Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:"

Transkript

1 Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian F Heide Eksamensoppgaven: Oppgavesettet består av 6 sider inklusiv denne forsiden og et vedlegg på én side. Kontroller at oppgaven er komplett før du begynner å besvare spørsmålene. Oppgavesettet består av syv oppgaver med i alt 8 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Karakteren settes ut fra en helhetsvurdering av besvarelsen. På alle oppgaver så sant det er mulig) skal du: vise utregninger og hvordan du kommer fram til svarene begrunne dine svar, selv om dette ikke er eksplisitt sagt i hvert spørsmål Sensurdato: Torsdag 5. januar Karakterene er tilgjengelige for studenter på studentweb senest virkedager etter oppgitt sensurfrist. Følg instruksjoner gitt på:

2 Oppgave En aksepterende automat er angitt med følgende tilstandstabell: Tilstand Inngangsverdi s s s s s s s s s s s s åde tilstand s og s er aksepterende tilstander. a) Tegn tilstandsdiagrammet for denne automaten. Tilstandsdiagrammet kan tegnes slik: Start s s s s b) utomaten vil akseptere bestemte strenger som tilhører et regulært språk. i. ngi mengden av ikke-avslutningsymboler N) og avslutningssymboler T) for dette språket. lfabetet for dette språket, er gitt ved følgende to mengder: N = {s, s, s, s } Man kan bruke andre ikke-avslutningssymboler enn disse, men da må disse andre symbolene benyttes korrekt i produksjonsreglene i punkt ii nedenfor.) T = {, } ii. ngi produksjonsreglene for grammatikken som genererer dette språket. Produksjonsreglene for denne grammatikken, blir: s s s s s s s s s Eksamen i Matematikk for IT, desember løsningsforslag Side av

3 s s s s s s s s s s s s Oppgave a) Gitt det komplekse tallet 5i z i Skriv tallet på kartesisk rektangulær) form, altså som z a bi. For å bli kvitt den komplekse nevneren, ganger vi teller og nevner med den komplekskonjugerte av nevneren, altså i : i i i i i i i z i i i i i i i i b) Konvertér tallet til det binære tallsystemet. Vi kan f eks bruke algoritmen med å dele gjentatte ganger med grunntallet i det tallsystemet vi skal konvertere til, og ta vare på resten fra hver divisjon: : 5 : 5 : : 6 : : : 5 Resten må leses fra høyre mot venstre, og resultatet blir altså: 6 c) Ved straffesparkkonkurranser i fotball må treneren velge ut fem av de elleve spillerne på banen som skal ta de fem første straffene for laget. Det anses for å være av stor betydning i hvilken rekkefølge spillerne tar straffesparkene. Hvor mange ulike grupper av fem spillere har treneren å velge blant, når vi altså tar hensyn til rekkefølgen de skal ta straffene? Siden kalkulator ikke er tillatt på denne eksamen, trenger du ikke å regne ut svaret, men bare sette opp hvordan det skal regnes ut og forkorte brøken du får mest mulig.) Dette er altså et ordnet utvalg siden rekkefølgen har betydning) uten tilbakelegging siden hver spiller bare kan ta en straffe). Følgelig: Eksamen i Matematikk for IT, desember løsningsforslag Side av

4 !! P, 5) )! 6! 65 Man kan også tenke slik: når treneren skal velge den hvem som skal ta den første straffen, har han å velge blant. Når han skal velge hvem som skal ta den andre straffen, har han å velge blant, osv. Når han skal velg hvem som skal ta den femte straffen, har han 7 å velge blant. Derfor er det 98 7 muligheter. Dersom noen skulle si at det kun er utespillerne som kan ta straffe, og derfor regner!/-5)! vil også dette godkjennes som riktig. Oppgave a) Gitt følgende vektede graf: a 8 b 6 f c e d ruk Kruskals algoritme til å finne et minimalt spenntre for grafen. Vis hvert trinn i algoritmen. Første trinn i Kruskals algoritme er å sortere kantene etter stigende vekt. Resultatet av denne sorteringen, blir: a, e): b, c): c, d): d, e): e, f): d, f): 5 a, f): 6 b, d): 7 a, b): 8 b, f): 8 Vi skal så velg en av kantene med minst vekt. Her der det bare en kant med minst vekt, nemlig a, e). Deretter skal vi tilføye en av kantene med lavest vekt og som ikke gjør at det dannes en syklus. Vi ser av den sorterte listen over, at de med minst vekt, som vi altså kan velge mellom, er kantene b, c) og c, d) som begge har vekt. Ingen av disse vil danne en syklus når vi føyer dem til treet. Vi velger b, c): Eksamen i Matematikk for IT, desember løsningsforslag Side av

5 a f b c e d Den neste kanten med lavest kost som vi kan føye til uten å danne en syklus, blir da c, d). Så føyer vi til kant d, e) som har vekt : a f b c e d Vi har nå et tre som kun mangler node f. Neste kant vi føyer til, blir e, f) med vekt. Når vi har gjort dette, har vi fått følgende tre, og vi ser at alle nodene med i treet: a f b c e d Dette er da et minimalt spenntre for grafen. b) Nedenfor er grafene G V, E ) og G V, E) tegnet. Er G og G isomorfe? Dersom de er isomorfe, angi en isomorfi f : V V. Dersom de ikke er isomorfe, forklar hvorfor de ikke er det. Eksamen i Matematikk for IT, desember løsningsforslag Side 5 av

6 a b e d c 5 G V, ) G V, ) E E Oppgave Vi ser at grafene har like mange noder. Imidlertid har G seks kanter, mens G har fem kanter. Grafene er derfor ikke isomorfe. Vi kan også bruke som argument at noden b har grad, mens det i G ikke finnes noen noder med grad.) a) ruk sannhetstabeller til å vise følgende p q p q) q p) Sannhetstabellen til en ekvivalens er som følger: p q p q S S S S F F F S F F F S Sannhetstabellen til uttrykket på høyre side, er: p q p q) q p) p q) q p) S S S S S S F F S F F S S F F F F S S S Vi ser at siste kolonne i disse tabellene er like, og uttrykkene er derfor logisk ekvivalente. b) ruk resultatet i spørsmål a) og lovene for logisk ekvivalens gitt på vedlagte ark), til å vise at uttrykkene og p q Eksamen i Matematikk for IT, desember løsningsforslag Side 6 av

7 p q) p q) er logisk ekvivalente. Vi starter med uttrykket p q Fra spørsmål a) vet vi at dette er logisk ekvivalent med p q) q p) Vi benytter nå at p q p q, dvs. at implikasjonene i utrykket over kan erstattes av disjunksjoner, og skriver uttrykket over som p q) q p) For lettere å se hvordan vi skal gå videre, kaller vi nå uttrykket r q p) p q for r: Den distributive loven sier p q r) p q) p r). ruker vi denne på uttrykket over altså at konjunksjonen med r distribueres over disjunksjonen i parentesen), får vi r q) r p) Så erstatter vi r med p q og får: p q) q p q) p ruker vi så den distributive loven på uttrykkene inne i begge hakeparentesene, får vi p q) q q) p p) q p) Inversloven sier at p p F. Vi bruker dette, og får p q) F F q p) Identitetsloven medfører at dette blir p q) q p) ruker vi så den kommutative loven på passende steder, får vi da p q) p q) som er det søkte uttrykket. Eksamen i Matematikk for IT, desember løsningsforslag Side 7 av

8 c) I læreboka er det beskrevet tre gyldige slutningsregler: modus ponens, modus tollens og syllogismeloven. Er noen av disse tre gyldige slutningsreglene brukt i de følgende to slutninger? ngi i så tilfelle hvilken slutningsregel som er brukt i hvert tilfelle. i. Hvis Kari og Per har samme mor, så er Kari og Per søsken. Kari og Per er søsken. Derfor har Kari og Per samme mor. Det kan være lurt å gi de ulike utsagnene navn for lettere å kunne sammenligne med slutningsreglene. Vi kan f eks bruke følgende betegnelser: p: Kari og Per har samme mor. q: Kari og Per er søsken. Slutningen over kan da skrives ved hjelp av symboler på følgende måte: p q q p Vi ser at dette ikke er noen av de tre gyldige slutningsreglene nevnt i oppgaven. ii. Hvis Kari og Per har samme far, så er Kari og Per søsken. Kari og Per er ikke søsken. Derfor har Kari og Per ikke samme far. Her bruker vi følgende symboler: p: Kari og Per har samme far q: Kari og Per er søsken Slutningen over kan da skrives ved hjelp av symboler på følgende måte: p q q p Dette er modus tollens, og følgelig en gyldig slutning. d) enytt direkte bevis til å bevise at summen av et partall og et oddetall, er et oddetall. nta nå at n er et partall og m er et oddetall. Vi skal da vise at n + m er et oddetall. Dersom n er et partall, kan det skrives som n = a med a Z a er altså et heltall) Dersom m er et oddetall, kan det skrives som m = b + med b Z Dette gir n + m = a + b + = a + b) + Siden a og b er heltall, er også a + b et heltall. Følgelig er a + b) et partall siden et heltall ganger er et partall). Eksamen i Matematikk for IT, desember løsningsforslag Side 8 av

9 Et partall + er et oddetall. Følgelig er a + b) + et oddetall. Siden a + b) + er lik n + m, er også n + m et oddetall, og det var jo nettopp det vi skulle bevise. Oppgave 5. En relasjon på denne mengden er gitt ved b), b, d), c, c), c, e), e, b), e, e), a, a), d, d) Gitt mengden a, b, c, d, e R a, c), a, d), b, a), b, a) ngi relasjonen ved dens nabomatrise. Nabomatrisen er skrevet slik at først rad gjelder fra node a, andre rad fra node b, osv, samt at første kolonne gjelder til node a, andre kolonne gjelder til node b osv. Nabomatrisen blir da som følger: M b) Tegn relasjonen som en rettet graf. a b d c e c) ngi og begrunn hvorvidt relasjonen er refleksiv, symmetrisk, antisymmetrisk og/eller transitiv. ruk dette til å avgjøre om R er en ekvivalensrelasjon, en delvis ordning partialordning) eller ingen av delene. Relasjonen er refleksiv fordi alle elementer i har relasjon til seg selv. Relasjonen er ikke symmetrisk fordi vi f eks har a, c) R mens c, a) R. Relasjonen er antisymmetrisk fordi vi ikke har noen symmetriske par. Relasjonen er ikke transitiv, fordi vi f eks har a, c) og c, e) mens vi mangler a, e). Fordi relasjonen ikke er transitiv, er den verken en ekvivalensrelasjon eller en delvis ordning. Eksamen i Matematikk for IT, desember løsningsforslag Side 9 av

10 Oppgave 6 Gitt et univers, U, og mengdene og. nta nå at mengdene og er ikke-disjunkte. a) Hva er )? ruk venndiagram når du begrunner svaret. t og er ikke-disjunkte, betyr at de har felles elementer, altså at de i venndiagrammet skal tegnes som delvis overlappende. Venndiagrammet for er slik det skraverte feltet angir resultatet av mengdeoperasjonen): Venndiagrammet for er som følger: Venndiagrammet for ) blir derfor: Vi ser av venndiagrammet at ) b) Vi definerer en ny mengde, C, ved C ) ) Eksamen i Matematikk for IT, desember løsningsforslag Side av

11 Hva er da C ) ruk venndiagram til å begrunne svaret. Mengden den skraverte delen er resultatet av mengdeoperasjonen): Mengden : Mengden C ) ) blir derfor: Dette kalles for øvrig den symmetriske differensen mellom og, og kan skrives. er jo feltet som ikke er skravert på venndiagrammet over. Vi ser da at C ) Eksamen i Matematikk for IT, desember løsningsforslag Side av

12 Eksamen i Matematikk for IT, desember løsningsforslag Side av Oppgave 7 Gitt følgende matriser: a) Finn T. T b) Finn følgende matriseprodukter dersom de eksisterer: i. ) ) ) ) ) ) ) ii. Dette matriseproduktet eksisterer ikke.

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF75 Dato: 5. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 11 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato: 6. desember 03 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:

Detaljer

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 9. 3. Faglærer: Christian F Heide Kalkulator er ikke

Detaljer

Høgskoleni østfold. EKSAMEN Ny og utsatt

Høgskoleni østfold. EKSAMEN Ny og utsatt Høgskoleni østfold EKSAMEN Ny og utsatt Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 8. juni 2015 09.00 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian

Detaljer

Cr) Høgskoleni østfold

Cr) Høgskoleni østfold Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig Løsningsforslag 16. september 2016 2.4.1 a) {(0, 1), (0, 2), (1, 2)} b) {(0, 0), (1, 1), (2, 2)} c) {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} d) {(0, 0), (1, 0), (1,

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag 23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette

Detaljer

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1 Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: LBMAT10311 Emne: Måling, tall og algebra og funksjoner Dato: Eksamenstid: kl 09.00 til kl 15.00 4. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:

Detaljer

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

Høgskoleni østfold EKSAMEN. Ikke-programmerbar lommeregner uten grafisk skjerm Monica Nordbakke Marianne Maugesten

Høgskoleni østfold EKSAMEN. Ikke-programmerbar lommeregner uten grafisk skjerm Monica Nordbakke Marianne Maugesten Høgskoleni østfold EKSAMEN Emnekode: Emne: LUMAT10115 Tall, algebra og funksjoner 1 Dato: 16.12.2015 Eksamenstid: kl. 9 til k1.15 Hjelpemidler: Faglærere: Ikke-programmerbar lommeregner uten grafisk skjerm

Detaljer

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z)

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z) BOKMÅL-MNF130 Kand.nr:... Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet MNF130 - Diskrete Strukturer Onsdag 8. juni 2005, kl. 09-14, dvs 5 timer. Skriv ditt kanidatnr

Detaljer

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier

Detaljer

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer, kl til kl

EKSAMEN. Emne: V1: Tall og algebra, funksjoner 1. Eksamenstid: 6 timer, kl til kl EKSAMEN Emnekode: LSV1MAT12 Emne: V1: Tall og algebra, funksjoner 1 Dato: 13. desember 2012 Eksamenstid: 6 timer, kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer: Andrea Hofmann

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

EKSAMEN. Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10)

EKSAMEN. Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10) EKSAMEN Emnekode: LMAT10111 LUMAT10111 Emne: Matematikk 101: Tall, algebra og funksjonslære Matematikk 101: Tall, algebra og funksjonslære (5-10) Dato: 13.12.2012 Eksamenstid: kl. 9 til kl. 15. Hjelpemidler:

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

EKSAMEN. Emne: Algoritmer og datastrukturer

EKSAMEN. Emne: Algoritmer og datastrukturer 1 EKSAMEN Emnekode: ITF20006 000 Dato: 19. mai 2010 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

Høgskoleni østfold EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) Dato: Eksamenstid: Fra kl til kl

Høgskoleni østfold EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) Dato: Eksamenstid: Fra kl til kl Høgskoleni østfold EKSAMEN Emnekode: LSV3MAT12 Emne: V3: Tall og algebra, funksjoner 2 (5.-10. trinn) Dato: Eksamenstid: Fra kl. 09.00 til kl. 15.00 3. desember 2015 Hjelpemidler: Numerisk lommeregner

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

LØSNINGSFORSLAG EKSAMEN V06, MA0301

LØSNINGSFORSLAG EKSAMEN V06, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket

Detaljer

EKSAMEN. Emne: Algoritmer og datastrukturer

EKSAMEN. Emne: Algoritmer og datastrukturer 1 EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 2016 Oblig 2 Løsningsforslag 6. september 2016 2.1.4 a, b, c, c, d og C a, b, c, d vgjør om en av mengdene er en delmengde til en av de to andre. Her ser vi at C og C 2.1.5. Hvilke

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

EKSAMEN. Tall og algebra, funksjoner 2

EKSAMEN. Tall og algebra, funksjoner 2 EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet

Detaljer

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene. Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: Emne: ITF10208 og Webprogrammering 1 og ITF10212 Innføring i programmering Dato: Eksamenstid: 03/12-2013 09.00-13.00 Hjelpemidler: Faglærer: 2 A4 ark (4 sider) med

Detaljer

1. del av Del - EKSAMEN

1. del av Del - EKSAMEN 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl. Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: 02.12.2015 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN Høgskolen i Agder Institutt for matematiske fag EKSAMEN i MA1040 Matematikk for IT-studenter Mandag 5. mai 2003, kl. 09 00 13 00 Alle trykte og skrevne hjelpemidler er tillatt. Oppgavesettet er på 7 sider.

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Prøve- EKSAMEN med løsningsforslag

Prøve- EKSAMEN med løsningsforslag Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017 Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: Emne: LMAT10111 Matematikk 1, emne 101: Tall, algebra og funksjonslære LUMAT10111 Matematikk 101: Tall, algebra og funksjonslære (5-10) Dato: 1.1.013 Eksamenstid: kl.

Detaljer

EKSAMEN. Bildebehandling og mønstergjenkjenning

EKSAMEN. Bildebehandling og mønstergjenkjenning EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet

Detaljer

EKSAMEN ITF10208. Webprogrammering 1 Dato: Eksamenstid: Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)

EKSAMEN ITF10208. Webprogrammering 1 Dato: Eksamenstid: Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) EKSAMEN Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 01/06-2011 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) Faglærer: Tom Heine

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

EKSAMEN. Emne: Datakommunikasjon

EKSAMEN. Emne: Datakommunikasjon EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 4.Des 2006 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt ut

Detaljer

EKSAMEN. Evaluering av IT-systemer. Eksamenstid: kl 0900 til kl 1300

EKSAMEN. Evaluering av IT-systemer. Eksamenstid: kl 0900 til kl 1300 EKSAMEN Emnekode: ITL24006 Dato: 4. desember 2007 Hjelpemidler: Emne: Evaluering av IT-systemer Eksamenstid: kl 0900 til kl 1300 Faglærer: Ingen, heller ikke kalkulator eller mobiltelefon Kåre Sorteberg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

EKSAMEN (Konvertert fra en gammel PHP-eksamen)

EKSAMEN (Konvertert fra en gammel PHP-eksamen) EKSAMEN (Konvertert fra en gammel PHP-eksamen) Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 07/12-2010 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)

Detaljer

EKSAMEN (Del 1, høsten 2014)

EKSAMEN (Del 1, høsten 2014) EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

EKSAMEN (Konvertert fra en gammel PHPeksamen)

EKSAMEN (Konvertert fra en gammel PHPeksamen) EKSAMEN (Konvertert fra en gammel PHPeksamen) Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 01/06-2011 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)

Detaljer

EKSAMEN. Objektorientert programmering

EKSAMEN. Objektorientert programmering EKSAMEN Emnekode: ITF 10609 Dato: 13.mai 2009 Emne: Objektorientert programmering Eksamenstid: kl 09.00 til kl 12.00 Hjelpemidler: 2 A4-ark med valgfritt innhold på begge sider. Faglærere: Tom Heine Nätt

Detaljer

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 EKSAMEN Emnekode: ITM20606 ITF10208 Dato: Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 05/06-2009 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater

Detaljer

13/21. Høgskoleni østfold EKSAMEN. Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2

13/21. Høgskoleni østfold EKSAMEN. Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2 13/21 Høgskoleni østfold EKSAMEN Emnekode: Emne: LSMATAF213 V3: Tall, algebra, funksjoner 2 Dato:Eksamenstid: 13. desember 2013kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator uten grafisk vindu Faglærere:

Detaljer

Deduksjon i utsagnslogikk

Deduksjon i utsagnslogikk Deduksjon i utsagnslogikk Lars Reinholdtsen, Universitetet i Oslo Merknad Dette notatet om deduksjon er ikke pensum, og den behandlingen som Goldfarb gir av emnet fra 33 og utover dekker fullt ut det som

Detaljer

EKSAMEN. Les gjennom alle oppgavene før du begynner. Husk at det ikke er gitt at oppgavene står sortert etter økende vanskelighetsgrad.

EKSAMEN. Les gjennom alle oppgavene før du begynner. Husk at det ikke er gitt at oppgavene står sortert etter økende vanskelighetsgrad. EKSAMEN Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 09/12-2008 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) Faglærer: Tom Heine

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Matematikk 2, 4MX25-10

Matematikk 2, 4MX25-10 Skriftlig eksamen i Matematikk 2, 4MX25-10 30 studiepoeng ORDINÆR EKSAMEN 31. mai 2013. Sensur faller innen tirsdag 25. juni 2013. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00

EKSAMEN. Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 EKSAMEN Emnekode: ITM20606 ITF10208 Dato: Emne: Webprogrammering med PHP (kont.) Webprogrammering 1 (kont.) Eksamenstid: 09.00-13.00 01/06-2010 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater

Detaljer

Emne 13 Utsagnslogikk

Emne 13 Utsagnslogikk Emne 13 Utsagnslogikk Et utsagn er en erklæring som er entydig sann eller usann, men ikke begge deler. Noen eksempler på (ekte) utsagn: Utsagn : Gjøvik har bystatus er sann ( i alle fall pr. dags dato

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Emnenavn: Statistikk og økonomi. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Statistikk og økonomi. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITD20106 Emnenavn: Statistikk og økonomi Dato: 2. mai 2016 Eksamenstid: 09.00 13.00 Hjelpemidler: - Alle trykte og skrevne. - Kalkulator. Faglærer: Christian F Heide Om eksamensoppgaven

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Hogskoleni østfold EKSAMEN. SFB10312 Innføring i bedriftsøkonomisk analyse. Utskrift av mappeinnlevering Kalkulator

Hogskoleni østfold EKSAMEN. SFB10312 Innføring i bedriftsøkonomisk analyse. Utskrift av mappeinnlevering Kalkulator Hogskoleni østfold EKSAMEN Emnekode: Emne: SFB10312 Innføring i bedriftsøkonomisk analyse Dato: 11.12.2013 Eksamenstid: kl. 09.00 til kl. 12.00 Hjelpemidler: Utskrift av mappeinnlevering Kalkulator Faglærer:

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost

Detaljer

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Løsningsforslag til eksamen høst 2016

Løsningsforslag til eksamen høst 2016 Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre

Detaljer