Eksamen i fag TFY 4305 Ikkelineær dynamikk Onsdag 30. november 2005 Tid:

Størrelse: px
Begynne med side:

Download "Eksamen i fag TFY 4305 Ikkelineær dynamikk Onsdag 30. november 2005 Tid: 15.00 19.00"

Transkript

1 Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fsikk Faglig kontakt under eksamen: Navn: Jan Mrheim Telefon: eller Eksamen i fag TFY 435 Ikkelineær dnamikk Onsdag 3. november 25 Tid: Sensurfrist: Onsdag 21. desember 25 Tillatte hjelpemidler: (Alternativ C): Godkjent lommekalkulator. Rottmann, Mathematische Formelsammlung. Barnett and Cronin, Mathematical Formulae. Øgrim og Lian, Størrelser og enheter i fsikk og teknikk. Oppgave 1: Gitt egenverdiligningen Lψ = λψ, der L er følgende Schrödinger-operator, L = d2 d 2 + u(), mens λ er en egenverdi og ψ = ψ() er en (reell eller kompleks) egenfunksjon. Funksjonen u = u() er reell, og tolkes som et potensial når ligningen Lψ = λψ tolkes som den tidsuavhengige (stasjonære) Schrödinger-ligningen. Anta nå atu avhenger også avtident, dvs. atu = u(, t), og tilfredsstiller ligningen u t + cu =, der c er konstant, og u t = u/ t, u = u/. Vis at da kan også ψ velges tidsavhengig, ψ = ψ(, t), på en slik måte at egenverdiligningen Lψ = λψ gjelder med en konstant (tidsuavhengig) egenverdi λ. Vis det gjerne på to forskjellige måter: 1) Ved å finne den generelle løsningen av ligningen u t + cu =. 2) Ved å finne en operator A slik at L og A er et La-par av operatorer, med [L, A] =cu, mens tidsavhengigheten til egenfunksjonen ψ er gitt ved ligningen ψ t = Aψ.

2 Eksamen i fag TFY 435 Side 2 av 6 Oppgave 2: Den grunnleggende prosessen i en atomreaktor, eller en atombombe av fisjonstpen, er at et nøtron absorberes i en tung atomkjerne, for eksempel uran 235 eller plutonium 239, og får kjernen til å spaltes (fisjonere) i to eller flere lettere kjerner. Dermed frigjøres bindingsenergi, pluss et antall nøtroner som kan spalte ne kjerner, og så videre i en kjedereaksjon. En slik kjedereaksjon er en statistisk prosess, fordi antallet nøtroner som frigjøres og spalter ne kjerner, varierer statistisk. For at reaktoren eller bomben skal fungere, er det nødvendig at kjedereaksjonen ikke stopper av seg selv etter kort tid. I denne oppgaven vil vi se påenmetodeforå beregne sannsnligheten for at ett nøtron starter en kjedereaksjon som ikke stopper. La p n,medn =, 1, 2,..., være sannsnligheten for at et nøtron forårsaker en kjernespalting der det produseres n ne nøtroner. Da er for eksempel p sannsnligheten for at det ene nøtronet enten ikke spalter noen kjerne, eller spalter en kjerne uten at det produseres ne nøtroner. En nødvendig forutsetning for at det skal oppstå en kjedereaksjon, er opplagt at det i hvert fall en gang i blant frigjøres mer enn ett nøtron når en atomkjerne spaltes. Vi antar derfor at p n > forminstenn>1. Definer den sannsnlighetsgenererende funksjonen F () =p + p p n n + = p n n, der er en variabel som ikke har noen annen betdning enn at den er argumentet til funksjonen F. Fordi sannsnligheter alltid er ikke-negative, er F () og alle dens deriverte ikke-negative for. Siden vi antar at p n > forminstenn>1, oppfller den andrederiverte den sterkere ulikheten F () > for alle >. (1) Den totale sannsnligheten er lik 1, og det betr at = 1 er et fikspunkt for F, F (1) = p n =1. Den sannsnlighetsgenererende funksjonen inneholder all informasjon om sannsnlighetsfordelingen. For eksempel kan forventningsverdien av antallet nøtroner som er første generasjons etterkommere etter det ene nøtronet, beregnes ved derivasjon av F, n = p n n = F (1). Det første nøtronet definerer vi som generasjon. Vi sier at et nøtron tilhører generasjon g = 1, 2, 3,... dersom det er produsert i en kjernespalting forårsaket av et nøtron av generasjon g 1. La p(n, g) være sannsnligheten for at generasjon g består av n nøtroner. Den sannsnlighetsgenererende funksjonen for generasjon g er F g () = p(n, g) n.

3 Eksamen i fag TFY 435 Side 3 av 6 Den totale sannsnligheten i hver generasjon er lik 1, det vil si at F g (1) = p(n, g) =1. Med den notasjonen vi har innført, er F () = og F 1 () =F (). Hvis vi for eksempel vet at generasjon g består av to nøtroner, så har vi pr. definisjon at F g () = 2, og det er lett åviseatdaerf g+1 () =(F ()) 2 (bevis forlanges ikke her). Mer generelt, hvis vi vet at generasjon g består av k nøtroner, så har vi pr. definisjon at F g () = k, og det er nesten like lett å vise (ved induksjon) at da er F g+1 () =(F ()) k. Relasjonen F g+1 () =F g (F ()) gjelder helt generelt, ogsånår vi bare kjenner en sannsnlighetsfordeling for antallet nøtroner i generasjon g. Derfor er den sannsnlighetsgenererende funksjonen F g for generasjon g lik den g ganger itererte av den sannsnlighetsgenererende funksjonen F, F g () =F g () =F (F (...F()...)). Selv om denne prosessen er statistisk, kan den behandles ved iterasjoner av en funksjon, og derfor kan vi bruke metoder fra deterministisk ikkelineær dnamikk. a) Funksjonen F () har, som sagt, alltid fikspunktet = 1 =1. Vis at hvis F (1) = 1, så er 1 det eneste fikspunktet for. Husk forutsetningen gitt i ligning (1). Når F (1) = 1, så er fikspunktet 1 marginalt stabilt. Avgjør, gjerne ved å tegne en figur, om det er stabilt eller ustabilt. Hva er den fsiske tolkningen av betingelsen F (1) = 1? b) Vis at hvis F (1) 1,såharF () nøaktig ett fikspunkt = 2 i tillegg til 1. Vis at 2 > 1hvisF (1) < 1, og at 2 < 1hvisF (1) > 1. Tegn gjerne figur. Er fikspunktet 2 stabilt eller ustabilt? c) Forventningsverdien av antallet nøtroner i generasjon g er n g = p(n, g) n = F g (1). Vis at antallet nøtroner vokser (eller avtar) eksponensielt med tiden, i den forstand at forventningsverdien n g øker (eller avtar) eksponensielt som funksjon av generasjonstallet g. Mer presist, vis at n g =( n 1 ) g.

4 Eksamen i fag TFY 435 Side 4 av 6 d) Selv om det forventede antallet nøtroner vokser eksponensielt, kan det likevel tenkes at sannsnligheten er større enn null for at hele kjedereaksjonen stopper av seg selv. Sannsnligheten for at kjedereaksjonen stopper før generasjon g, er p(,g)=f g (). Sannsnligheten for at den stopper etter et endelig antall generasjoner, er p(, ) = lim g p(,g). Sannsnligheten for at kjedereaksjonen ikke stopper, er 1 p(, ). For at en atomreaktor eller atombombe skal fungere, må denaltså konstrueres slik at p(, ) < 1. Finn en nødvendig og tilstrekkelig betingelse som sannsnlighetsfordelingen p n må oppflle for at p(, ) < 1. Som et numerisk eksempel, anta at p =,18, p 1 =,58, p 2 =,24, og p n =forn>2. Hvor stor er da forventningsverdien n g for g =1?Forg = 1? g = 1? g = 1? Og hvor stor er stoppsannsnligheten p(, )? Kommentar: Grensen g er selvfølgelig en urealistisk matematisk abstraksjon. Det viktige spørsmålet i praksis er om kjedereaksjonen fortsetter så lenge at antallet atomkjerner som spaltes, er en vesentlig andel, gjerne noen prosent, av det totale antallet. Den matematiske grenseverdien p(, ) eretgodtmål på sannsnligheten for at det skjer.

5 Eksamen i fag TFY 435 Side 5 av 6 Oppgave 3: Lorenz-ligningene ẋ = σ( ), ẏ =(r z), ż = bz, inneholder de tre konstante parametrene σ>, b>ogr>. a) Vis at Lorenz-ligningene er invariante under transformasjonen (,, z) (,,z), som er en rotasjon på 18 om z-aksen. Hvilken betdning har denne smmetrien for eksempel når det er snakk om fikspunkt, attraktorer og bifurkasjoner? Figur 1 (se siste side) viser, som eksempler, todimensjonale projeksjoner av attraktorene i Lorenz-sstemet med de standardiserte parameterverdiene σ = 1, b =8/3, og med de fire forskjellige verdiene r = 24, r = 22, r = 216 og r = 214. Figuren viser at det finnes to forskjellige attraktorer i hvert av disse fire eksemplene. b) Har Lorenz-sstemet tidsreversjonssmmetri? Begrunn svaret. Hvorfor kan ikke Lorenz-ligningene ha en kvasiperiodisk løsning? c) Vis at origo er et stabilt fikspunkt for r<1, og et ustabilt fikspunkt, nærmere bestemt et tredimensjonalt sadelpunkt, for r>1. Hvilke andre fikspunkt finnes det? Hvilken tpe bifurkasjon er det som skjer når origo blir ustabilt ved r = 1? Her kreves det me arbeid for å begrunne svaret helt stringent, derfor godtas en kvalifisert gjetning. En kommentar (til forvirring eller opplsning): La σ =1ogb =8/3.Vedenbestemt kritisk parameterverdi r = r c 313 skjer samme tpe bifurkasjon, men med avtagende r istedetformedøkende r, ogmedgrenseskler (engelsk: limit ccles) i stedet for med fikspunkt. Forr>r c finnes det en globalt stabil grensesklus som er smmetrisk om (, ) =(, ). Ved r = r c blir den ustabil, samtidig som det oppstår to ne grenseskler, som begge eksisterer og er stabile for r<r c. Hver for seg er de to ne grensesklene usmmetriske om (, ) =(, ). For r<r c eksisterer fremdeles den smmetriske grensesklusen, men den vises ikke i Figur 1 fordi den er ustabil. d) Figur 1 (siste side) viser attraktorene i Lorenz-sstemet med σ = 1, b =8/3, og med r = 24, r = 22, r = 216 og r = 214. Hvilke av attraktorene i figuren er grenseskler, og hvilke er kaotiske? Hvilken tpe bifurkasjon er dette et eksempel på?

6 Eksamen i fag TFY 435 Side 6 av 6 Figur: Figur 1: Attraktorer i Lorenz-sstemet, projisert ned i -planet, for fire verdier av parameteren r. Øverst til venstre: r = 24, øverst til høre: r = 22, nederst til venstre: r = 216, og nederst til høre: r = 214. Parameterverdiene σ =1ogb =8/3 gjelder for alle fire figurene. Hver figur viser to forskjellige attraktorer som kan nås fra forskjellige startpunkt.

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger Eksamen i Ikkelineær ynamikk, fag TFY 4305 Onsag 30. november 2005 Løsninger 1) Den generelle løsningen av ligningen u t + cu x =0eru(x, t) =f(x ct), er f er en vilkårlig funksjon av en variabel. Hvoran

Detaljer

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 01 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER OG DYNAMISKE SYSTEMER

LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER OG DYNAMISKE SYSTEMER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Nils A. Baas (735) 93519/20 LØSNINGSFORSLAG TIL EKSAMEN I TMA4165 DIFFERENSIALLIGNINGER

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Vi har at ' 0 = 4ex +e 2x = 2 cosh x ; ' 00 = 2 sinh x cosh 2 x : Definer χ = arctan e x. Da har vi f.eks. at 2 sin χ cos χ sin(2χ) = cos 2 χ + sin 2

Vi har at ' 0 = 4ex +e 2x = 2 cosh x ; ' 00 = 2 sinh x cosh 2 x : Definer χ = arctan e x. Da har vi f.eks. at 2 sin χ cos χ sin(2χ) = cos 2 χ + sin 2 Eksamen i ikkelineρr dynamikk, fag 74 993 Onsdag 6. mai 998 Lfisninger a) En permanent bfilge forandrer ikke form. Dvs. at hvis den forplanter seg med en konstant hastighet c i en rom-dimensjon, sνa er

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling

Detaljer

SIF5025: Differensiallikninger og dynamiske systemer

SIF5025: Differensiallikninger og dynamiske systemer SIF505: Differensiallikninger og dnamiske sstemer Løsningsskisse til eksamen mai 003 Oppgave Bestem likevektspunktene til følgende sstem og skisser fasediagrammene (med orientering) a) Sstemet kan skrives

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Forelesningsnotat nr 3, januar 2009, Steinar Holden Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Notatet er ment som supplement til forelesninger med sikte på å gi en enkel innføring

Detaljer

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 011 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY45/FY006 Innføring i kvantemekanikk Vår 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Onsdag.

Detaljer

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit Kontekesamen TFY415/FY16 Innføring i kvantefysikk 15 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU August 15 kl. 9.-13.

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Bokmål Faglig kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag

Detaljer

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415

Detaljer

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2013

Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 013 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

Eksamensoppgave i TFY4210 Kvanteteorien for mangepartikkelsystemer

Eksamensoppgave i TFY4210 Kvanteteorien for mangepartikkelsystemer Institutt for fysikk Eksamensoppgave i TFY420 Kvanteteorien for mangepartikkelsystemer Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. juni Eksamenstid

Detaljer

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011 Løsning, eksamen TFY45 Kvantemekanikk II Torsdag 8. desember a) Et kort og fullgodt svar er at en stasjonær tilstand ψ er en løsning av den tidsuavhengige Schrödingerligningen H ψ E ψ, () der H er Hamilton-operatoren

Detaljer

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8

FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8 FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: ) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit Kontekesamen TFY415/FY16 Innføring i kvantefysikk 15 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU August 15 kl. 9.-13.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

EKSAMEN I TIØ4120 OPERASJONSANALYSE, GK Tirsdag 4. desember 2012 Tid: kl. 1500 1900 (Bokmål)

EKSAMEN I TIØ4120 OPERASJONSANALYSE, GK Tirsdag 4. desember 2012 Tid: kl. 1500 1900 (Bokmål) Fag TIØ 4120 Operasjonsanalyse, grunnkurs 4. desember 2012 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR INDUSTRIELL ØKONOMI OG TEKNOLOGILEDELSE Faglig kontakt under eksamen:

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00 EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

TMA4165 Dynamiske systemer 2007. Fraktaler og kaos. Harald Hanche-Olsen. hanche@math.ntnu.no

TMA4165 Dynamiske systemer 2007. Fraktaler og kaos. Harald Hanche-Olsen. hanche@math.ntnu.no TMA4165 Dynamiske systemer 2007 Fraktaler og kaos Harald Hanche-Olsen hanche@math.ntnu.no Sammendrag. Tillegg til dynamiske systemer 2007. Etter notater av Nils A. Baas. Notatet gir et kort og meget konsist

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

LØSNINGSFORSLAG KONT 07, TMA4140

LØSNINGSFORSLAG KONT 07, TMA4140 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG KONT 07, TMA4140 Oppgave 1 (10%) Utsagnet ( ( (p q)) r ) ( q p ) får sannhetstabellen: p q r (p

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11 OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0 Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Realfagbygget Professor Catharina Davies 73593688 BOKMÅL EKSAMEN I EMNE

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

Løsning, eksamen TFY4205 Kvantemekanikk II Mandag 13. august 2012

Løsning, eksamen TFY4205 Kvantemekanikk II Mandag 13. august 2012 Løsning, eksamen TFY4205 Kvantemekanikk II Mandag 13 august 2012 1a) Kravene at både ψ og ψ er kontinuerlige der potensialet er diskontinuerlig, følger av Schrödingerligningen 2 2m ψ x) + V x)ψx) = Eψx)

Detaljer

Løsning til øving 23 for FY1004, våren 2008

Løsning til øving 23 for FY1004, våren 2008 Løsning til øving 23 for FY1004, våren 2008 Diracs δ-funksjon kan defineres ved at δ(x) = 0 for x 0, og dx δ(x) = 1. Vi vil bruke δ-funksjonen som et potensial for en partikkel i en dimensjon. Vi setter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

MATEMATIKK 2, 4MX25-10

MATEMATIKK 2, 4MX25-10 1 Skriftlig hjemmeeksamen i MATEMATIKK 2, 4MX25-10 30 studiepoeng UTSATT EKSAMEN 17.-19. desember 2012. Sensur faller innen 20.01.2013. Resultatet blir tilgjengelig på studentweb første virkedag etter

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.

Detaljer

Solow-modellen - et tilleggsnotat i ECON2915

Solow-modellen - et tilleggsnotat i ECON2915 Solow-modellen - et tilleggsnotat i Herman ruse 27. september 2013 Innhold 1 Solow-modellen en innføring 2 1.1 Forklaring av likningene............................ 2 1.2 Å sette modellen på intensivform.......................

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer