Matematikk for IT, høsten 2016
|
|
|
- Frida Espeland
- 9 år siden
- Visninger:
Transkript
1 Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1, 1), (1, 2), (2, 0)} e) {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0)} f) {(0, 2), (2, 1)} g) {(0, 1), (1, 0), (1, 2), (2, 1)} h) {(0, 0), (1, 1), (2, 1)} a) {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)} b) {(a, b), (a, c), (c, b)} c) {(b, a), (b, c), (c, a)} d) {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} 2.4. Relasjoners egenskaper er ofte enklest å undersøke dersom man tegner relasjonen som en rettet graf, og derfor gjør jeg det her. a) R = {(1, 1), (1, 2), (1, ), (2, 1), (2, 2), (2, )}
2 1 2 (, ) mangler. Relasjonen er derfor ikke refleksiv. (1, ) finnes, men (, 1) mangler. Relasjonen er derfor ikke symmetrisk. Både (1, 2) og (2, 1) finnes. Relasjonen er derfor ikke antisymmetrisk. Vi ser av grafen at relasjonen er transitiv, fordi overalt hvor vi kan gå fra et element til et annet via et element, der kan vi også går direkte. For eksempel kan vi gå fra 1 til via 2, og kan også gå direkte fra 1 til. Et annet eksempel er at vi kan gå fra 1 til 1 via 2, og vi kan også gå direkte fra 1 til 1. Det finnes ikke noe moteksempel, og relasjonen er derfor transitiv. Konklusjon: Relasjonen er transitiv. b) R = {(1, 1), (1, ), (, 1), (2, 2), (, )} 1 2 Alle elementer i mengden har relasjon til seg selv. Relasjonen er derfor refleksiv. Vi ser at overalt hvor vi har relasjon en vei, har vi også den inverse relasjonen. Her er «overalt» kun (1, ) og (, 1) siden 2 ikke har relasjon hverken til 1 eller. Relasjonen er derfor symmetrisk. Siden vi har de symmetriske parene (1, ) og (, 1) er relasjonen ikke antisymmetrisk. Vi ser at relasjonen er transitiv, fordi overalt hvor vi kan gå fra et element til et annet via et element, der kan vi også går direkte. For eksempel kan vi gå fra 1 til 1 via, og kan også gå direkte fra 1 til 1. Konklusjon: Relasjonen er refleksiv, symmetrisk og transitiv. 2
3 c) R = {(1, ), (, 1)} 1 2 Her mangler elementene relasjon til seg selv, og relasjonen er derfor ikke refleksiv. Relasjonen er symmetrisk siden overalt hvor vi har relasjon en vei har vi også relasjon den motsatt veien. «Overalt» er her kun (1, ) og (, 1). Relasjonen er ikke antisymmetrisk siden vi har et symmetrisk par. Relasjonen er ikke transitiv fordi vi kan gå fra 1 til 1 via, men vi kan ikke gå direkte fra 1 til 1. Konklusjon: Relasjonen er symmetrisk.
4 d) R = {(1, 1), (2, 2), (, )} 1 2 Alle elementer har relasjon til seg selv. Relasjonen er derfor refleksiv. For at en relasjon skal være symmetrisk, må vi for hver relasjon som går en vei ha en relasjon som går motsatt vei. Her har vi ingen relasjoner som går en vei, og vi trenger derfor heller ikke noen relasjon motsatt vei. Relasjonen er derfor symmetrisk. Vi har ingen symmetriske par, og relasjonen er derfor antisymmetrisk. Relasjonen er transitiv fordi overalt hvor vi kan gå fra et element til et annet via et tredje kan vi også gå direkte. At det ikke finnes noen tilfeller hvor vi kan gå fra et element til et annet via et tredje ødelegger ikke dette. Konklusjon: Relasjonen er refleksiv, symmetrisk, antisymmetrisk og transitiv a) Refleksiv, antisymmetrisk og transitiv. b) Refleksiv og symmetrisk. c) Antisymmetrisk og transitiv. d) Relasjonen har ingen av de fire egenskapene a) b b) b, c, e og g c) a, b, d, f og h. d) a, b, d og h a) a og d b) d c) a, b og c d) a, b, c og d 4
5 2.4.7 a) Dette er en ekvivalensrelasjon. Det er fire ekvivalensklasser (som i dette tilfellet også kalles restklasser): [0] = {, 4, 0, 4, 8, } dette er alle tall som kan deles med 4. [1] = {,, 1, 5, 9, } dette er alle tall som gir rest 1 når de deles med 4. [2] = {, 2, 2, 6, 10, } dette er alle tall som gir rest 2 når de deles med 4. [] = {, 1,, 7, 11, } dette er alle tall som gir rest når de deles med 4. b) Denne er ikke refleksiv fordi (0, 0) ikke er element i R. Altså: 0 0 er ikke større enn 0. c) Denne er ikke refleksiv fordi (1, 1) ikke er element i R. Altså: 1 1 er ikke lik 0. Den er heller ikke transitiv fordi (0, 1) og (1, 0) er element i R mens (0, 0) ikke er element i R. d) Denne er ikke symmetrisk fordi for eksempel (fordi 1 er større enn 0) mens ( 0,1) R (fordi 0 ikke er større enn 1). e) Denne er ikke symmetrisk fordi dersom et tall deler et annet tall, vil det andre tallet ikke dele det første (med mindre tallene er like). For eksempel vil 2 dele 6, men 6 vil ikke dele 2. (1, 0) R Alle kommuner ligger i samme fylke som seg selv. For eksempel ligger Halden i samme fylke som Halden. Altså er relasjonen refleksiv. Dersom kommune 1 ligger i samme fylke som kommune 2, vil selvsagt kommune 2 ligge i samme fylke som kommune 1. For eksempel: Halden ligger i samme fylke som Fredrikstad. Da vil også Fredrikstad ligge i samme fylke som Halden. Relasjonen er derfor symmetrisk. Dersom kommune 1 ligger i samme fylke som kommune 2, og kommune 2 ligger i samme fylke som kommune, så vil også kommune 1 ligge i samme fylke som kommune. For eksempel ligger Halden i samme fylke som Fredrikstad, og Fredrikstad ligger i samme fylke som Sarpsborg. Da vil også Halden ligge i samme kommune som Sarpsborg. Altså er relasjonen transitiv. Relasjonen er refleksiv, symmetrisk og transitiv, og er derfor en ekvivalensrelasjon. Ekvivalensklassene er fylkene A = {, 2, 1, 0, 1, 2, } a) (A, =) For å finne ut om dette er en delvis ordnet mengde, må vi undersøke om relasjonen som er angitt (som her er likhet, =) er en delvis ordning. For å gjøre det enklere å vurdere dette, kan vi skrive opp de ordnede parene som utgjør denne relasjonsmengden: {(, ), ( 2, 2), ( 1, 1), (0, 0), (1, 1), (2, 2), (, )} Vi ser at relasjonen er refleksiv, siden alle tallene i mengden A har relasjon til seg selv. Videre er relasjonen antisymmetrisk fordi vi ikke har noen symmetriske par. Relasjonen er også transitiv, fordi overalt hvor vi har relasjon fra tall 1 til tall 2, og fra tall 2 til tall, har vi også relasjon fra tall 1 til tall. Fordi vi ikke har noe eksempel hvor dette ikke er tilfelle, vil relasjonen være transitiv. Relasjonen er altså refleksiv, symmetrisk og transitiv, og er følgelig en delvis ordning. Følgelig: Dette er en delvis ordnet mengde. 5
6 b) (A, <) Denne relasjonen er ikke refleksiv (fordi et tall ikke er mindre enn seg selv). Relasjonen er derfor ikke en delvis ordning, og følgelig: Dette er ikke en delvis ordnet mengde. c) ( A, ) Relasjonen er refleksiv fordi alle tallene er større enn eller lik seg selv. Relasjonen er antisymmetrisk fordi vi ikke har noen symmetriske par. Relasjonen er transitiv fordi dersom tall 1 er større eller lik tall 2, og tall 2 er større eller lik tall, vil tall 1 også være større eller lik tall. Relasjonen er altså refleksiv, symmetrisk og transitiv, og er følgelig en delvis ordning. Følgelig: Dette er en delvis ordnet mengde. d) ( A, ) Relasjonen er ikke refleksiv, fordi et tall aldri er forskjellig fra seg selv. Relasjonen er derfor ikke en delvis ordning, og følgelig: Dette er ikke en delvis ordnet mengde. Oppgave 1 Gjør en forenkling av følgende uttrykk ved hjelp av mengdeidentitetene. Bruk kun en lov i hvert trinn, og angi også hvilken lov du bruker i hvert trinn. ( A B) C B Benytter De Morgans lov (4) på det ytterste komplementet: ( A B) C B Dobbel komplement kan vi fjerne (7), og får da: ( A B) C B Her har vi tre mengder med snitt mellom (mengdene er ( A B), C og B). Vi kan da benytte den assosiative lov for snitt (1): ( A B) ( C B) Benytter så den kommutative lov (2) på den bakerste parentesen: ( A B) ( B C) Igjen har vi tre mengder med snitt mellom (mengdene ( A B), B og C). Benytter assosiativ lov (1): ( A B) B C Nå kan vi benytte den kommutative lov (2) inne i hakeparentesen: B ( A B) C Igjen benytter vi den kommutative lov (2), men nå inne i den innerste parentesen: 6
7 B ( B A) C Absorpsjonsloven (6) som sier at vi får B C B ( B A) B brukes på uttrykket i hakeparentesen, og Oppgave 2 La A være en mengde bestående av mennesker. For hver av de følgende relasjoner på A, angi om relasjonen er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv. a) er moren til antisymmetrisk b) er søsken til symmetrisk og transitiv Tar man hensyn til at søsken kan være halvsøsken, er ikke relasjonen nødvendigvis transitiv. Eks: Per og Kari har samme mor og er derfor søsken, men har ulik far. Kari og Nils har samme far og er derfor søsken, men har ulik mor. Per og Nils er ikke nødvendigvis søsken, og relasjonen er derfor ikke transitiv. c) er høyere enn antisymmetrisk og transitiv d) har samme kjønn som refleksiv, symmetrisk og transitiv e) er gift med symmetrisk f) Hvilke av disse relasjonene er en ekvivalensrelasjon? Relasjonen har samme kjønn som er en ekvivalensrelasjon. g) Hvilke av disse relasjonene er en delvis ordning? Ingen av relasjonene er en delvis ordning. Oppgave Gitt mengden A = {1, 2,, 4, 5, 6, 7, 8}, og relasjonen R på denne mengden gitt ved: a R b hvis og bare hvis a < b a) Angi relasjonsmengden R R = {(1, 2), (1, ), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, ), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (, 4), (, 5), (, 6), (, 7), (, 8), (4, 5), (4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8)} b) Er relasjonen refleksiv, symmetrisk, antisymmetrisk og/eller transitiv? Begrunn svaret. Merk: tallene jeg bruker i svarene er bare eksempler for å slippe å bruke f. eks. x og y. Siden elementene (1, 1), (2, 2), (, ) osv. ikke er med i R, er relasjonen ikke refleksiv. Dette kan vi også se av at diagonalen i matrisen ikke er T, og vi kan se det av grafen ved at det ikke er sløyfer fra hver node tilbake til seg selv. Siden matrisen ikke er symmetrisk om diagonalen, er relasjonen ikke symmetrisk. Dette kan vi også se f eks av det faktum at det at (1, 2) er med i R ikke medfører at (2, 1) er med i R. Dette kan vi se av grafen ved at det ikke er kanter fra f eks til 1 selv om det er en fra 1 til. 7
8 Av matriserepresentasjonen, ser vi at relasjonen er antisymmetrisk siden den ikke har noen T-elementer symmetrisk om diagonalen. Vi kan også se det av mengderepresentasjonen, ved at det faktum at (2, ) er med i R, medfører at (, 2) ikke er med i R. Dette kan vi også se av grafen ved at det ikke er kanter fra f eks til 1 når det er en fra 1 til. Relasjonen er transitiv. Av mengderepresentasjonen ser vi dette av at når (2, ) er med og (, 4) er med, så er også (2, 4) med. Av grafen kan vi se dette ved at når det er en kant fra 2 til og fra til 4, så er det også en kant fra 2 til 4. Oppgave 4 Gitt mengden mengden av de reelle tall, R. Følgende relasjon, S, er definert på denne mengden: x S y hvis og bare hvis x 2 = y 2 Er S en ekvivalensrelasjon? Begrunn svaret? For å finne ut om S er en ekvivalensrelasjon, må vi finne ut om den er refleksiv, symmetrisk og transitiv. S er refleksiv, siden x 2 = x 2 for ethvert reelt tall x. S er symmetrisk, siden x 2 = y 2 y 2 = x 2. S er transitiv, siden x 2 = y 2 y 2 = z 2 x 2 = z 2. Siden S er refleksiv, symmetrisk og transitiv, er den en ekvivalensrelasjon. 8
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0
Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1
Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi
LO118D Forelesning 5 (DM)
LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en
Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag
23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette
Relasjoner - forelesningsnotat i Diskret matematikk 2015
Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser
Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer
Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle
Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015
Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,
Egenskaper til relasjoner på en mengde A.
Egenskaper til relasjoner på en mengde A. Refleksivitet Relasjonen er refleksiv hvis (a, a) R for alle a A. Vi kan se det ut fra: 1) Grafen: R er refleksiv hvis alle punktene i grafen har en sløyfe. 2)
Relasjoner - forelesningsnotat i Diskret matematikk 2017
Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser
{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}
Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,
Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag
Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,
Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 7: Ukeoppgaver fra kapittel 5 & 6, mm. Roger Antonsen Matematisk Institutt, Universitetet i Oslo 28. februar 2008 Oppgave 5.16 La R være relasjonen på {a, b, c,
R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.
Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk
Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018
Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk Oppgave 1. ( 9 3 ) = 9 8 7 3 2 1 = 3 4 7 = 84 Høsten 2018 {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, { 2, 5, 8}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7},
Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian
Ukeoppgaver fra kapittel 5 & 6, mm T F T F 2 F T T F 3 F T T F 4 F F F T
Plenumsregning 7 Ukeoppgaver fra kapittel 5 & 6, mm. Roger Antonsen - 28. februar 2008 Oppgave 5.16 La R være relasjonen på {a, b, c, d} definert av følgende matrise. (a) Tegn den grafiske representasjonen
EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
Relasjoner. Ekvivalensrelasjoner. En relasjon R på en mengde A er en delmengde av produktmengden. La R være en relasjon på en mengde A.
Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis ( a, a) R for alle a A. R er symmetrisk hvis ( a, b) R, så er (
EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
MAT1030 Plenumsregning 9
MAT1030 Plenumsregning 9 Ukeoppgaver Mathias Barra - 13. mars 2009 (Sist oppdatert: 2009-03-17 09:35) Oppgave 5.18 Avgjør om følgende relasjoner refleksive, irrefleksive, symmetriske, antisymmetriske eller
EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret
Kapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret
Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner
Oppsummering MAT1030 Diskret matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 18. februar 2008 Vi har gjort oss ferdige med innføringen av Boolesk mengdelære.
EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
Matematikk for IT, høsten 2016
Matematikk for IT, høsten 2016 Oblig 2 Løsningsforslag 6. september 2016 2.1.4 a, b, c, c, d og C a, b, c, d vgjør om en av mengdene er en delmengde til en av de to andre. Her ser vi at C og C 2.1.5. Hvilke
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke
Forelesning 11. Relasjoner. Dag Normann februar Oppsummering. Relasjoner. Relasjoner. Relasjoner
Forelesning 11 Dag Normann - 18. februar 2008 Oppsummering Vi har gjort oss ferdige med innføringen av Boolesk mengdelære. Bruk av Venn-diagrammer er et av læringsmålene i dette emnet. Vi så kort på digital
MAT1030 Forelesning 11
MAT1030 Forelesning 11 Relasjoner Roger Antonsen - 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner Binære relasjoner Definisjon. La A være en mengde. En binær relasjon på A er
Høgskoleni østfold. EKSAMEN Ny og utsatt
Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian
Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017
Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller
Kapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 23. februar 2010 (Sist oppdatert: 2010-02-23 14:33) MAT1030 Diskret Matematikk
EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN ny og utsatt Emnekode: ITF10705 Dato: 4. juni 2018 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide
LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier
Notat med oppgaver for MAT1140
Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis
Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITF10705 Dato: 4. januar 2019 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide Kalkulator
Kapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 12: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) MAT1030 Diskret Matematikk
Matematikk for IT, høsten 2015
Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,
Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon
Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og
Løsningsforslag til eksamen høst 2016
Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre
INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
MAT1030 Forelesning 12
MAT1030 Forelesning 12 Relasjoner Dag Normann - 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) Kapittel 5: Relasjoner Repetisjon En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt
Faglærer: Oppgavesettet består av 12 oppgaver med totalt 15 deloppgaver. Ved sensur vil alle deloppgaver telle like mye.
Høgskoleni østfold EKSAMEN Emnekode: ITF10705 Dato: Emnenavn: Matematikk for IT Eksamenstid: 14. desember 2016 09.00 13.00 Hjelpemidler: Faglærer: - To A4-ark med valgfritt Christian F Heide innhold på
LF, KONTINUASJONSEKSAMEN TMA
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål LF, KONTINUASJONSEKSAMEN TMA4140 2008 Oppgave 1 (10%)
Tillegg til kapittel 11: Mer om relasjoner
MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker
Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200
INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april
Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.
MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk
MAT1030 Forelesning 23
MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter
MAT1030 Forelesning 13
MAT1030 Forelesning 13 Funksjoner Roger Antonsen - 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) Kapittel 6: Funksjoner Opphenting Forrige forelesning snakket vi veldig grundig om relasjoner Vi snakket
Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner
Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever
EKSAMEN. To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt.
Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 16. desember 2013 kl 09.00 til kl 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Plenumsregning 8: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 6. mars 2009 (Sist oppdatert: 2009-03-06 19:11) Oppgave 5.9 La A = {a, b, c} og B = {p,
Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet
MAT1030 Diskret Matematikk Forelesning 12: Relasjoner og litt funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Før vi begynner 3. mars 2009 (Sist oppdatert: 2009-03-04 01:00) MAT1030
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave
Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra
UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden
Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf
Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt
Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk
LØSNINGSFORSLAG EKSAMEN V06, MA0301
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket
Mengder, relasjoner og funksjoner
MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030
MAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!
Kapittel 6: Funksjoner
MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 6: Funksjoner 2. mars 2010 (Sist oppdatert: 2010-03-02 14:14) MAT1030 Diskret Matematikk
Matematikk for IT, høsten 2017
Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende
MAT1030 Forelesning 13
MAT1030 Forelesning 13 Funksjoner Dag Normann - 2. mars 2010 (Sist oppdatert: 2010-03-02 14:15) Kapittel 6: Funksjoner Forrige uke Forrige forelesning snakket vi om relasjoner. Vi snakket om ekvivalensrelasjoner
Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008
Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis
Prøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
TMA4140 Diskret Matematikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),
Eksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00
Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
MAT1030 Forelesning 22
MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:
Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen
MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 32: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 21. mai 2008 Streik? Det er muligheter for streik i offentlig sektor fra midnatt, natt til fredag.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.
Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan
Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost
Viktige begrep i kapittel 1.
Viktige begrep i kapittel 1. 1. Egenskaper ved relasjoner. La R A A være en binær relasjon. (a) At R er refleksiv betyr at x (x, x) R. (b) At R er symmetrisk betyr at x y ((x, y) R (y, x) R ). (c) At R
Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.
INF1800 Forelesning 6
INF1800 Forelesning 6 Utsagnslogikk Roger Antonsen - 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk Hvordan fange inn utsagn? Jeg spiser det hvis det er godt. Jeg spiser
UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.
Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting
Forelesning 13 Dag Normann - 25. februar 2008 Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner. Vi definerte hva vi mener med partielle ordninger og med totale ordninger. Deretter snakket
En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser ofte kan ha.
Forelesning 12 Relasjoner, Dag Normann - 20. februar 2008 Oppsummering En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser
INF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon
Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)
Oppsummering. MAT1030 Diskret matematikk. Ekvivalensrelasjoner. Oppsummering. Definisjon. Merk
Oppsummering MAT1030 Diskret matematikk Forelesning 12: Relasjoner, Dag Normann Matematisk Institutt, Universitetet i Oslo 20. februar 2008 En relasjon på en mengde A er en delmengde R A A = A 2. Vi har
Repetisjonsforelesning - INF1080
Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en
INF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 6: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk
