KJM2600-Laboratorieoppgave 2

Størrelse: px
Begynne med side:

Download "KJM2600-Laboratorieoppgave 2"

Transkript

1 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe mars Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige schrödingerlikningen Ĥψ = Eψ i beregninger av π- elektroner. Den kan brukes til å finne energier og bindingsorden, samt gi MO-orbitaler som en lineær kombinasjon av atomorbitalene (LCAO). 3 Gjennomføring Strukturen til etylen ble tegnet i SHMO funnet på dirac.chem.sdu.dk/shmo, og gjennomført Huckelberegninger. Videre ble butadien tegnet inn og beregninger gjort. 4 Resultater Huckelberegningene av etylen viste at stoffet har en bindingsorden på 2, og at HOMO har ingen noder, LUMO har én. Beregninger på butadien ga informasjonen gitt i Tabell 4.1, i bindingsorden ble beregnet til 1.89 for dobbeltbindingen og 1.45 for enkeltbindingen. Dobbeltbindingene har lavere bindingsorden enn i etylen, men enkeltbindingen har høyere bindingsorden enn en ordinær σ-binding. Bindingslengden samsvarer med bindingsordnen, da en bindingslengden til etylen på 133.0pm tilsvarer en sterkere binding enn butadien men bindingslengde 134.8pm. Tabell 4.1: Informasjon om butadien MO(n) Energi Elektroner LCAO Noder Type 1 α β 2 Ψ 1 = 0.372ψ ψ ψ ψ 4 0 Bindende 2 α β 2 Ψ 2 = 0.602ψ ψ ψ ψ 4 1 Bindende 3 α β 0 Ψ 3 = 0.602ψ ψ ψ ψ 4 2 Anti-bindende 4 α β 0 Ψ 4 = 0.372ψ ψ ψ ψ 4 3 Anti-bindende 1

2 Totalenergien beregnes til E = 2E 1 + 2E 2 = 2(α 1.618β) + 2(α 0.618β) = 4α β = 5112kJ/mol E Deloc = 4(α + β) (4α β) = 0.472β = 174.6kJ/mol Ved å summere absoluttkvadratene til koeffisientene c n kan vi sjekke normalitet, og ved å summere kryssmultiplikasjoner av koeffisientene c n og d n (tilhørende to forksjellige MO) vil vi kunne sjekke ortogonalitet mellom molekylorbitalene. 4 4 c n 2 = δ c c n d n = δ cd i=n Vi ser at hver MO er nomalisert (δ c = 1) og ortogonale på hverandre (δ cd = 0). Samme prosedyre gjøres for syklobutadien. i=n Tabell 4.2: Informasjon om syklobutadien MO(n) Energi Elektroner LCAO Noder Type 1 α 2 β 2 Ψ 1 = 0.5ψ ψ ψ ψ 4 0 Bindende 2 α + 0 β 1 Ψ 2 = 0ψ ψ 2 + 0ψ ψ 4 2 Ikke-bindende 3 α + 0 β 1 Ψ 3 = 0.707ψ 1 + 0ψ ψ 3 + 0ψ 4 3 Ikke-bindende 4 α + 2 β 0 Ψ 4 = 0.5ψ 1 0.5ψ ψ 3 0.5ψ 4 4 Anti-bindende To orbitaler har samme energi MO 1 og MO 2, disse er degenererte. De har kun ett elektron i hver på grunn av Hunds regel, som sier om det er like energinivåer skal elektronene fordeles med samme spinn. Delokaliseringsenergi bestemmes til E Deloc = 0kJ/mol som tilsier ingen energigevinst og at molekylet ikke er stabilt. benzen ble tegnet inn og gjort beregninger på. Alle karbonatomene har en bindingsorden på 1.667, dette sier at alle bindingene er like sterke, noe som stemmer godt overens med tankene om resonansstrukturer og aromatiske ringer. Bindingsordnen stemmer også godt med bindingslengden på 139.7pm > 133.0pm da bindingene er litt svakere enn dobbeltbindingene til butadien. Spranget fra HOMO (MO 3 til LUMO(MO 4 ) gir en energiforskjell på E 3:4 = 2 β = 740kJ/mol 19.7eV. Bruker relasjonen E0 hc λ og får λ 63nm som ligger i det mest energirike området av 2

3 Tabell 4.3: Informasjon om bezen MO Energi e LCAO Noder Type 1 α 2 β 2 Ψ 1 = 0.408ψ ψ ψ ψ ψ ψ 6 0 Bindende 2 α 1 β 2 Ψ 2 = 0ψ 1 0.5ψ 2 0.5ψ 3 + 0ψ ψ ψ 6 2 Bindende 3 α 1 β 2 Ψ 3 = 0.577ψ ψ ψ ψ ψ ψ 6 2 Bindende 4 α + 1 β 0 Ψ 4 = 0ψ 1 0.5ψ ψ 3 + 0ψ 4 0.5ψ ψ 6 4 Anti 5 α + 1 β 0 Ψ 5 = 0.577ψ ψ ψ ψ ψ ψ 6 4 Anti 6 α + 2 β 0 Ψ 6 = 0.408ψ ψ ψ ψ ψ ψ 6 6 Anti UV-stråling. Beregninger ble gjort på fluorbenzen for å se hvordan elektronegative substituenter påvirker aromatstrukturen. Tabell 4.4: Bindingsorden til gitte bindinger for benzen opp mot fluorbenzen Binding Benzen Fluorbenzen C1-C C2-C C3-C C4-C C5-C C6-C C1-F Vi ser at bindingsordnen synker nærmere fluor-atomet og tilnærmet uendret på motsatt side av ringen. Dette tyder sterkt på at ringen donerer elektroner til fluor og mister litt aromasitet. Dette sees også på delokalisjonsenergien til stoffene hvor fluorbenzen fpr litt lavere energigevinst: E Deloc,benzen = 2 β E Deloc,fluorbenzen = 1.59 β Ser at fluor og C1 får mer negativ ladning. Atomer festet til C1 får igjen positiv ladning og andre karbonatomer har relativt lik ladning som i benzen. Gjør beregninger på pyrrol og furan og får E Deloc,pyrrol = 2.2β = 814kJ/mol E Deloc,furan = 3.1β = 1147kJ/mol Fra Figur 7 ser vi at binding mellom substituenten og karbon vil være den svakeste og lengste bindingen. Fra HOMO vil elektrofil substitusjon finne sted på karbonatomene bundet til substituenten da disse koeffisientene er størst og representerer sannsynligheten for å finne elektroenet på disse karbonatomene. 3

4 Beregnet på strukturen til naftalen og bindingene er lagt til tabell 4.5. Her er α lik C1, β lik C2 og γ lik C5. Tabellen representerer et kryssskjema som viser bindingene mellom to atomtyper. Ser fra tabellen at det er 4 bindinglengder hvor α β bindingen sterkest og dermed kortest. Tabell 4.5: Bindinger i naftalen α β γ α β γ Høyeste okuperte orbital (HOMO) blir da MO 5 : Ψ 5 = 0.425ψ ψ ψ ψ 4 + 0ψ ψ ψ ψ ψ 9 + 0ψ 10 Ser at koeffisientene til α har størst tallverdi og som tilsvarer sannsynligheten for å finne elektronet på α, derfor vil disse inngå i elektrofil substitusjon. Da γ har 0 som koeffisient vil ikke valenselektronene være lokalisert på disse og vil dermed ikke delta i elektrofile substitusjoner. 5 Konklusjon Vi ser fra beregninger at bindinger ikke kan sees på som rene dobbelbindinger eller enkeltbindinger. Dobbeltmbindinger avskilt av en enkeltbinding vil fordele en viss dobbelbindingskarakter over alle bindingene. Vi ser at aromatiske ringstrukturer gir økt stabilitet og anti-aromatiske gir ingen stabilitet. Ser også at en substituenter kan donere/trekke ut elektroner fra aromatringer og øke/senke stabiliteten. Huckel teorien er nyttig for å kunne forutsi lokasjonen til elektrofil substitusjon og bindingsordner til molekylet. Beregningene gir også annen nyttig informasjon om molekylet. 4

5 Figur 6.4: Fluorbenzen med bindingsorden Sindre Rannem Bilden 6 Vedlegg Figur 6.1: Butadien med bindingsorden Figur 6.5: Pyrrol med bindingsorden Figur 6.2: Syklobutadien med bindingsorden Figur 6.6: Furan med bindingsorden Figur 6.3: Benzen med bindingsorden Figur 6.7: Naftalen med bindingsorden 5

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 4 Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO 05.09.2017 1 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

KJM2600-Laboratorieoppgave 1

KJM2600-Laboratorieoppgave 1 KJM2600-Laboratorieoppgave 1 Sindre Rannem Bilden Gruppe 1 4. mars 2015 1 Hensikt Hensikten med oppgaven var å demonstrere anvendelsen av kvantekjemiske beregninger i kjemi. 2 Teori Oppgaven baserer seg

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon 1 13.11.03 1. Molekylstruktur VSEPR modellen Elektronparene (bindende eller ikke-bindende) vil prøve å være så lang

Detaljer

KAPITEL 1. STRUKTUR OG BINDINGER.

KAPITEL 1. STRUKTUR OG BINDINGER. KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)

Detaljer

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Monte Carlo simuleringer og molekyldynamikk - repetisjon KJM3600 - Molekylmodellering p.1/50 Monte Carlo simuleringer og molekyldynamikk

Detaljer

Eksamen i KJ133 våren Løsningsforslag for kvantemekanikkoppgaven

Eksamen i KJ133 våren Løsningsforslag for kvantemekanikkoppgaven 1 Eksamen i KJ133 våren 1998 Løsningsforslag for kvantemekanikkoppgaven T. Helgaker Henvisningene er til Atkins' Physical Chemistry, 6th edition a) Kravet om heltallig m følger fra den sykliske grensebetingelsen

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

Angir sannsynligheten for å finne fordelingen av elektroner i rommet

Angir sannsynligheten for å finne fordelingen av elektroner i rommet Atom Orbitaler Angir sannsynligheten for å finne fordelingen av elektroner i rommet Matematisk beregning gir formen og orientering av s, p, d og f orbitaler Kun s og p orbitalene viktige i organisk kjemi

Detaljer

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET.

KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET. KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET. 1. INDUSTRIELL FREMSTILLING OG BRUK AV ALKENER. Eten og propen er de to viktigste organiske kjemikalier som produseres industrielt. Eten, propen og buten syntetiseres

Detaljer

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll Eksperiment 2 Ina Molaug og Anders Leirpoll 1 1 Innhold 2 Formål... 1 3 Beregningsoppgave... 1 3.1 Oppgave 1: Beregninger på etenmolekylet... 1 3.1.1... 1 3.1.2... 2 3.1.3... 2 3.1.4... 3 3.2 Isomerisme

Detaljer

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

Gjennomgang av mekanismer i organisk gk

Gjennomgang av mekanismer i organisk gk Gjennomgang av mekanismer i organisk gk Audun Formo Buene Institutt for kjemi 21. november 2013 2 Innhold Innledning Motivasjon Mekanismer Diels Alder S N 1 eller E1 eller S N 2 eller E2??? Addisjonsreaksjoner

Detaljer

Eten % 1.2%

Eten % 1.2% TFY4215 Innføring i kvantefysikk Molekylfysikk Løsningsforslag til Øving 11 Eten. 6. Med Hartree-Fock-metoden og basissettet 3-21G finner man en likevektsgeometri for eten med bindingslengdene C-H = 1.074

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

University of Oslo KJM2600. Oppsummering

University of Oslo KJM2600. Oppsummering University of Oslo KJM2600 Oppsummering Dette heftet er i tre deler, første del tar for seg grunneleggende kvantemekanikk. Andre del går igjennom oppbygingen av atomer og molekyler, og hvordan energitilstandene

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/48 Molekylorbitalteori - repetisjon Molekylorbitalteori - repetisjon p.2/48 Kvantemekanikk Bølgefunksjonen

Detaljer

Fasit til norsk finale

Fasit til norsk finale Kjemi OL Fasit til norsk finale Kvalifisering til den 47. Internasjonale Kjemiolympiaden 2015 i Baku, Aserbajdsjan Oppgave 1 1) D 2) A 3) C 4) B 5) B 6) B 7) C 8) D 9) A 10) C 11) C 12) A 13) C 14) A 15)

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

KJM3000 vår 2014 Løsningsforslag

KJM3000 vår 2014 Løsningsforslag KJM3000 vår 2014 Løsningsforslag 1a O-H signalet forsvinner ved risting med D 2 O. Koblingskonstanten mellom de to vinylidene protonene er veldig liten og signalene fremstår som singletter. 1b 3523 cm

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7 NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Onsdag 4. juni 2014 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen tlf. 73 59 62

Detaljer

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM.

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM. KAPITEL 2. PLARE BIDIGER G KSEKVESE AV DEM. 1. PLARE KVALETE BIDIGER G ELEKTREGATIVITET T12 Elektronegativitet oen kjemiske bindinger er fullstendig ioniske og noen kovalente, men de fleste er polar kovalente.

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag 04.05.09 Innledning Eten. Etylen, C 2 H 4, eller eten, som det i

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2:

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2: TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: 25.04. gruppe 2: 29.04. Innledning Eten. Etylen, C 2 H 4, eller eten, som det i følge IUPAC (International

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

FY juni 2015 Side 1 av 6

FY juni 2015 Side 1 av 6 FY6019 12. juni 2015 Side 1 av 6 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden i en endimensjonal potensialboks mellom

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM3000 vår 2013 Løsningsforslag

KJM3000 vår 2013 Løsningsforslag KJM3000 vår 2013 Løsningsforslag 1a 1b De tre sp 3 -hybridiserte C-H bindingene i metylester-gruppen har strekk frekvenser i det ordinære området (under 3000 cm -1 ) for alifatisk C-H strekk. De to siste

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse

KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Semi-empiriske metoder - repetisjon 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Fredag 21. mai 2012 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget,

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 26. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/48 Introduksjon Introduksjon p.2/48 Introduksjon p.3/48

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av

Detaljer

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9 FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

INTRODUKSJON OG GENERELL STRUKTURKJEMI

INTRODUKSJON OG GENERELL STRUKTURKJEMI Biologiske makromolekylers struktur KJM5310 F1, F2, F3 INTRODUKSJON OG GENERELL STRUKTURKJEMI Innledning, atomer, kjemiske bindinger, VSEPR-modellen, intermolekylære krefter, isomeri og konformasjoner.

Detaljer

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylorbitalteori - repetisjon KJM3600 - Molekylmodellering p1/48 Molekylorbitalteori - repetisjon p2/48 Bølgefunksjonen systemet Kvantemekanikk

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0, BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk Eten. Innledning Etylen, C2H4, eller eten, som det i følge IUPAC (International Union of Pure and Applied Chemistry) egentlig skal kalles, er en

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234.

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234. 10: Energirik stråling naturlig og menneske skapt Figur side 304 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner) Uran

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

FY mai 2017 Side 1 av 6

FY mai 2017 Side 1 av 6 FY6019 31. mai 2017 Side 1 av 6 Oppgave 1. Bohrmodellen. (Poeng: 10) I Bohrs modell for hydrogenatomet antar man at elektronet går i sirkelbane rundt kjernen, med kvantisert dreieimpuls, L = L = rmv =

Detaljer

Løsning til øving 8 for FY1004, høsten 2007

Løsning til øving 8 for FY1004, høsten 2007 øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok EKSAMENSOPPGAVE Eksamen i: KJE-1001 Dato: Fredag 27. februar 2015 Tid: Kl 09:00 15:00 Sted: Aud.max Tillatte hjelpemidler: Kalkulator «Huskelapp» - A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk

Detaljer

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4 FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:

Detaljer

B.1 Generelle egenskaper til energiegenfunksjoner

B.1 Generelle egenskaper til energiegenfunksjoner TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner

Detaljer

Dette gir ingen informasjon om hvor en nukleofil vil angripe.

Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2016 Molekylfysikk Løsningsforslag til Øving 13 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClC3: Dette gir ingen informasjon om

Detaljer

FY1006/TFY Øving 9 1 ØVING 9

FY1006/TFY Øving 9 1 ØVING 9 FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt

Detaljer

FY1006/TFY Øving 7 1 ØVING 7

FY1006/TFY Øving 7 1 ØVING 7 FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN

Detaljer

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/36 Tetthetsfunksjonalteori (DFT) - repetisjon Tetthetsfunksjonalteori (DFT) - repetisjon

Detaljer

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY45/FY45. desember 8 - løsningsforslag Løsningsforslag Eksamen. desember 8 TFY45 Atom- og molekylfysikk/fy45 Kvantefysikk Oppgave a. For x og E = E B < har den tidsuavhengige Schrödingerligningen

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Basissett - repetisjon 15. mars 2004 KJM3600 - Molekylmodellering p.1/44 Basissett - repetisjon p.2/44 Basissett oppsummert Hartree Fock-grensen

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK

Detaljer

TKJ4170 Midtsemesterrapport

TKJ4170 Midtsemesterrapport TKJ4170 Midtsemesterrapport Forord Denne rapporten er skrevet i forbindelse med et midtsemesterprosjekt i faget TKJ4170 Kvantekjemi på NTNU. Prosjektet går ut på å studere et selvvalgt molekyl ved å gjøre

Detaljer

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER 1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen

Detaljer

FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)

FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1) FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives

Detaljer

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

Pensum Lærebok: Peter Aktins og Julio de Paula: Elements of Physical Chemistry 4. utgave Pensum 12 Quantum theory 13 Atomic structure 14 The chemical

Pensum Lærebok: Peter Aktins og Julio de Paula: Elements of Physical Chemistry 4. utgave Pensum 12 Quantum theory 13 Atomic structure 14 The chemical KJM2600: Kvantekjemi og spektroskopi Forelesning 1 (12.1 12.5) 14. januar 2008 KJM2600: Kvantekjemi og spektroskopiforelesning 1 (12.1 12 Pensum Lærebok: Peter Aktins og Julio de Paula: Elements of Physical

Detaljer