Viktige begrep i kapittel 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Viktige begrep i kapittel 1."

Transkript

1 Viktige begrep i kapittel Egenskaper ved relasjoner. La R A A være en binær relasjon. (a) At R er refleksiv betyr at x (x, x) R. (b) At R er symmetrisk betyr at x y ((x, y) R (y, x) R ). (c) At R er transitiv betyr at x y z (((x, y) R (y, z) R ) (x, z) R ). (d) At R er antisymmetrisk betyr at x y ((x, y) R (y, x) R ) x = y ). (e) At R er asymmetrisk betyr at x y ((x, y) R (y, x) R ). Dersom R er en relasjon så definerer vi R(x) = [x] R = {y (x, y) R}. En relasjon som har egenskapene a,b og c kalles en ekvivalensrelasjon. I dette tilfellet kalles [x] R for ekvivalensklassen til x m.h.p. R. En relasjon som har egenskapene a,c og d kalles en delvisordning. 2. Partisjon av en mengde. En partisjon Π av en mengde A er en delmengde Π P (A) av potensmengden til A med følge egensskaper. (a) Ingen av mengdene i Π er tomme. (x Π) (x ). (b) Mengdene i Π er disjunkte eller sammenfalle. (x Π) (y Π) (x y = x = y). (c) Π er uttømme. A = Π eller (x A) (y Π) x y. Spør meg hvis det er noe her som er uklart. 3. Sammenhengen mellom ekvivalensrelasjoner og partisjoner på en mengde. La A være en mengde. Vi lar Ekv(A) betegne mengden av ekvivalensrelasjoner på A og Part(A) betegne mengden av partisjoner av A. Dersom Π er en partisjon av A, la R(Π) = {(x, y) (z Π) (x z y z)} = {z z z Π}. Leseren kan sjekke at R(Π) er en ekvivalensrelasjon. Dersom R er en ekvivalensrelasjon på A, la Π(R) = {[x] R x R}. Leseren kan sjekke at Π(R) er en partisjon. Med andre ord så har vi definert funksjoner Π : Ekv(A) Part(A), og R : Part(A) Ekv(A). Teorem 1.1 Funksjonene Π og R gir en naturlig en til en korrespondanse mellom ekvivalensrelasjoner og partisjoner. Beviset overlates til leseren. La R være en ekvivalensrelasjon på A. Det er vanlig i matematikk å betegne den tilhøre partisjonen Π(R) med A/R. Merk at funksjonen A A/R definert ved x [x] R er surjektiv og at fibrene til denne funksjonen er ekvivalensklassene til R. Mengden A/R kalles også for kvotientmengden til A m.h.p. R. 4. Vekstklasser av funksjoner N N. I det følge vil variablene ta verdier i de naturlige tallene N = {0, 1, 2, 3,...}. Vi sier at en funksjon f er av orden g, og betegner dette med f O(g), dersom c d n f(n) cg(n)+d. Leseren kan sjekke at relasjonen definert ved f O(g) er transitiv. Vi sier at to funksjoner f og g har samme vekst, eller er i samme vekstklasse og vi skriver f g eller f Θ(g), dersom f O(g) og g O(f). Leseren kan sjekke at relasjonen er refleksiv, symmetrisk og transitiv, det vil si en ekvivalenrelasjon. Ekvivalensklassene under kalles vekstklasser. Kvotientmengden, altså vekstklassene danner en delvisordnet mengde under relasjonen Θ(f) Θ(g) f O(g). Merk at relasjonen er veldefinert. Det vil si den avhenger ikke av valg av funksjon i Θ(f) eller Θ(g). Leseren kan vise at dersom h Θ(f), k Θ(g), så gjelder f O(g) h

2 Teorem 1.2 Polynomer av samme grad er i samme vekstklasse. Teorem 1.3 For etthvert polynom f, så er Θ(f) Θ(2 n ). (Merk at 2 n er den tradisjonelle betegnelsen på funksjonen n 2 n.) 5. Refleksiv Transitiv tillukning og Warshalls algoritme. For en vilkårlig relasjon R på en mengde A så lar vi R betegne den refleksive og transitive tillukningen til R. Vi kan også si direkte at R består av alle par (a, b) for hvilke det finnes en vei i R fra a til b. I mengdespråket har vi R = {(x, y) (x = y) k x 0 x 1... x k ((x 0 = x) (x k = y) i (0 i k 1 (x i, x i+1 ) R ))}. Warshalls algoritme Her er R en relasjon på en mengde A som er ordnet A = {a i 1 i n}. Anta at R = k og A = n. R := R {(a i, a i ) 1 i n} for j = 1 to n for i = 1 to n for k = 1 to n if (a i, a j ) R (a j, a k ) R (a i, a j ) R then R := R {(a i, a k )} Leseren kan sjekke at vi trenger høyst 3k sammenligninger i den innerste for sløyfen, så denne algoritmen er av orden O(kn 3 ). Beviset for at algoritmen er korrekt står på side 37 i Lewis og Papadimitriou. Oppgave You have five algorithms for a problem, with these running times: 10 6 n, 10 4 n 2, n 4, 2 n, n! (a) Your computer executes 10 8 steps per second. What is the largest size n you can solve by each algorithm in a second? (b) In a day? (Assume that a day is 10 5 seconds.) (c) How would the numbers in (a) and (b) change if you bought a computer ten times faster? 6. Tillukningsegenskaper i P (D). n-ganger {}}{ La D være en mengde. Vi skriver D n = D D D for det kartesiske produktet n ganger. (Merk at D 0 = { } og D 1 = D.) En delmengde R D k kaller vi en k-ær relasjon, eller en relasjon av aritet k på D. Dersom R er en relasjon av aritet r på D, kan vi definere en egenskap på P (D) som følger. C R (B) x 1 x 2... x r ((x 1 B x 2 B x r 1 B (x 1, x 2,..., x r ) R ) x r B ) Mer generelt, dersom R = (R 1, R 2,..., R k ) er et k-tuppel av relasjoner på D, med R i av aritet r i, kan vi definere egenskapen C R (B) C R1 (B) C R2 (B) C Rk (B). Egenskaper av typen C R (B), hvor R = (R 1, R 2,..., R k ) er et k-tuppel av relasjoner på D vil vi kalle en tillukningsegenkap på D. Teorem 1.4 For enhver tillukningsegenskap C R på D, og for enhver delmengde A D, finnes en entydig bestemt minste mengde A D slik at A A og C R (A ). Vi kaller A for

3 Bevis: Vi definerer først familien av mengder som inneholder A og som har egenskapen C R. S R (A) = {B A B C R (B)}, så setter vi A = S R (A). Siden alle elementene i S R (A) inneholder A har vi A A. Det gjenstår bare å vise C R (A ). Anta at 1 i k og la a 1, a 2,..., a ri være et r i elementer i D, slik at a j A for 1 j r i 1 og (a 1, a 2,..., a ri ) R i. Da ser vi at r i B for enhver B S R (A), og følgelig er a ri A. Mengden A sies å være definert induktivt ut fra mengden A og relasjonene R i. Når en mengde er definert induktivt kan vi alltid bruke bevismetoden strukturell induksjon, som vi vil beskrive i neste avsnitt. 7. Strukturell induksjon. La R = (R 1, R 2,..., R k ) er et k-tuppel av relasjoner på D, med R i av aritet r i, og la A D. La A være tillukningen til A m.h.p. R. La E være en egenskap ved noen av elementene i D. (Eller rett og slett en delmengde av D.) For å vise at alle elementene i A har egenskapen E er det tilstrekkelig å vise at 1 Alle elementene i A har egenskapen E. 2 For 1 i k og (a 1, a 2,..., a ri ) D r i, derom a j E for 1 j r i 1 og (a 1, a 2,..., a ri ) R i, så er a ri E. Eller med andre ord at E S R (A). Dette vil bli klarere når vi får se noen eksempler. Eksemplene kommer stort sett fra språkteorien. 8. Språk. Det første eksempelet på tillukning som det er rimelig å se på er mengden av strenger over et alfabet Σ. Et alfabet er bare en mengde, som oftest elig. Mengden av strenger over Σ kalles Σ, og er den minste mengden som inneholder { }, og som er lukket under alle relasjonene R a = {< x, < a, x >> a Σ x Σ }. I Lewis og Papadimitriou betegnes med e, og < a, x > med ax når det er snakk om strenger. La X være en mengde. Vi vil betegne mengden av alle funksjoner fra X til X med EndX. Teorem 1.5 (Induktiv definisjon) For enhver funksjon f : Σ EndX finnes en og kun en funksjon, f : Σ EndX med følge egenskaper. (1) fe = 1 X Identitetsfunksjonen på X. (2) fa = f a (3) fax = f a f x Sammensetningen av funksjonene. Bevis: Dersom D Σ er den mengden som f kun kan defineres på en entydig måte på, så er e D og vi ser også av (3) at dersom x D så er også ax D, følgelig er D = Σ. Teorem 1.6 (Induksjonsprinsippet for Σ ) For ethvert utsqagn P (x) om x Σ, gjelder følge. For å vise at P (x) er sann for alle x er det tilstrekkelig å vise at (1) P (e) er sann. (2) P (x) P (ax) er sann for vilkårlig x Σ og vilkårlig a Σ. Bevis: Dersom S Σ er mengden som består av alle x som gjør P (x) sann, i.e. S = {x x Σ P (x)}, så er e S og vi ser også av (2) at dersom x S så er også ax S, følgelig er S = Σ. Eksempel 1.7 (Lengdefunksjonen på Σ ) Dersom vi velger X = N, de naturlige tallene og f a : N N som etterfølgerfunksjonen f a (n) = n = n + 1 for hver a Σ, så er lengdefunksjonen gitt ved l(x) = f x (0). Merk at l(e) = 0 og l(ax) = l(x) + 1, og dette karakteriserer lengdefunksjonen fullstig i følge teorem 1.5. Eksempel 1.8 (Konkatenasjon) Dersom vi velger X = Σ, og f a : Σ Σ til å være

4 Merk at (e y) = y og (ax y) = a(x y), og dette karakteriserer konkatenasjon fullstig i følge teorem 1.5. Vi vil nå se et eksempel på hvordan vi bruker induksjonsprinsippet. Teorem 1.9 (Assosiativitet av konkatenasjon) For alle strenger gjelder ((x y) z) = (x( y z)). Bevis: La P (x) være utsagnet ((x y) z) = (x( y z)). Vi overlater til leseren å verifisere P (e). For å vise teoremet er det altså tilstrekkelig å vise P (x) P (ax). Merk at (3) sier at (av w) = a(v w). Vi har ((ax y) z) = (a(x y) z) (3) (a(x y) z) = a((x y) z) (3) a((x y) z) = a(x (y z)) (Induksjonshypotesen) a(x (y z)) = (ax (y z)) (3) P (ax) følger fordi likhetsrelasjonen er symmetrisk og transitiv. Fra nå av betegner vi konkatenasjonen x y bare med xy. Leseren oppfordres å bruke assosiativiteten samt induksjon til å vise at xe = x. Eksempel 1.10 (Reversering) Dersom vi velger X = Σ, og f a : Σ Σ til å være funksjonen definert ved at f a (y) = ya for hver a Σ, så er reversering gitt ved x R = f x (e). Merk at a R = a og at (3) sier at (ax) R = x R a, og dette karakteriserer reverseringen fullstig i følge teorem 1.5. Teorem 1.11 For alle strenger gjelder (xy) R = y R x R. Bevis: La P (x) være utsagnet (xy) R = y R x R. Vi overlater til leseren å verifisere P (e). For å vise teoremet er det altså tilstrekkelig å vise P (x) P (ax). Vi har ((ax)y) R = (a(xy)) R (Assosiativitet av konkatenasjon) (a(xy)) R = (xy) R a (3) (xy) R a = (y R x R )a (Induksjonshypotesen) (y R x R )a = y R (x R a) (Assosiativitet av konkatenasjon) y R (x R a) = y R (ax) R (3) P (ax) følger fordi likhetsrelasjonen er symmetrisk og transitiv. Fra nå av betegner vi konkatenasjonen x y bare med xy. Leseren oppfordres å bruke assosiativiteten samt induksjon til å vise at xe = x. Et språk over et alfabet Σ er en delmengde av Σ. Vi har følge elementære operasjoner på språk. A B, A B, Σ A, AB = {αβ α A β B}, A = {e} {α 1 α k α i A for 1 i k}. Språket A kalles Kleenestjerne-tillukningenen til A og er det minste språket som inneholder A, den tomme strengen, og som er lukket under konkatenasjon. 9. Regulære språk. I dette avsnittet skal vi operere pa et plan høyere enn i det forrige. Vi skal betrakte klasser av språk. Det er delmengder av P (Σ ). Merk at union, snitt, kompliment, konkatenasjon av språk og Kleenestjerne er relasjoner på P (Σ ), av aritet henholdsvis 3,3,2,3 og 2. La E P (Σ ) være følge språk. E = {, {e}} {{a} a Σ}. De regulære språkene er den minste klassen av språk som inneholder E og som er lukket under union, konkatenasjon og Kleenestjerne. Denne klassen vil vi betegne med Reg(Σ), eller bare Reg når det er klart hvilket alfabet vi har å gjøre med. Vi skal se senere at klassen av regulære språk også er lukket under snitt og komplement. Dette er langt fra opplagt. 10. Regulære uttrykk.

5 I dette avsnittet skal Σ være et alfabet, og vi skal anta at Σ ikke inneholder de spesielle symbolene Spes = {(, ),,, }. De Regulære uttrykkene over alfabetet Σ er et språk reg(σ) (Σ Spes), og er definert som det minste språket med følge egenskaper. Dersom α reg og β reg, så er også reg a reg for alle a Σ (α β) reg (αβ) reg α reg Teorem 1.12 Det finnes en og kun en funksjon, L : reg Reg med følge egenskaper. L( ) = L(a) = {a} for alle a Σ L((α β)) = L(α) L(β) L((αβ)) = L(α)L(β) L(α ) = L(α) Det er ikke gjordt noe forsøk på å bevise dette teoremet i boka. Teoremet er egentlig et korollar av et annet teorem, nemlig teoremet om entydig lesbarhet for regulære uttrykk. Dette er noe vi skal komme tilbake til i kapitlet om gramatikker og derivasjonstrær. Hva er L( )? Oppgave The star height h(α) of a regular expression α is defined by induction as follows. h( ) = 0 h(a) = 0 for each a Σ h((α β)) = h((αβ)) = max{h(α), h(β)} h(α ) = h(α) + 1 For example, if α = (((ab) b ) a ), then h(α) = 2. Find in each case, a regular expression which represents the same language and has star height as small as possible. (a) ((abc) ab) (b) (a(ab c) ) (c) (c(a b) ) (d) (a b ab) (e) (abb a) (Alle språkene kan representeres av uttrykk med mindre stjernehøyde)

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}. Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008. INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 12: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) MAT1030 Diskret Matematikk

Detaljer

Repetisjonsforelesning - INF1080

Repetisjonsforelesning - INF1080 Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

MAT1030 Forelesning 12

MAT1030 Forelesning 12 MAT1030 Forelesning 12 Relasjoner Dag Normann - 24. februar 2010 (Sist oppdatert: 2010-02-24 12:36) Kapittel 5: Relasjoner Repetisjon En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting Forelesning 13 Dag Normann - 25. februar 2008 Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner. Vi definerte hva vi mener med partielle ordninger og med totale ordninger. Deretter snakket

Detaljer

Relasjoner - forelesningsnotat i Diskret matematikk 2015

Relasjoner - forelesningsnotat i Diskret matematikk 2015 Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser

Detaljer

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)} Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon

Detaljer

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 29. november 2013 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)

Detaljer

Relasjoner - forelesningsnotat i Diskret matematikk 2017

Relasjoner - forelesningsnotat i Diskret matematikk 2017 Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser

Detaljer

Tillegg til kapittel 11: Mer om relasjoner

Tillegg til kapittel 11: Mer om relasjoner MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker

Detaljer

Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet

Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet MAT1030 Diskret Matematikk Forelesning 12: Relasjoner og litt funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Før vi begynner 3. mars 2009 (Sist oppdatert: 2009-03-04 01:00) MAT1030

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier

Detaljer

LO118D Forelesning 3 (DM)

LO118D Forelesning 3 (DM) LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Ekvivalensrelasjoner. Oppsummering. Definisjon. Merk

Oppsummering. MAT1030 Diskret matematikk. Ekvivalensrelasjoner. Oppsummering. Definisjon. Merk Oppsummering MAT1030 Diskret matematikk Forelesning 12: Relasjoner, Dag Normann Matematisk Institutt, Universitetet i Oslo 20. februar 2008 En relasjon på en mengde A er en delmengde R A A = A 2. Vi har

Detaljer

Egenskaper til relasjoner på en mengde A.

Egenskaper til relasjoner på en mengde A. Egenskaper til relasjoner på en mengde A. Refleksivitet Relasjonen er refleksiv hvis (a, a) R for alle a A. Vi kan se det ut fra: 1) Grafen: R er refleksiv hvis alle punktene i grafen har en sløyfe. 2)

Detaljer

En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser ofte kan ha.

En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser ofte kan ha. Forelesning 12 Relasjoner, Dag Normann - 20. februar 2008 Oppsummering En relasjon på en mengde A er en delmengde R A A = A 2. Vi har satt navn på visse egenskaper relasjoner som oppstår i anvendelser

Detaljer

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017 Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller

Detaljer

MAT1030 Forelesning 13

MAT1030 Forelesning 13 MAT1030 Forelesning 13 Funksjoner Roger Antonsen - 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) Kapittel 6: Funksjoner Opphenting Forrige forelesning snakket vi veldig grundig om relasjoner Vi snakket

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 23. februar 2010 (Sist oppdatert: 2010-02-23 14:33) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

MAT1030 Forelesning 11

MAT1030 Forelesning 11 MAT1030 Forelesning 11 Relasjoner Roger Antonsen - 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner Binære relasjoner Definisjon. La A være en mengde. En binær relasjon på A er

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) MAT1030 Diskret

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

TMA 4140 Diskret Matematikk, 3. forelesning

TMA 4140 Diskret Matematikk, 3. forelesning TMA 4140 Diskret Matematikk, 3. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 5, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

MAT1030 Forelesning 13

MAT1030 Forelesning 13 MAT1030 Forelesning 13 Funksjoner Dag Normann - 2. mars 2010 (Sist oppdatert: 2010-03-02 14:15) Kapittel 6: Funksjoner Forrige uke Forrige forelesning snakket vi om relasjoner. Vi snakket om ekvivalensrelasjoner

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 6: Funksjoner 2. mars 2010 (Sist oppdatert: 2010-03-02 14:14) MAT1030 Diskret Matematikk

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione Arne Skjærholt Terza lezione Arne Skjærholt Terza lezione Regulære uttrykk Regex Regulære uttrykk (regular expressions) er et godt eksempel på det som kalles finite-state methods (hvorfor det heter det

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 7: Ukeoppgaver fra kapittel 5 & 6, mm. Roger Antonsen Matematisk Institutt, Universitetet i Oslo 28. februar 2008 Oppgave 5.16 La R være relasjonen på {a, b, c,

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner

Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner Oppsummering MAT1030 Diskret matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 18. februar 2008 Vi har gjort oss ferdige med innføringen av Boolesk mengdelære.

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

Forelesning 11. Relasjoner. Dag Normann februar Oppsummering. Relasjoner. Relasjoner. Relasjoner

Forelesning 11. Relasjoner. Dag Normann februar Oppsummering. Relasjoner. Relasjoner. Relasjoner Forelesning 11 Dag Normann - 18. februar 2008 Oppsummering Vi har gjort oss ferdige med innføringen av Boolesk mengdelære. Bruk av Venn-diagrammer er et av læringsmålene i dette emnet. Vi så kort på digital

Detaljer

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519 Eksamen 2. desember 2014 Eksamenstid 4 timar IR201712 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1.......................................................................................

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1 Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 14: Mer om funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) MAT1030

Detaljer

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3). Plenumsregning 9 Diverse ukeoppgaver Roger Antonsen - 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3). a) Ved å bruke den rekursive definisjonen av PL, vis hvordan vi skritt

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

Direkte produkter. (a, b)(a 0,b 0 )=(ab, a 0 b 0 ).

Direkte produkter. (a, b)(a 0,b 0 )=(ab, a 0 b 0 ). Direkte produkter Vi kjenner det kartesiske produktet av to mengder Y.Detbeståravallepar(x, y) av elementer x 2 og y 2 Y.OrdetkartesiskerdannetavegennavnetRenéDécartes, en fransk filosof og matematiker

Detaljer

MAT1030 Plenumsregning 9

MAT1030 Plenumsregning 9 MAT1030 Plenumsregning 9 Ukeoppgaver Mathias Barra - 13. mars 2009 (Sist oppdatert: 2009-03-17 09:35) Oppgave 5.18 Avgjør om følgende relasjoner refleksive, irrefleksive, symmetriske, antisymmetriske eller

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag 23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

Obligatorisk oppgave MAT2200 VÅREN 2011

Obligatorisk oppgave MAT2200 VÅREN 2011 Obligatorisk oppgave MAT2200 VÅREN 2011 Alle punkter teller likt. Det kreves at 50% er riktig (som betyr 10 av 19 punkter) for at oppgaven skal godkjennes. Den skal leveres i egen innleveringsboks i 7.

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Forelesning 31: Repetisjon

Forelesning 31: Repetisjon MAT1030 Diskret Matematikk Forelesning 31: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 31: Repetisjon 18. mai 2010 (Sist oppdatert: 2010-05-18 14:11) MAT1030 Diskret Matematikk

Detaljer

En repetisjon hrj høst 2009

En repetisjon hrj høst 2009 En repetisjon hrj høst 2009 Data Maskin Data Syntaktiske objekter - endelige Mengde { } Multimengde [ ] Liste < > Symbol String = Liste av symboler Vi kan alltid finne ut om to syntaktiske objekter er

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 BJØRN JAHREN Euklids Elementer introduserte den aksiomatiske metode i geometrien, og i mer enn 2000 år var den omtrent enerådende som lærebok i geometri.

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Definisjon av binær relasjon Definisjon av ekvivalens

Detaljer