egenskaper a) Lærebokstoff. b) Elastisk deformasjon: Fullstendig reversibel deformasjon, dvs. materialvolumet vil etter en på og avlastingssykel innta sin opprinnelige form. Kraft vs. forskyvning er her en rett linje. Plastisk deformasjon: Materialvolumet får en varig formendring etter på-og avlasting. Kraft vs. forskyvning er en krummet kurve. Nominell spenning: S = kraft/opprinnelig areal = F/ A 0 [Mpa] Nominell tøyning: e = ln ( l/l 0 ), hvor l = lineær forskyvning eller lengdeendring og l 0 = opprinnlig målelengde man måler forskyvningen over. c) Flytespenning (σ 0.2) : ~ 125 Mpa (finnes ved avlesning i diagram med linje som er parallell med E-modulen og som starter i nominell tøyning 0.002). E-modul (E) : 170 Mpa/ 2.45x10-4 ~ Mpa = 70 Gpa (finnes ved avlesning av stigningstall for rett linje i den elastiske delen av kurven: trekker denne helt opp til 170 Mpa, tøyningen tilsvarer 2.45x10-3 E = 170 Mpa/2.45x10-3 = Mpa. Strekkfasthet R m : ~ 151 MPa. Uniform tøyning (e u ): ~ 0.06 = 6% Bruddforlengelse : ~ 0.094= 9.4% (e f = nominell bruddtøyning), mens bruddforlengelsen (den varige lengdeendringen av prøvestavens målelengde ved brudd) er 0.094x40mm = 3.76mm d) S e 1, hvor S = nominell spenning og e = nominell tøyning. ε p = ln (1-e), hvor ep e. e S ln(1+e) log ε p [Mpa] S 1 e o MPa log o , , , , , , , Sanntøyning Sannspenning n log /loge o p

9 9 Setter inn tallpar log o mot log ε p og finner: n = ~0,62 e) Antar først at kritisk spenning er et eller annet sted mellom flytegrensen og strekkfastheten. Velger et spenningsnivå midt immelom disse, dvs. σ c ~ [(σ 0.2) + R m ]/2 = 138 Mpa Dette gir innsatt i likning 9: K c = 1,12 σ c (π a) Mpam 0.5 = 1,12 x 138 x (π a) /(1,12x138) = (π a ) 0.5 a = 1,33 mm Er sprekken lengere enn ca. 1 1,5 mm kan man forvente at strekkstaven går til brudd lenge før den når strekkfasteheten til materialet og med dette redusere uniform tøyning vesentlig.

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid:

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: Side 1 av 9 Løsningsforslag Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: 09 00-13 00 Oppgave 1 i) Utherdbare aluminiumslegeringer kan herdes ved utskillingsherding (eng.: age hardening

Detaljer

EKSAMEN I: (MSK205 Materialmekanikk) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG

EKSAMEN I: (MSK205 Materialmekanikk) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (MSK205 Materialmekanikk) DATO: 09.12.2013 TID FOR EKSAMEN: 3 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator: HP30S,

Detaljer

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2008 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

LØSNINGSFORSLAG EKSAMEN TMT4185 DES

LØSNINGSFORSLAG EKSAMEN TMT4185 DES LØSNINGSFORSLAG EKSAMEN TMT4185 DES. 2011. Oppgave 1 i) Tilnærmet 100% Si ii) Flytende L og fast β med sammensetning på hhv: 12,6wt% Si og 99,83wt%Si. Andeler flytende L og fast primær (proeutektisk) β

Detaljer

Løsningsforslag eksamen TMT4185 ;

Løsningsforslag eksamen TMT4185 ; Løsningsforslag eksamen TMT4185 ; 11.12.13 Oppgave1 a) i) Bindingsenergien E 0 tilsvarer minimumsenergien som finnes ved å derivere den potensielle energien E N mhp r og deretter sette den deriverte lik

Detaljer

EKSAMEN I: (MSK200 Materialteknologi) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 4 SIDER + 3 SIDER VEDLEGG

EKSAMEN I: (MSK200 Materialteknologi) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 4 SIDER + 3 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (MSK200 Materialteknologi) DATO: 09.12.2013 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

DEFORMASJON AV METALLISKE MATERIALER

DEFORMASJON AV METALLISKE MATERIALER DEFORMASJON AV METALLISKE MATERIALER Vi skiller mellom: - Elastisk deformasjon - Plastisk deformasjon ELASTISK DEFORMASJON En ytre mekanisk kraft vil deformere atom gitteret. Ved små spenninger beholder

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 4 SIDER VEDLEGG

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 4 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 17.12.2010 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

(.675$25',1 5 0$7(5,$// 5( )DJNRGH,/,

(.675$25',1 5 0$7(5,$// 5( )DJNRGH,/, HØGSKOLEN I NARVIK 7HNQRORJLVN$YGHOLQJ 6WXGLHUHWQLQJ$OOPHQQ0DVNLQ (.675$25',1 5 (.6$0(1, 0$7(5,$// 5( )DJNRGH,/, 7LG 7LOODWWHKMHOSHPLGOHU '%.DONXODWRUPHGWRPWPLQQH,QJHQWU\NWHHOOHU VNUHYQHKMHOSHPLGOHU (NVDPHQEHVWnUDYRSSJDYHURJQXPPHUHUWHVLGHULQNOGHQQH

Detaljer

Elastisitet, plastisitet og styrking av metaller

Elastisitet, plastisitet og styrking av metaller Elastisitet, plastisitet og styrking av metaller Mål: Forstå hvilke mekanismer som gjør materialene sterke og harde eller duktile og formbare Frey Publishing 1 Introduksjon Hvorfor danner de to svake metallene

Detaljer

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals)

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) 5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) Vi må skille mellom elastisk og plastisk deformasjon av metaller og legeringer. 5.1 Elastisk deformasjon En ytre mekanisk kraft som virker

Detaljer

0$7(5,$// 5( )DJNRGH,/,

0$7(5,$// 5( )DJNRGH,/, Side 1 av 7 HØGSKOLEN I NARVIK 7HNQRORJLVN$YGHOLQJ 6WXGLHUHWQLQJ$OOPHQQ0DVNLQ (.6$0(1, 0$7(5,$// 5( )DJNRGH,/, 7LG0DQGDJNO 7LOODWWHKMHOSHPLGOHU '%.DONXODWRUPHGWRPWPLQQH,QJHQWU\NWHHOOHU VNUHYQHKMHOSHPLGOHU

Detaljer

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster. Oppgave 1.1 Hva karakteriserer en krystall? Hvilke typer enhetsceller er vanligst hos metallene? Tegn. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Detaljer

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Løsningsforslag til Øvingsoppgave 1. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster. Oppgave 1.1 Hva karakteriserer en krystall? Hvilke typer enhetsceller er vanligst hos metallene? Tegn. Et krystall er bygd opp av aggregat av atomer ordnet etter et regelmessig tredimensjonalt mønster.

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG SOM TOTALT BLIR 5 SIDER.

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG SOM TOTALT BLIR 5 SIDER. DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2009 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458 side 1 av 6 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin EKSAMEN I MATERIALER OG BEARBEIDING Fagkode: ILI 1458 Tid: 12.06.02 kl 0900-1400 Tillatte hjelpemidler: Kalkulator med

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer Side 1 av 7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: 2.juni 2016 Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl.

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet

Detaljer

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper Side 1av7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 9.05.06 YS-MEK 0 9.05.06 man tir uke 0 3 6 3 forelesning: 30 forelesning: 6 Pinse 7 4 3 7 7. mai spes. relativitet gruppe 5: gravitasjon+likevekt repetisjon gruppe

Detaljer

MATERIALLÆRE for INGENIØRER

MATERIALLÆRE for INGENIØRER Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 11. desember 2013 KLASSE: 13HBIMAS og 12HBIMAS-F TID: 3 timer: KL 13.00 - KL 16.00 EMNEANSVARLIG:

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 6 INSTITUTT FOR MATERIALTEKNOLOGI Faglig kontakt under eksamen: Øystein Grong/Knut Marthinsen Tlf.:94896/93473 EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI

Detaljer

Løsningsforslag til øving 13

Løsningsforslag til øving 13 Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde

Detaljer

2 KRYSTALL STRUKTUR (Atomic structure) 2.1 Gitterstruktur

2 KRYSTALL STRUKTUR (Atomic structure) 2.1 Gitterstruktur 2 KRYSTALL STRUKTUR (Atomic structure) Metallene kan vi behandle som aggregater (sammenhopning) av atomer. Vi må kunne skjelne mellom gitterstruktur (atomstruktur) og krystallstruktur (kornstruktur). 2.1

Detaljer

MEK4540/9540 Høsten 2008 Løsningsforslag

MEK4540/9540 Høsten 2008 Løsningsforslag MK454/954 Høsten 8 øsningsforslag Oppgave 1 a) Kan velge mellom følgende produksjonsmetoder: Spray-opplegg Håndopplegg Vakuum-bagging (i kombinasjon med håndopplegg eller andre metoder) Prepreg Vakuum-injisering

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

hvor: E = hellingen på den elastiske del av strekk-kurven Figur Spenning - tøyning ved strekkprøving.

hvor: E = hellingen på den elastiske del av strekk-kurven Figur Spenning - tøyning ved strekkprøving. Oppgave 3.1 Hva er en elastisk deformasjon? En ikke varig formendring. Atomene beholder sine naboer. Oppgave 3.2 Hvilke lov gjelder for elastisk deformasjon? Hooke s lov: hvor: ε = relativ lengdeendring

Detaljer

Tirsdag r r

Tirsdag r r Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 10.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Sensuren faller senest 10. januar (så

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269 side 1 av 7 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin Ekstraordinær E K S A M E N I MATERIALLÆRE Fagkode: ILI 1269 Tid: 21.08.01 kl 0900-1200 Tillatte hjelpemidler: Kalkulator

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG Eksamen i: Materialteknologi Emnekode: MATS1500 Side 1av 6 Oppgave 1 Ved en strekkprøve blir det brukt en rund prøvestav med opprinnelig

Detaljer

Formel ark Mas130-2013

Formel ark Mas130-2013 Formelark MAS0 0-v.nb Formel ark Mas0-0 Konstanter og konverterings faktorer N 0 = 6.0*0 mol - = Avregados tall k = 8.60*0-5 ev/k fi.807*0 - J/K = Boltzmanns konstant R= 8. J/(mol*K) fi.987 cal/(mol*k)

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 13.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Arild H. Clausen, 73 59 76 32 Sensuren

Detaljer

11 Elastisk materiallov

11 Elastisk materiallov lastisk materiallov Innhold: lastisk materialoppførsel Isotrope og anisotrope materialer Generalisert Hookes lov Initialtøninger Hookes lov i plan spenning og plan tøning Volumtøning og kompresjonsmodul

Detaljer

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul?

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul? Oppgave 3.1 Hva er en elastisk deformasjon? Oppgave 3.2 Hvilke lov gjelder for elastisk deformasjon? Oppgave 3.3 Definer E-modulen. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding.

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding. 7 DIFFUSJON I METALLER (Diffusion in metallic material) Diffusjon er bevegelse av atomer. Diffusjon er nødvendig for eksempel i varmebehandling og i størkning. Mange prosesser er betinget av diffusjonsprosesser.

Detaljer

Midtsemesterprøve fredag 11. mars kl

Midtsemesterprøve fredag 11. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel

Detaljer

Plastisk deformasjon i metaller

Plastisk deformasjon i metaller Plastisk deformasjon i metaller τ = P A S S = σcosα cosβ σ σ Figur 2. Plastisk flyt i korn. Dannelse av glidelinjer skjer først i korn der glideplanene står 45 på strekkspenningen 1 Glidelinjer i stål

Detaljer

Tema i materiallære. HIN IBDK Industriteknikk RA 05.04.05 Side 1 av 12. TM02: Plastisk deformasjon og herdemekanismer P S

Tema i materiallære. HIN IBDK Industriteknikk RA 05.04.05 Side 1 av 12. TM02: Plastisk deformasjon og herdemekanismer P S Side 1 av 12 Tema i materiallære : Plastisk deformasjon og herdemekanismer Flyt Metaller har den spesielle mekaniske egenskapen at de kan flyte i kald tilstand, langt undet sitt smeltepunkt. Flyt er en

Detaljer

AVSPENNING, REKRYSTALLISASJON OG KORNVEKST

AVSPENNING, REKRYSTALLISASJON OG KORNVEKST AVSPENNING, REKRYSTALLISASJON OG KORNVEKST 8 Recovery, recrystallization and grain growth (lectures notes) Eksempel kaldtrekking av tråd: Trådtrekking. Plastisk deformasjon i kald tilstand: - øker hardhet

Detaljer

Krystaller, symmetri og krystallvekst. Krystallografi: Geometrisk beskrivelse av krystaller, deres egenskaper og indre oppbygning.

Krystaller, symmetri og krystallvekst. Krystallografi: Geometrisk beskrivelse av krystaller, deres egenskaper og indre oppbygning. Krystaller, symmetri og krystallvekst Krystallografi: Geometrisk beskrivelse av krystaller, deres egenskaper og indre oppbygning. Krystallene sorteres i grupper med felles egenskaper eller oppbygning.

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Tema i materiallære. TM01: Krystallstrukturer og atompakning i materialer

Tema i materiallære. TM01: Krystallstrukturer og atompakning i materialer Side 1 av 13 Tema i materiallære : Krystallstrukturer og atompakning i materialer Inndeling av konstruksjonsmaterialer Det er vanlig å dele konstruksjonsmaterialene i 4 (evt. 5 1 ) hovedgrupper: Metaller

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

Rapport. Lavtemperaturegenskaper til HDPE. Strekktesting ved lave temperaturer. Forfatter(e) Frode Grytten

Rapport. Lavtemperaturegenskaper til HDPE. Strekktesting ved lave temperaturer. Forfatter(e) Frode Grytten SINTEF F25692 - Fortrolig Rapport Lavtemperaturegenskaper til HDPE Strekktesting ved lave temperaturer Forfatter(e) Frode Grytten SINTEF Materialer og kjemi Polymerer og komposittmaterialer 2014-06-02

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

er at krystallitt eller korn. gitterstrukturen. enhetscelle regelmessighet og symmetri. Henning Johansen side 1

er at krystallitt eller korn. gitterstrukturen. enhetscelle regelmessighet og symmetri. Henning Johansen side 1 KRYSTALL STRUKTUR Metallene kan vi behandle som aggregater (sammenhopning) av atomer. Vi må kunne skjelne mellom gitterstruktur (atomstruktur) og krystallstruktur (kornstruktur). GITTERSTRUKTUR I metaller

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven

Detaljer

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1 FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

Kapittel 12: Struktur og egenskaper til keramer

Kapittel 12: Struktur og egenskaper til keramer Kapittel 12: Struktur og egenskaper til keramer Struktur hos keramiske materialer: Defekter Forurensninger Mekaniske egenskaper 1 Kjemisk binding i keramer Binding -- ionebinding eller kovalent. -- % ionebinding

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Forord. Trondheim

Forord. Trondheim Forord Denne rapporten er resultatet av mitt arbeid med masteroppgaven i 5.klasse ved Institutt for konstruksjonsteknikk ved NTNU i Trondheim. Arbeidet er utført våren 2006. Arbeidet er gjennomført i Trondheim.

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding.

Mange prosesser er betinget av diffusjonsprosesser. Eksempler er herding av stål (oppløsningsherding), settherding (karburisering) og nitrerherding. 7 DIFFUSJON I METALLER (Diffusion in metallic material) Diffusjon er bevegelse av atomer. Diffusjon er nødvendig for eksempel i varmebehandling og i størkning. Mange prosesser er betinget av diffusjonsprosesser.

Detaljer

Frivillig test 5. april Flervalgsoppgaver.

Frivillig test 5. april Flervalgsoppgaver. Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

Struktur, mikrostruktur og materialer

Struktur, mikrostruktur og materialer Struktur, mikrostruktur og materialer Materialvitenskap og teknologi er et forholdsvis nytt fagfelt. Opphavet er fysikken og kjemien som på 1960-årene avlet frem tverfagligheten som trengtes til å forstå

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte

Detaljer

Ofte prater vi om grovkrystallinsk, finkrystallinsk og fibrig struktur.

Ofte prater vi om grovkrystallinsk, finkrystallinsk og fibrig struktur. 3 METALLOGRAFI (Metallograpy) Metallografi er undersøkelse av metallenes struktur og de mekaniske og fysikalske egenskaper som har sammenheng med den. Med struktur mener vi så vel gitterstruktur som kornstruktur.

Detaljer

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl. forside): 5

Detaljer

Kap. 16: Kontinuerlige systemer

Kap. 16: Kontinuerlige systemer Kap. 16: Kontinuerlige systemer Har betraktet systemer med én frihetsgrad (avhengig av tiden) Partikler (med føringer) Stive legemer (med føringer) Ordinære differensiallikninger (ODE) Deformerbare legemer

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen

Detaljer

Løsningsforslag til Øvingsoppgave 2

Løsningsforslag til Øvingsoppgave 2 Oppgave 2.1 Definer begrepet fase. Nevn eksempler på at et metall kan opptre med forskjellig fase innen samme aggregattilstand. Definisjon fase: En homogen tilstand, når homogen refererer til atom- eller

Detaljer

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige?

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige? Oppgave 4.1 Hva er et konstruksjonsmateriale, designmateriale? Oppgave 4.2 Hvilke grupper konstruksjonsmaterialer, designmaterialer har vi? Oppgave 4.3 Hva er egenskapen styrke til et konstruksjonsmateriale?

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Løsningsforslag til øving 3

Løsningsforslag til øving 3 Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, LØSNINGSFORSLAG -

EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, LØSNINGSFORSLAG - EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, 200 - LØSNINGSFORSLAG - Oppgave 1. a) Fast løsningsherding er beskrevet på side 256-257 i læreboken. Fig. 9.6 gir en skjematisk fremstilling av

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: juli 2015 Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl. forside): 5 Antall oppgaver: 4 Tillatte

Detaljer