Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )"

Transkript

1 Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii) Intensitet amplitude, høgden på bølgene - Elektromagnetisk stråling Måten energi beveger seg i rommet 2. Sammenheng mellom elektromagnetisk stråling (energi), partikler og bølgenatur Energi er kvantifisert 1

2 Elektromagnetisk stråling har egenskap til en partikkel /den har masse) i tillegg til at den har bølgenatur. Partikler/stoff kan bare ta opp/avgi energi med visse størrelser (energien som blir tatt opp er kvantifisert) Partikler/stoff har bølgenatur 3. Litt mer om bølgeteori Konstruktiv interferens: To bølger møtes og er i samme fase. En vil då få en bølge med større amplituder Destruktiv interferens: To bølger møtes og er i motsatt fase. Bølge vil dø ut. 2

3 Kapittel 7 Atomstruktur og periodisitet Repetisjon 2 ( ) 4. Atommodell Beskrivelse av hvor elektronene befinner seg i et atom - Bohrs atommodell (bare hovedpunkt) Elektronene går i baner rundt elektronkjernen. En har bare baner med bestemte energier. Denne modellen kan bare beskrive hydrogen. - Kvantemekanisk atommodell Denne modellen bygger på at elektronene har bølgenatur og at elektronene oppfører seg som en stående bølge (bølger som står stille og vibrerer opp og ned som en gitarstreng). o Scrödinger ligningen Et sett av ligninger som beskriver elektronene i et atom HΨ = EΨ der H - sett med ligninger Ψ - bølgefunksjon (gir posisjonen (x,y,z) til elektronene i rommet) E - total energien til atomet Løser vi denne ligningssett får vi et sett med løsninger der hver løsning har en bølgefunksjon (beskriver posisjonen til elektronet) og tre kvantetall som beskriver energi, 3-dimmensjonal form og orientering i rommet. o Fysisk tolking av hva en bølgefunksjon er (orbital) For å få en et fysisk bilde av hvor elektronene er tar vi kvadratet av bølgefunksjonen. Ψ 2 gir oss et 3-dim. område det er sannsynlig å finne elektronet (Atomorbital eller ofte bruker vi bare orbital). Tar en kvadratet av bølgefunksjonen for det ene elektronet i hydrogen får en et kuleforma området (rundt kjernen) 3

4 Så atomorbitalene er et 3-dimmensjonalt område i rommet. De ulike atomorbitalene har ulik energi, form og orientering. Størrelse på atomorbital: Så stor at det er 90 % sannsynlig at elektronet befinner seg i dette området For å få en fullstendig beskrivelse av alle elektronene i et atom må vi finne formen (3-dimmensjonal) og energien til alle atomorbitalene som blir brukt. o Beskrivelse av de ulike orbitalene kvantetall En beskrivelse av alle orbitalene vil en få dersom en løser Scrødinger ligningen. Hver bølgefunksjon (eller orbital) får 3 kvantetall fra Scrødinger ligningen og disse beskriver energi, form (3-dim) og orientering i rommet. Scrødinger ligningen kan bare løses for H, men orbitalene en får vil også gjelde for de andre atomene. Vi ser på et eksempel: Atomet klor: I klor har vi 17 elektron. Vi vil finne energien til alle elektronene og hvor vi kan forvente å finne de (i rommet). Vi må då først finne alle orbitalene elektronene bruker. Det første kvantetallet er hovedkvantetallet, n Hovedkvantetall, n = 1, 2, 3,. (ofte kalla hovedenerginivå) 4

5 n sier noe om energien. Hovedkvantetallet gir ikke den eksakte energien til orbitalene. Der er ofte flere orbitaler som har samme hovedkvantetall (en kan si at hovedkvantetallet gir en grovinndeling av orbitalene når det gjelder energi). Grunnen til at energien øker når n (og størrelsen øker) er at avstanden fra elektronet til kjernen øker. Elektronet er ikke så hardt bundet til kjernen og energien er mindre negativ. n gir størrelsen på orbitalene. Når n øker så øker størrelsen på orbitalene. Vi såg på orbitalen der det ene elektronet til hydrogen befinner seg kuleformet. Denne type orbital ligger på alle hovedenerginivåene, den har samme form, men størrelsen når n øker. Energi } n = 2 } n = 1 Det neste kvantetallet er det sekundære kvantetallet (eller vinkelkvantetallet), l Sekundære kvantetall l = 0 til n-1 l beskriver den 3-D formen på orbitalene. Den er også relatert til energi. Ofte sier en at l gir underenerginivåene (underenerginivåene er då orbitalene). l = 0 l = 0 l = 1 } n = 2 } n = 1 Verdien for l gir 3D-formen: - l = 0 Gir kuleformet orbital som vi kaller s-orbital 5

6 - l = 1 Gir orbital med to kuler som vi kaller p-orbital - l = 2 Gir orbital med fire kuler som vi kaller d-orbital - l = 3 som vi kaller f-orbital Antall ulike orbitaler på et hovedenerginivå er gitt av hvor mange ulike verdier l kan ha. Mulige orbitaler (underenerginivå) har en for de ulike hovedenerginivå (n): - På hovedenergi nivå 1 (n = 1) finnes det en type atomorbital (underenerginivå) nemlig l = 0 - På hovedenergi nivå 2 (n = 2) finnes det to typer atomorbital (underenerginivå) nemlig l = 0 og l =1 - På hovedenergi nivå 3 (n = 3) finnes det tre typer atomorbital (underenerginivå) nemlig l = 0, l = 1 og l = 2 - På hovedenergi nivå 4 (n = 4) finnes det fire typer atomorbital (underenerginivå) nemlig l = 0, l = 1, l = 2 og l = 3 Samme type atomorbital (form) finnes på de ulike hovedenerginivåene. Vi ser at vi har atomorbitalen som er kuleformet både på hovedenerginivå 1 og 2. Forskjellen mellom disse atomorbitalene er størrelsen. Til høgre hovedenerginivå til større er atomorbitalene Relativ energi for de ulike atomorbitalene (på samme hovedenerginivå) E s < E p < E d < E f Fullstendig beskrivelse av en orbital: Vi gir både hovedenerginivå og hvilke orbital en har (underenerginivå): Eksempel: n = 2 og l = 0 Fullstendig beskrivelse: 2s n = 2 og l = 1 Fullstendig beskrivelse: 2p 6

7 Magnetiske kvantetall, m l = -l til +l (inkludert 0) Angir antall av de ulike orbitalene og orientering i rommet for de. Antallet en orbitalene er gitt av hvor mange verdier en kan ha for det magnetiske kvantetallet, m l l s p d f m l 0-1, 0, 1-2, -1, 0, 1, 2-3, -2, -1, 0, 1, 2, 3 Vi har alltid en s-orbital, tre p-orbitaler, fem d-orbitaler og syv f-orbitaler Beskrivelse av alle energinivåene(atomorbitaler) i et atom n = 3 l = 0 m l = 0 l = 1 m l = -1, 0, 1 l = 2 m l = -2, -1, 0, 1, 2 s p d 3d Energi 2p 3s 3p n = 2 l = 0 m l = 0 l = 1 m l = -1, 0, 1 s p 2s 1s n = 1 l = 0 m l = 0 s 7

8 Kapittel 7 Atomstruktur og periodisitet Repetisjon 3 ( ) 4. Atommodell - Kvantemekanisk atommodell o Scrödinger ligningen o Hvordan er elektronene plassert rundt atomene Et fjerde kvantetall Magnetiske kvantetall m s ; Kan ha verdien +½ og -½ Regler for oppfylling av elektron i atom Fyller orbital med lavest energi først (Aufbau prinsippet). En kan ha max. 2 e - i hver orbital (Pauli prinsippet) og de må ha motsatt spinn. I orbitaler med samme energi fyller en først ett elektron i hver orbital (Hunds regel) Ulike skrivemåter for elektronkonfigurasjon: Eksempel: Svovel Energi 2s 2p 3s 3p 1s Metode 1: 1s 2 2s 2 2p 6 3s 2 3p 4 Metode 2: [Ne] 3s 2 3p 4 En tar bort de valenselektronene som svarer til elektronkonfigurasjonen til edelgassen som står i perioden over. Definisjoner: Valenselektron elektronene høyeste hovedenerginivå Indre elektron de som ikke er valenselektron 8

9 Hvordan finne energirekkefølgen til orbitalene: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 7p 7d 7f En kan også bruke det periodiske systemet. 5. Elektronkonfigurasjon og det periodiske systemet Grunnstoff i samme gruppe i periodesystemet har samme valenselektronkonfigurasjon Eksempel: Gruppe IA Li 1s 2 2s 1 Na 1s 2 2s 2 2p 6 3s 1 K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Uventede elektronkonfigurasjoner: Type 1: Cr: En vil forvente følgende elektronkonfigurasjon: [Ar]3d 4 4s 2 Men elektronkonfigurasjonen er [Ar]3d 5 4s 1 Det ser ut som et halvfullt d-orbital skal gir en ekstra stabilitet. Dette gjelder også for Mo Type 2: Cu: En vil forvente følgende elektronkonfigurasjon: [Ar]3d 9 4s 2 Men elektronkonfigurasjonen er [Ar]3d 50 4s 1 Det ser ut som et fullt d-orbital skal gir en ekstra stabilitet. Dette gjelder også for Ag, Au 9

10 Kapittel 7 Atomstruktur og periodisitet Repetisjon 2 ( ) 6. Trender i det periodiske systemet Vi forklarere disse trendene ved hjelp av to faktorer. 1. Endring i hovedkvantetall 2. Endring i effektiv kjerneladning 1. Endring av hovedkvantetall: - Øker nedover i en gruppe - Konstant bortover i en periode (i) Effektivkjerneladning En positive ladningen som et elektron føler fra kjernen. Effektivkjerneladning = antall proton indre elektron Effektivkjerneladning: - Øker bortover i en periode (antall proton øker mens antall indre elektron er konstant en fyller elektron i ytterste energinivå) Dette gjelder for hovedgruppene (i innskuddsmetallene fyller en elektron i et indre energinivå) - Konstant nedover i en gruppe (ii) Atomradius Problem: Vi vet ikke radiusen til atomene, siden vi ikke vet størrelsen på atomorbitalene. Definerer derfor atomradius til et element på følgende måte: Halvparten av avstanden i en kjemiskbinding for elementet 10

11 Trender for atomradius: minker øker Bortover: Hovedkantatallet er konstant. Effektivkjerneladning øker kjernen trekker bedre på elektronene - radien minker Nedover: Eff. Kjerneladning er konstant. Hovedkvantetallet øker orbitalene blir større radien øker (iii) Ioneradius Relativstørrelse på ion og nøytralt atom: Negative ion er større en det nøytrale atomet pga. flere elektron og mer frastøting mellom elektronene. Positive ion er mindre enn det nøytrale atomet pga. færre elektron og mindre frastøting mellom elektronene. Periodiske trender: Nedover i en gruppe: Ioneradien øker nedover i en gruppe pga. økende hovedkvantetall (eff. Kjerneladning er konstant) PS! Atom i samme gruppe dannet samme type ion gjelder hovedgruppene (iv) Ioniseringsenergi Ioniseringsenergi (IE): Den energien som kreves for å fjerne ett elektron fra et atom eller ion i gassfase. Ioniseringsenergi er et mål på hvor vanskelig/lett det er å fjerne ett elektron. X(g) X + (g) + e - 11

12 Trender i periodesystemet for ioniseringsenergi: Nedover i en gruppe: Ioniseringsenergien minker. - Effektivkjerne ladning er konstant. - Hovedkvantetallet øker elektronene er lengre borte fra kjernen de er enklere å fjerne Bortover i en periode: Ioniseringsenergien øker - Hovedkvantetallet er konstant - Effektivkjerne ladning øker det blir vanskeligere å fjerne elektronene. (v) Elektronaffinitet Elektronaffinitet (EA): Den energien endringen som skjer når en legger til et elektron til et atom i gassfase. X(g) +e - X - (g) Elektronaffinitet er negativ dersom det blir avgitt energi (eksotermisk). Der finnes mange atom som ikke tar elektron og danner stabile ion. Vi ser bare på de generelle trendene: Trender i periodesystemet for elektronaffinitet: Nedover i en gruppe: Elektronaffinitet minker. - Effektivkjerneladning er konstant. - Hovedkvantetallet øker elektronene er lengre borte fra kjernen atomet holder dårlig på side egne elektron. De har derfor liten evne til å trekke til seg et nytt elektron. - Bortover i en periode: Elektronaffinitet øker - Hovedkvantetallet er konstant - Effektivkjerneladning øker kjernen trekker mer på sine egne elektron. De har da større evne til å trekke til seg et nytt elektron 12

13 Oppsumering: Trender for atomradius, ioniseringsenergi og elektronaffinitet Bestemt av to faktorer: Effektiv kjerneladning Uendret øker Hovedkvantetall Øker uendret Trender: Atomradius øker minker : Ioniseringsenergi og elektron affinitet minke øker 13

14 Kapittel 8 Kjemisk binding (Repetisjon 1) 1. Hovedtyper av kjemisk binding (i forbindelser/molekyl) - Ionebinding Elektrisk tiltrekning mellom ion med motsatt ladning. Dannet ved at atom avgir/tar opp elektron. o Hvilke ion blir dannet? Hvor for Na + og Cl -? Vi må se på elektron konfigurasjonen: Na (11 elektron): 1s 2 2s 2 2p 6 3s 1 Na + (10 elektron): 1s 2 2s 2 2p 6 Cl (17 elektron) 1s 2 2s 2 2p 6 3s 2 3p 5 Cl - (18 elektron) 1s 2 2s 2 2p 6 3s 2 3p 6 Oktettregelen: Atom tar opp eller avgir elektron til de har oppnådd 8 elektron i ytre skall (edelgass konfigurasjon) - Kovalentbinding Deling av elektron mellom atom for å danne binding 14

Atomets oppbygging og periodesystemet

Atomets oppbygging og periodesystemet Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.

Detaljer

Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper

Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper MENA 1001; Materialer, energi og nanoteknologi - Kap. 4 Atomegenskaper Universet Nukleosyntese Elektroner Orbitaler Kvantetall Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi

Detaljer

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?

Detaljer

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler

Detaljer

Nano, mikro og makro. Frey Publishing

Nano, mikro og makro. Frey Publishing Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige

Detaljer

Hvorfor studere kjemi?

Hvorfor studere kjemi? Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

Periodesystemet.

Periodesystemet. Periodesystemet http://www.youtube.com/watch?v=zgm-wskfbpo Periodesystemet har sitt navn fra at det ble observert at egenskaper til atomer varierte regelmessig og periodisk. Som vi viste og demonstrerte

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

KAPITEL 1. STRUKTUR OG BINDINGER.

KAPITEL 1. STRUKTUR OG BINDINGER. KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)

Detaljer

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

elementpartikler protoner(+) nøytroner elektroner(-)

elementpartikler protoner(+) nøytroner elektroner(-) All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

BINGO - Kapittel 1. Bilde av svovel (bilde side 9) Et natriumion (Na + ) Positiv partikkel i kjernen på et atom (proton)

BINGO - Kapittel 1. Bilde av svovel (bilde side 9) Et natriumion (Na + ) Positiv partikkel i kjernen på et atom (proton) BINGO - Kapittel 1 Bingo-oppgaven anbefales som repetisjon etter at kapittel 1 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER 1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff

Kapittel 2 Atom, molekyl og ion. 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff Kapittel 2 Atom, molekyl og ion 1. Moderne beskrivelse av atom - Enkel oppbygning - Grunnstoff og isotoper - Navn på grunnstoff 2. Introduksjon til det periodiske systemet 3. Molekyl og ioniske forbindelser.

Detaljer

3. Balansering av redoksreaksjoner (halvreaksjons metoden)

3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel 4 Oksidasjon og reduksjons reaksjoner (redoks reaksjoner) 1. Definisjon av oksidasjon og reduksjon 2. Oksidasjonstall og regler 3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

KJM2600-Laboratorieoppgave 2

KJM2600-Laboratorieoppgave 2 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNELG vdeling for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU52005 Naturfag 1 5-10 emne 2 Kjemi Studiepoeng: 7,5 Eksamensdato: 20. mai 2015 Varighet/Timer: Målform: Kontaktperson/faglærer:

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

Kollokvium 4 Grunnlaget for Schrödingerligningen

Kollokvium 4 Grunnlaget for Schrödingerligningen Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon 1 13.11.03 1. Molekylstruktur VSEPR modellen Elektronparene (bindende eller ikke-bindende) vil prøve å være så lang

Detaljer

Bindinger. Hvorfor vil atomer ha åtte elektroner i ytterste skall?

Bindinger. Hvorfor vil atomer ha åtte elektroner i ytterste skall? Bindinger Hvorfor vil atomer ha åtte elektroner i ytterste skall? Finnes det elever som lurer på dette? To klipp fra nettet: http://forum.kvinneguiden.no/index.php?showtopic=457448 http://www.fysikk.no/fysikkforum/viewtopic.php?f=2&t=183

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

b) Beregn varmemengden som blir frigitt hvis metangassen fra a) forbrennes. Anta at reakjonen går isotermt og isobart ved 1 atm og 298K: (5p) Figur 1

b) Beregn varmemengden som blir frigitt hvis metangassen fra a) forbrennes. Anta at reakjonen går isotermt og isobart ved 1 atm og 298K: (5p) Figur 1 1 Oppgave 1 (30%) Den 20. april 2010 inntraff en eksplosjon på boreriggen «Deepwater Horizon» i Mexicogolfen, hvorpå riggen sank. Om årsaken sa ledelsen at et «unormalt høyt trykk» bygde seg opp på bunnen

Detaljer

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Kapittel 21 Kjernekjemi

Kapittel 21 Kjernekjemi Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie

Detaljer

5.11 Det periodiske systemet

5.11 Det periodiske systemet SIF4048 Kjemisk fysikk og kvantemekanikk 2003 - Tillegg 5 1 Tillegg 5, til kapittel 5: 5.11 Det periodiske systemet La oss se litt mer i detalj på 1. Oppbygningen av de enkelte grunnstoffene Helium (Z

Detaljer

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Mekanikk Termodynamikk Innhold Elektrisitet og magnecsme ElektromagneCske bølger 1 Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

1. Oppgaver til atomteori.

1. Oppgaver til atomteori. 1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

Fasit for besvarelse til eksamen i A-112 høst 2001

Fasit for besvarelse til eksamen i A-112 høst 2001 Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014

LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet naturvitenskap og teknologi Institutt for materialteknologi TMT4110 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 OPPGAVE 1 a) Kovalent binding:

Detaljer

FY1006/TFY Øving 9 1 ØVING 9

FY1006/TFY Øving 9 1 ØVING 9 FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 4 Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO 05.09.2017 1 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): Emnenavn: LGU52005 Naturfag 1 5-10 emne 2 Kjemi Studiepoeng: 7,5 Eksamensdato: 20. mai 2015 Varighet/Timer: Målform: 3 timer

Detaljer

KOSMOS. 5: Elektroner på vandring Figur side Modell av et heliumatom. Elektron. Nøytron. p + Proton. Protoner

KOSMOS. 5: Elektroner på vandring Figur side Modell av et heliumatom. Elektron. Nøytron. p + Proton. Protoner 5: Elektroner på vandring Figur side 132 Elektron e p Nøytron n e Proton Modell av et heliumatom. Protoner Nøytroner Elektroner Nukleoner Elementærladning Elementærpartikler er små partikler i sentrum

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover OpJkk: Refleksjon, brytning og diffraksjon RelaJvitetsteori, spesiell

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk

Detaljer

FLERVALGSOPPGAVER KJEMISK BINDING

FLERVALGSOPPGAVER KJEMISK BINDING FLERVALGSOPPGAVER KJEMISK BINDING Hjelpemidler: periodesystem Hvert spørsmål har et riktig svaralternativ. Kjemisk binding 1 I hvilke(t) av disse stoffene er det hydrogenbindninger? I: HF II: H 2 S III:

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Atom «Atomhistoria» Gamle grekarar og indarar, ca 500 f. Kr. Materien har ei minste eining; den er bygd opp av små bitar som ikkje kan delast vidare 1800-talet: Dalton, Brown,

Detaljer

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Lys. Bølger. Partiklar Atom

Lys. Bølger. Partiklar Atom Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk

Detaljer

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.

Detaljer

FASIT (oppg.bok / ekstra oppg.)

FASIT (oppg.bok / ekstra oppg.) 354 Fasit FASIT (oppg.bok / ekstra oppg.) 1.1 Atomer 1.1 a Han utviklet en atommodell slik at det ble fruktbart å snakke om grunnstoffer. b Rosin-i-bolle-modellen c Kjernens ladning er positiv, kjernen

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31 REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Oppgave 4 : FYS linjespesifikk del

Oppgave 4 : FYS linjespesifikk del Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q

Detaljer

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6.

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Atomstruktur Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Hydrogenatomet Det enklaste atomet 1 elektron bunde til atomkjernen, som har 1 proton Bindinga er pga. den elektriske tiltrekningskrafta

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

6. Atomer og molekyler

6. Atomer og molekyler TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 6 1 TILLEGG 6 6. Atomer og molekyler Kapittel 6 Atomer og molekyler er det siste kapitlet i kvantemekanikkdelen av dette kurset. Det dekkes av dette tillegget,

Detaljer

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2. FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy

Detaljer

BINGO - Kapittel 6. Når et stoff går fra. Når et stoff går fra fast stoff til væske (smelte) To eller flere atomer som henger sammen (molekyl)

BINGO - Kapittel 6. Når et stoff går fra. Når et stoff går fra fast stoff til væske (smelte) To eller flere atomer som henger sammen (molekyl) BINGO - Kapittel 6 Bingo-oppgaven anbefales som repetisjon etter at kapittel 6 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

Hvordan ser kjernen ut?

Hvordan ser kjernen ut? Hvordan ser kjernen ut? Størrelsen på et nukleon: ca. 1.6 fm Størrelsen på kjernen: r r o A 1/3 1 fm (femtometer, fermi) = 10-15 m Bindingsenergi Bindingsenergi pr. nukleon som funksjon av massetallet.

Detaljer

Kjemi og miljø. Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5

Kjemi og miljø. Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5 1 Kjemi og miljø Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5 Kapittel 10 Elektrokjemi 2 10.1 Repetisjon av viktige begreper: 2 10.2 Elektrokjemiske

Detaljer

FAGPLANER Breidablikk ungdomsskole. FAG: Naturfag TRINN: 9. Tema/opplegg (eksempler, forslag), ikke obligatorisk

FAGPLANER Breidablikk ungdomsskole. FAG: Naturfag TRINN: 9. Tema/opplegg (eksempler, forslag), ikke obligatorisk FAGPLANER Breidablikk ungdomsskole FAG: Naturfag TRINN: 9. Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Kunne bruke

Detaljer

Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger

Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger 1. Vann som løsningsmiddel 2. Elektrolytter Sterke elektrolytter Svake elektrolytter Ikke-eletrolytter 3. Sammensetning av løsning Molaritet

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer