FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler
|
|
- Marit Christophersen
- 7 måneder siden
- Visninger:
Transkript
1 FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO
2 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk Hydrogen van der Waals (kjemisk) (kjemisk) (svak) (svak) O P 1 P 2 H P H n 1, 2, 3,..., n (K,L,M...) l 0, 1, 2,..., n-1 (s,p,d, f ) m l l, -l+1,.., 0,.. l-1, +l m s + ½, - ½ Pauliprinsippet To elektroner kan ikke ha alle fire kvantetall felles Hunds regel Elektroner fyller opp orbitalene med så mange parallelle spinn som mulig
3 Hunds regel (her kalt trikke-prinsippet ) Elektroner fyller opp orbitalene med så mange parallelle spinn som mulig. Oksygen har 8 elektroner. Elektronene fylles inn fra laveste energinivå, og oppover. 2p l=1, m l = -1, 0,+1 2s 2px 2py 2pz n=2 2s l=0, m l = 0, m s = ±½ 1s n=1 1s l=0, m l = 0, m s = ±½ Atomære system med flere enslige (uparede) elektroner S tot = S i S = 0, ½, 1, 3/2, 2,.. m s = -s, -s+1,..., s-1, s totalt 2s+1 verdier 1 elektron S=½ m s = ±½ dublett 2 elektron i ulike orbitaler S=1 m s = -1, 0, +1 triplett 2 elektron i samme orbital S=0 m s = 0 singlett Oksygen i grunntilstanden er altså i en triplett-tilstand! 1 dr dr ( r ) ( r ) ( r ) ( r ) 1 2 i 1 j r1 r2 i j
4 LCAO - MO 2 H-atomer i grunntilstanden (1s) HA HB Potentialenergien PE for H 2 har minimum for r = 0,74 Å Ψ Ψ Ψ = c A ψ A + c B ψ B c A 2 + c B 2 = 1; og Ψ 2 = 1 Ψ 1 = 1/ 2 (ψ A + ψ B ) Ψ 2 = 1/ 2 (ψ A - ψ B )
5 Ψ 1 - høy elektrontetthet mellom kjernene - bindende orbital - lavest energi (negativ bindingdsenergi) - protoypen på en kovalent binding Ψ 2 -lav elektrontetthet mellom kjernene - antibindende orbital (positiv bindingsenergi) - bidrar ikke til bindingen - destabiliserende (positiv bindingsenergi)
6 Hydrogen, H 2, har to elektroner. -vanligvis begge i Ψ 1. Ψ 2 * ε=0 Ψ 1 Ψ 1 er like bindende som Ψ 2 * er antibindende Helium, He 2, har fire elektroner. -som må fylle både Ψ 1 og Ψ 2 * Ψ 2 * ε=0 Ψ 1 E TOT BIND = n i ε 1 + n 2 ε 2 (< 0 for binding) H + H => E BIND TOT < 0 => Dannelse av hydrogenmolekylet H 2 He + He => E BIND TOT = 0 => Helium forblir én-atomig (IKKE He 2 ) (men He 2 + er påvist, kun ett el. i Ψ 2 *
7 Sigma (σ) binding x x Egentlig: aksial p p overlap
8 Pi (π) binding
9 SUMMEOPPGAVE #6 5 minutter Hva menes med binding som har antibindende karakter? Ta utgangspunkt i elektronstrukturen for He 2 Hvordan kan en visualisere en antibindende π binding?
10 sp 3 hybridisering Karbon har 6 elektroner. Elektronene fylles inn fra laveste energinivå, og oppover. 2p l=1, m l = -1, 0,+1 2s 2px 2py 2pz n=2 2s l=0, m l = 0, m s = ±½ 1s n=1 1s l=0, m l = 0, m s = ±½ 4 valensorbitaler (2s, 2px, 2py, 2pz) En kovalent binding forutsetter ett elektron fra hver partner som inngår i en felles bindende tilstand. Situasjonen ovenfor gir potensial for kun TO bindinger. Valensorbitalene kan i stedet benyttes som basisfunksjoner for å danne 4 nye energetisk like tilstander, alle med samme s-karakter. Først, dannes de fire nye tilstandene (orbitalene) (alle vil ha samme tilstandsenergi) - deretter, fylles valenselektronene inn i orbitalene (totalt 4 elektroner for n=2) I henhold til Hund s regel: - 4 elektroner med samme spinn okkuperer 4 ulike orbitaler: Potensial for 4 kjemiske bindinger
11 Hybridisering (Sp 3 ) Karbon (C) 4 lineært uavhengige kombinasjoner : 1 1 ( s px py pz ) ( s px py pz ) ( s px py pz ) ( s px py pz ) 2 De fire nye sp 3 orbitalene (Φ 1 - Φ 4 ) har samme form, men forskjellig romlig utstrekning
12 sp 3 hybridisering Tetraheder Tetrahedervinkelen 109,5⁰
13 Karbon Grunntilstanden, ingen hybridisering, 2 valenselektroner 2p l=1, m l = -1, 0,+1 2s 2px 2py 2pz n=2 l=0, m l = 0, m s = ±½ 1s n=1 l=0, m l = 0, m s = ±½ Med sp3 hybridisering, 4 valenselektroner sp3 n=2 l=0,1 m l = -1, 0,+1 m s = ±½ 1s n=1 l=0, m l = 0, m s = ±½
14 Metan CH σ* Є= s H +sp 3 σ 1s
15 sp 3 eksempler CH 4 NH 3 H 2 O.. Lone pair Tetraeder Trigonal Bent
16 VANN Okygen Hydrogen H 2 O 8 elektroner 1 elektron 6 valenselektroner 4 Sp 3 orbitaler Sp 3 1s 1s σ* n σ 1s Lone pair Lone pair / non-bonding
17
18 SUMMEOPPGAVE #7 5 minutter Hva menes med binding som har antibindende karakter? Ta utgangspunkt i elektronstrukturen for He 2 Hvordan kan en visualisere en antibindende π binding?
19 sp 2 hybridisering - Karbon (C) har 6 elektroner - 4 valenselektroner - antar energetisk like s og p-orbitaler 2s 2p x 2p y 2p z 1s Kombinerer 3 (av de 4) valensorbitalene (2s, 2px, 2py) Disse er basisfunksjoner for å danne 3 sp 2 hybridorbitaler + 2pz
20 Hybridisering (sp 2 ) - orbitaler 3 lineært uavhengige og orthonormale kombinasjoner : 1 1 ( s 2 px ) ( s px py ) ( s px py ) De tre sp 2 orbitalene (Φ 1 Φ 3 ) har -samme form, -forskjellig romlig utstrekning -alle tre ligger i samme plan, perpendikulært til z-retningen
21 Sp 2 hybridisering - Karbon z y Trigonal Plan Bindingsvinkel = 120⁰ Den ubrukte 2p z -orbitalen er normal til sp 2 -planet
22 Eten / Etylen / C 2 H 4 Sp 2 orbitalene danner σ-bindinger p z orbitalene danner π binding dobbeltbinding
23 Benzen C 6 H 6 6x6 + 6x1 = = 42 elektroner hvorav 6 i 2p z -orbitaler 3π + 3π* C C σ* C H σ* π 1 *π 2 *, π 3 * π 1 π 2, π 3 6 el C C σ (6 x 2 = 12 el.) sp 2 litt svakere C H σ (6 x 2 = 12 el.) sp 2 1s n (6 x 2 = 12 el.)
24 Sp hybridisering - Karbon (C) har 6 elektroner - 4 valenselektroner - antar energetisk like s og p-orbitaler 1s 2s 2p x 2p y 2p z Valensorbitalene 2s, 2px benyttes som basisfunksjoner ψ 1 = 1/ 2 (ψ 2s + ψ 2px ) ψ 2 = 1/ 2 (ψ 2s - ψ 2px ) 2 stk Sp-orbitaler + 2py og 2pz LINEAR GEOMETRI
25 Etyn / Acetylen
26 SUMMEOPPGAVE #8 5 minutter Gå gjennom modellen for sp 2 hybridisering. 1) Vi vet at 2s orbitaler ligger noe lavere i energi enn 2p orbitaler. Hvor hentes overskuddsenergien fra for å kunne bruke denne modellen? 2) Hva er en non-bonding orbital. Vi har nevnt to typer non-bonding orbitaler i denne forelesning
FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler
FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler
FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler
FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler
Angir sannsynligheten for å finne fordelingen av elektroner i rommet
Atom Orbitaler Angir sannsynligheten for å finne fordelingen av elektroner i rommet Matematisk beregning gir formen og orientering av s, p, d og f orbitaler Kun s og p orbitalene viktige i organisk kjemi
KAPITEL 1. STRUKTUR OG BINDINGER.
KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)
FY1006/TFY Øving 9 1 ØVING 9
FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt
KJM2600-Laboratorieoppgave 2
KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige
Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte
F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er
Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med
Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon
Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon 1 13.11.03 1. Molekylstruktur VSEPR modellen Elektronparene (bindende eller ikke-bindende) vil prøve å være så lang
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet
FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)
FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet
Eten % 1.2%
TFY4215 Innføring i kvantefysikk Molekylfysikk Løsningsforslag til Øving 11 Eten. 6. Med Hartree-Fock-metoden og basissettet 3-21G finner man en likevektsgeometri for eten med bindingslengdene C-H = 1.074
Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;
TFY løsning øving 9 1 LØSNING ØVING 9
TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,
Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll
Eksperiment 2 Ina Molaug og Anders Leirpoll 1 1 Innhold 2 Formål... 1 3 Beregningsoppgave... 1 3.1 Oppgave 1: Beregninger på etenmolekylet... 1 3.1.1... 1 3.1.2... 2 3.1.3... 2 3.1.4... 3 3.2 Isomerisme
5.11 Det periodiske systemet
SIF4048 Kjemisk fysikk og kvantemekanikk 2003 - Tillegg 5 1 Tillegg 5, til kapittel 5: 5.11 Det periodiske systemet La oss se litt mer i detalj på 1. Oppbygningen av de enkelte grunnstoffene Helium (Z
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK
Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller
FYS 3710 Biofysikk og Medisinsk Fysikk, Aminosyrer, Polypeptider, Proteiner
FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 5 Aminosyrer, Polypeptider, Proteiner Einar Sagstuen, Fysisk institutt, UiO 06.09.2016 1 sp n -hybridisering: for hovedkvantetall N=2 er de fire valensorbitalene
Atomets oppbygging og periodesystemet
Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.
Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk
TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk Eten. Innledning Etylen, C2H4, eller eten, som det i følge IUPAC (International Union of Pure and Applied Chemistry) egentlig skal kalles, er en
Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler
Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med
LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014
NTNU Norges teknisk-naturvitenskapelige universitet Fakultet naturvitenskap og teknologi Institutt for materialteknologi TMT4110 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 11, VÅR 2014 OPPGAVE 1 a) Kovalent binding:
Hvorfor studere kjemi?
Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner
1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en
Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner
Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2:
TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: 25.04. gruppe 2: 29.04. Innledning Eten. Etylen, C 2 H 4, eller eten, som det i følge IUPAC (International
LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009
NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av
Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7
NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73
Bindinger. Hvorfor vil atomer ha åtte elektroner i ytterste skall?
Bindinger Hvorfor vil atomer ha åtte elektroner i ytterste skall? Finnes det elever som lurer på dette? To klipp fra nettet: http://forum.kvinneguiden.no/index.php?showtopic=457448 http://www.fysikk.no/fysikkforum/viewtopic.php?f=2&t=183
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Fredag 11. desember 2009 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget
FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag
FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag 04.05.09 Innledning Eten. Etylen, C 2 H 4, eller eten, som det i
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Fredag 21. mai 2012 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget,
Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk
Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):
VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved
VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator
FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl
BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
INTRODUKSJON OG GENERELL STRUKTURKJEMI
Biologiske makromolekylers struktur KJM5310 F1, F2, F3 INTRODUKSJON OG GENERELL STRUKTURKJEMI Innledning, atomer, kjemiske bindinger, VSEPR-modellen, intermolekylære krefter, isomeri og konformasjoner.
Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper
MENA 1001; Materialer, energi og nanoteknologi - Kap. 4 Atomegenskaper Universet Nukleosyntese Elektroner Orbitaler Kvantetall Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet
KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET.
KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET. 1. INDUSTRIELL FREMSTILLING OG BRUK AV ALKENER. Eten og propen er de to viktigste organiske kjemikalier som produseres industrielt. Eten, propen og buten syntetiseres
Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Onsdag 4. juni 2014 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen tlf. 73 59 62
FLERVALGSOPPGAVER KJEMISK BINDING
FLERVALGSOPPGAVER KJEMISK BINDING Hjelpemidler: periodesystem Hvert spørsmål har et riktig svaralternativ. Kjemisk binding 1 I hvilke(t) av disse stoffene er det hydrogenbindninger? I: HF II: H 2 S III:
Kjemiske bindinger. Som holder stoffene sammen
Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,
Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.
Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien
Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)
Nano, mikro og makro. Frey Publishing
Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige
EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.
University of Oslo KJM2600. Oppsummering
University of Oslo KJM2600 Oppsummering Dette heftet er i tre deler, første del tar for seg grunneleggende kvantemekanikk. Andre del går igjennom oppbygingen av atomer og molekyler, og hvordan energitilstandene
KJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon Semi-empiriske metoder - repetisjon p.2/47 Generell
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.
Eten. 1 é ë ú
FY1006/TFY4215 Innføring i kvantefysikk Våren 2012 Kjeisk fysikk Løsningsforslag til Øving 1 Eten. 6. Med Hartree-Fock-etoden og basissettet 3-21G finner an en likevektsgeoetri for eten ed bindingslengdene
elementpartikler protoner(+) nøytroner elektroner(-)
All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall
Forelesningsnotat om molekyler, FYS2140. Susanne Viefers
Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske
Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk
Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.
KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Basissett - repetisjon 15. mars 2004 KJM3600 - Molekylmodellering p.1/44 Basissett - repetisjon p.2/44 Basissett oppsummert Hartree Fock-grensen
KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM.
KAPITEL 2. PLARE BIDIGER G KSEKVESE AV DEM. 1. PLARE KVALETE BIDIGER G ELEKTREGATIVITET T12 Elektronegativitet oen kjemiske bindinger er fullstendig ioniske og noen kovalente, men de fleste er polar kovalente.
KJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk
b) Beregn varmemengden som blir frigitt hvis metangassen fra a) forbrennes. Anta at reakjonen går isotermt og isobart ved 1 atm og 298K: (5p) Figur 1
1 Oppgave 1 (30%) Den 20. april 2010 inntraff en eksplosjon på boreriggen «Deepwater Horizon» i Mexicogolfen, hvorpå riggen sank. Om årsaken sa ledelsen at et «unormalt høyt trykk» bygde seg opp på bunnen
MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo
MNF, UiO 24 mars 2014 Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemi: et mangepar.kkelproblem Molekyler er enkle: ladete partikler i bevegelse styrt av kvantemekanikkens lover HΨ=EΨ men
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi - løsningsforslag 13. januar 2017 kl. 09.00 13.00 Oppgavesettet består av 18 oppgaver med vekting angitt
Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.
1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig
Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering
KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
NORGES TEKNISK NTURVITENSKPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSMEN I KJ 2031 UORGNISK KJEMI VK Torsdag 16. mai 2013 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karsten Kirste tlf. 93825195 Institutt
Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
KJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/48 Molekylorbitalteori - repetisjon Molekylorbitalteori - repetisjon p.2/48 Kvantemekanikk Bølgefunksjonen
Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.
FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy
Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
6. Atomer og molekyler
TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 6 1 TILLEGG 6 6. Atomer og molekyler Kapittel 6 Atomer og molekyler er det siste kapitlet i kvantemekanikkdelen av dette kurset. Det dekkes av dette tillegget,
KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Monte Carlo simuleringer og molekyldynamikk - repetisjon KJM3600 - Molekylmodellering p.1/50 Monte Carlo simuleringer og molekyldynamikk
KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Semi-empiriske metoder - repetisjon 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon p.2/47 Generell
En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
TKJ4170 Midtsemesterrapport
TKJ4170 Midtsemesterrapport Forord Denne rapporten er skrevet i forbindelse med et midtsemesterprosjekt i faget TKJ4170 Kvantekjemi på NTNU. Prosjektet går ut på å studere et selvvalgt molekyl ved å gjøre
Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.
FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 6. juni 2007 kl
NRSK TEKST Side 1 av 7 NRGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73
Kjemien stemmer KJEMI 1. Figurer kapittel 1: Verden som kjemikere ser den
Figur s. 9 Figur s. 10 Makronivå Kjemiske stoffer Beskrivelser Mikronivå Atomer, molekyler, ioner Forklaringer Kjemispråk Formler, ligninger Beregninger Figur s. 11 Cl H O C Kulepinnemodeller (øverst)
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
Universitetet i Oslo
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1001 Innføring i kjemi Eksamensdag: tirsdag 15. desember 2009 Tid for eksamen: 14.30 til 17.30 Oppgavesettet er på 6 sider
Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014
Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt
TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
KJM Molekylmodellering
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/36 Tetthetsfunksjonalteori (DFT) - repetisjon Tetthetsfunksjonalteori (DFT) - repetisjon
KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Hartree Fock - repetisjon 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock
Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri
1 Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri Vandige løsninger; sterke og svake elektrolytter Sammensetning av løsninger Typer av kjemiske reaksjoner Fellingsreaksjoner (krystallisasjon)
KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet
KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylorbitalteori - repetisjon KJM3600 - Molekylmodellering p1/48 Molekylorbitalteori - repetisjon p2/48 Bølgefunksjonen systemet Kvantemekanikk
BOKMÅL EKSAMENSOPPGAVE I KJE-1001. Eksamen i : KJE-1001. Eksamensdato : Mandag 22.februar. Tid : 09:00-15:00. Sted : Administrasjonsbygget, B.154.
Side 1 av 8 sider BOKMÅL EKSAMENSOPPGAVE I KJE-1001 Eksamen i : KJE-1001 Eksamensdato : Mandag 22.februar Tid : 09:00-15:00 Sted : Administrasjonsbygget, B.154. Tillatte hjelpemiddel : Kalkulator Chemistry
Hvordan ser kjernen ut?
Hvordan ser kjernen ut? Størrelsen på et nukleon: ca. 1.6 fm Størrelsen på kjernen: r r o A 1/3 1 fm (femtometer, fermi) = 10-15 m Bindingsenergi Bindingsenergi pr. nukleon som funksjon av massetallet.
Forelesningsnotater om spinn, FYS2140 (Erstatter kap. 4.4 i Griffiths) Susanne Viefers
Forelesningsnotater om spinn, FYS2140 (Erstatter kap. 4.4 i Griffiths) Susanne Viefers 20. april 2005 Dette notatet sammenfatter forelesningene om elektronets egenspinn og erstatter dermed avsnitt 4.4
FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ
Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)
1. Oppgaver til atomteori.
1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen