KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "KJM Molekylmodellering. Semi-empiriske metoder - repetisjon. Generell ytelse"

Transkript

1 KJM Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Semi-empiriske metoder - repetisjon 8. mars 2004 KJM Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon p.2/47 Generell ytelse Generell ytelse Oppnår ikke kjemisk nøyaktighet (omlag 2 kj/mol, eller 0.5 kcal/mol) MNDO generelt dårligere enn AM1 og PM3, mens MNDO/d er litt bedre (spesielt for 3. periode) Størst problemer med litt tyngre grunnstoffer og hypervalente strukturer Feilene er tilfeldige, ikke systematiske Kan gi store feil i relative energiforskjeller! Semi-empiriske metoder fortsatt i utstrakt bruk Konkurrerer først og fremst på beregningsmessig kostnad, ikke kvalitet For store systemer står valget mellom molekylmekanikk og semi-empiriske metoder Selv unøyaktige kvantemekaniske metoder gir normalt godt estimat av molekylers ladningsfordeling Semi-empiriske metoder - repetisjon p.3/47 Semi-empiriske metoder - repetisjon p.4/47

2 Basissett Basissett - repetisjon ab initio beregninger, som Hartree Fock, krever at man aktivt velger et basissett Molekylorbitalene skrives som lineærkombinasjoner av basisfunksjonene (1) MO-koeffisientene basisfunksjon bestemmer vekten av hver Ett av de viktigste valgene i beregningen Basissett - repetisjon p.5/47 Basissett - repetisjon p.6/47 Basissett I grensen av en uendelig stor basis, når man Hartree Fock-grensen Korrelasjonsenergien defineres ved: Slater-type orbitals (STO) og Gaussian-type orbitals (GTO) GTO er har feil form, men gir analytiske to-elektronintegraler (2) Basissett-familier De to viktigste familiene av kontraherte GTO-baserte basissett: Poples basissett Dunnings korrelasjons-konsistente basissett Enkle sett kan utvides i ulike retninger avhengig av behov Polarisasjonsfunksjoner Diffuse funksjoner Basissett - repetisjon p.7/47 Basissett - repetisjon p.8/47

3 Poples basissett Eksempel: HF-beregning av energien til difenyl (C H ) Basissett Prim. Kont. Energi ( ) CPU tid (s) STO-3G G G G G Basissett Basissett - repetisjon p.9/47 Basissett p.10/47 Polarisasjonsfunksjoner Flytende orbitaler Viktige for geometrier, spesielt vinkler Molekyler krever mer fleksible orbitaler enn atomer Eksempel bindingsvinkel og -lengde for H Basissett (grader) O (Å) 6-31G G* G** Alternativ: Benytt flytende Gauss-orbitaler (floating Gaussian orbitals) Orbitalenes posisjoner (sentre) må optimeres Samme jobb som polarisasjonsfunksjoner, øker elektrontettheten mellom atomkjernene OK for små systemer, vanskelig for store Basissett p.11/47 Basissett p.12/47

4 Diffuse funksjoner Diffuse funksjoner Augmentering med diffuse funksjoner for bedre beskrivelse av ytre deler av elektronskyen Viktig for anioner, eksiterte tilstander m.m. Også viktig for enkelter egenskaper som elektronaffiniteter Bestemte spektroskopiske egenskaper (som Raman intensiteter) krever flere sett diffuse funksjoner (daug-cc-pv Z) Eksempel: IR intensiteter for H Basissett (km/mol) O CPU tid (s) cc-pvdz cc-pvtz cc-pvqz aug-cc-pvdz aug-cc-pvtz aug-cc-pvqz Tette funksjoner Basissett p.13/47 Basissett oppsummert Basissett p.14/47 Dunnings basissett kan også utvides med tette funksjoner (tight/steep functions), cc-pcv Z ( = D, T, Q, 5) GTO er med høye eksponenter Forbedrer beskrivelsen nær kjernen Viktig for visse egenskaper som f.eks. Fermi-kontakt vekselvirkning (bidrag til spinn spinn koblingskonstanter) Standard basissett kan bygges ut i ulike retninger Tette funksjoner (core-region) Polarisasjonsfunksjoner (indre valensregion) Diffuse funksjoner (ytre valensregion) Polarisasjonsfunksjoner påkrevd for gode strukturer og energier Områder som bidrar lite til energien kan være helt avgjørende for molekylære egenskaper Basissett p.15/47 Basissett p.16/47

5 Basissett oppsummert Basissett oppsummert HF-beregning, energien til difenyl Basissett Prim. Kont. Energi ( ) CPU tid (s) 6-31G G* G** G G G** HF-beregning, energien til difenyl Basissett Prim. Kont. Energi ( ) CPU tid (s) cc-pvdz cc-pvtz cc-pvqz aug-cc-pvdz aug-cc-pvtz Hartree Fock-grensen Basissett p.17/47 Hartree Fock-grensen Basissett p.18/47 Hartree Fock-grensen nås med uendelig stort basissett Avviker fra eksakt resultat! cc-pv Z og cc-pcv Z er kontruert for å kunne ekstrapolere kalles kardinaltall Kan plottes som og ekstrapoleres til Alternativ: Approksimer med stort basissett Basissett p.19/47 Basissett p.20/47

6 Hartree Fock-grensen Hartree Fock-grensen Basissett p.21/47 Basissett p.22/47 Hartree Fock-grensen Hartree Fock-grensen Basissett p.23/47 Basissett p.24/47

7 Additivitet Antagelse: Ortgonale tillegg til basissettet er additive ECP er Ant. elektroner øker nedover i periodesystemet Gir stort antall basisfunksjoner Fleste elektroner er core-elektroner Approksimasjon: Erstatt de indre elektronene med analytiske funksjoner Effektive kjernepotensial - effective core-potentials (ECP) Fire beregninger i stedet for én, men sparer CPU tid Basissett p.25/47 Basissett p.26/47 ECP er ECP er Beskriver Coulomb-repulsjon Oppfyller Pauli-prinsippet Kan inkludere relativistiske effekter Forenkler beregninger dramatisk Vanlig å behandle sub-valens eksplisitt (i tillegg til valens) Pseudopotensialene fra Los Alamos National Laboratory (LANL) blant de vanligste Valg av basissett Kvantekjemiske program inkluderer gjerne bibliotek av basisfunksjoner Andre sett kan hentes fra EMSL ( forms/basisform.html) Standardsett kan modifiseres, f.eks. dekontraheres Konstruksjon av egne sett er siste utvei Basissett p.27/47 Basissett p.28/47

8 Valg av basissett Valg av basissett Basissett p.29/47 Basissett p.30/47 Valg av basissett Jo større, jo bedre (men koster CPU tid) Må balanseres mot å velge mer nøyaktig bølgefunksjon Basert på litteratur Model chemistry : Samling av alle data for gitt kombinasjon bølgefunksjon + basissett Etter hvert basert på egen erfaring! Tekniske og praktiske detaljer i Hartree Fock teori Basissett p.31/47 Tekniske og praktiske detaljer i Hartree Fock teori p.32/47

9 SCF konvergens SCF konvergens Ingen garanti for at SCF-metoden konvergerer Oscillasjon mellom to Fock-matriser Tilfeldige SCF energier Ulike optimeringsmetoder kan benyttes i vanskelige tilfeller Kvadratiske metoder - tregere, men mer robuste Problemer skyldes ofte for dårlig startgjett Utvidet Hückel typisk startgjett Kan forsøke diagonal Fock-matrise Konverger med mindre basissett, bruk som utgangspunkt videre Dårlig startgjett kan skyldes dårlig geometri Geometrioptimer med mindre basissett Perturber geometrien SCF konvergens Tekniske og praktiske detaljer i Hartree Fock teori p.33/47 Tekniske og praktiske detaljer i Hartree Fock teori p.34/47 Jo større basissett, jo vanskeligere MO-optimeringsproblem Store basissett med diffuse funksjoner spesielt vanskelig: Kan få lineær avhengighet mellom basisfunksjonene Dvs. en funksjon kan uttrykkes som lineærkombinasjon av andre funksjoner Numerisk ustabilitet Spesielt små molekyler er ofte symmetriske Gunstig å utnytte dette (effektivitet) Meget kort innføring i noen begreper fra gruppeteori Enkeltmolekyler beskrives med punktgruppesymmetri Tekniske og praktiske detaljer i Hartree Fock teori p.35/47 Tekniske og praktiske detaljer i Hartree Fock teori p.36/47

10 operasjon: Operasjon som når den får virke på et objekt tilsynelatende ikke endrer det For molekyler: Transformasjoner der to eller flere atomer bytter plass element: Et molekyl har et sett symmetrielementer som hver henger sammen med en symmetrioperasjon (minimum identitetsoperasjonen) Rotasjonsakser Rotasjonsakse Eksempelvis, : Rotasjon 360 / og rundt aksen. Speilplan Refleksjon gjennom plan : Vertikale, horisontale og diagonale speilplan (relativt til hovedrotasjonsakse) Tekniske og praktiske detaljer i Hartree Fock teori p.37/47 Uekte rotasjonsakser Uekte rotasjonsakse : Rotasjon 360 / rundt aksen etterfulgt av refleksjon gjennom horisontalt speilplan. Inversjonssenter : Alle koordinater inverteres gjennom massesenteret Identiteten : Identitetstransformasjonen består i ikke å gjøre noen ting Tekniske og praktiske detaljer i Hartree Fock teori p.38/47 Noen punktgrupper : Ikosaeder, f.eks. C : Oktaeder, f.eks. SF : Tetraeder, f.eks. CH : Hovedrotasjonsakse + -akser normalt på denne + horisontalt speilplan, f.eks. tilhører benzen : Rotasjonsakse og vertikale speilplan, f.eks. tilhører vann Tekniske og praktiske detaljer i Hartree Fock teori p.39/47 Tekniske og praktiske detaljer i Hartree Fock teori p.40/47

11 Noen punktgrupper (forts.) : Én rotasjonsakse av orden : Kun inversjonssenter : Ett speilplan : Ingen symmetri Fleste kvantekjemiske programmer klarer kun å utnytte de abelske punktgruppene er da maksimal symmetri Beregning med symmetri Hver molekylorbital tilhører en av irrep ene til molekylets punktgruppe Irrep ene transformerer på ulikt vis når symmetrioperasjoner virker på molekylet Integraler blir null på grunn av symmetri Resultatet er mer effektive beregninger En rekke molekylære egenskaper kan klassifiseres mhp. symmetri Tekniske og praktiske detaljer i Hartree Fock teori p.41/47 Tekniske og praktiske detaljer i Hartree Fock teori p.42/47 Eksempel: Beregning av energien til benzen, ulike punktgruppesymmetrier Punktgruppe CPU tid (s) Tekniske og praktiske detaljer i Hartree Fock teori p.43/47 Tekniske og praktiske detaljer i Hartree Fock teori p.44/47

12 forenkler også potensialflaten (redusert dimensjonalitet) Krever varsomhet: Geometrioptimerer man et lineært vannmolekyl (i ), finner man optimal lineær struktur For å avsløre at strukturen er en TS, må andrederiverte av energien (Hess-matrisen) beregnes Nybegynnertabbe: Plane molekyler Bølgefunksjonen kan ende opp i gal tilstand (eksitert) Skjer svært sjelden med lukket skall Knyttet til startgjett, hjelper ikke å fjerne symmetrien Kan undersøkes ved å flytte elektroner mellom symmetrier Tekniske og praktiske detaljer i Hartree Fock teori p.45/47 Tekniske og praktiske detaljer i Hartree Fock teori p.46/47 Tekniske og praktiske detaljer i Hartree Fock teori p.47/47

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 8. mars 2004 KJM3600 - Molekylmodellering p.1/47 Semi-empiriske metoder - repetisjon Semi-empiriske metoder - repetisjon p.2/47 Generell

Detaljer

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen

KJM Molekylmodellering. Basissett - repetisjon. Basissett oppsummert. Hartree Fock-grensen KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Basissett - repetisjon 15. mars 2004 KJM3600 - Molekylmodellering p.1/44 Basissett - repetisjon p.2/44 Basissett oppsummert Hartree Fock-grensen

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock

KJM-MEF Modul 3 Kvantekjemiske metoder. Repetisjon. Geometrioptimering. Hartree Fock KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Repetisjon 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon p.2/45 Hartree Fock Geometrioptimering

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 27. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/45 Repetisjon Repetisjon p.2/45 Repetisjon p.3/45 Hartree

Detaljer

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock

KJM3600 - Molekylmodellering. Hartree Fock - repetisjon. Hartree Fock. Hartree Fock KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Hartree Fock - repetisjon 23. februar 2004 KJM3600 - Molekylmodellering p.1/49 Hartree Fock - repetisjon p.2/49 Hartree Fock Hartree Fock

Detaljer

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet

KJM Molekylmodellering. Molekylorbitalteori - repetisjon. Variasjonsprinsippet. Kvantemekanikk. systemet KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylorbitalteori - repetisjon KJM3600 - Molekylmodellering p1/48 Molekylorbitalteori - repetisjon p2/48 Bølgefunksjonen systemet Kvantemekanikk

Detaljer

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder

KJM Molekylmodellering. Korrelerte metoder - repetisjon. Korrelerte metoder KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Korrelerte metoder - repetisjon 29. mars 2004 KJM3600 - Molekylmodellering p.1/30 Korrelerte metoder - repetisjon p.2/30 Korrelerte metoder

Detaljer

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk

KJM Molekylmodellering. Monte Carlo simuleringer og molekyldynamikk - repetisjon. Statistisk mekanikk KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Monte Carlo simuleringer og molekyldynamikk - repetisjon KJM3600 - Molekylmodellering p.1/50 Monte Carlo simuleringer og molekyldynamikk

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/48 Molekylorbitalteori - repetisjon Molekylorbitalteori - repetisjon p.2/48 Kvantemekanikk Bølgefunksjonen

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder. Introduksjon. Kvantekjemiske metoder. Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder. Introduksjon. Kvantekjemiske metoder. Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Introduksjon Høst 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/134 Introduksjon p.2/134 Kvantekjemiske metoder

Detaljer

TKJ4170 Midtsemesterrapport

TKJ4170 Midtsemesterrapport TKJ4170 Midtsemesterrapport Forord Denne rapporten er skrevet i forbindelse med et midtsemesterprosjekt i faget TKJ4170 Kvantekjemi på NTNU. Prosjektet går ut på å studere et selvvalgt molekyl ved å gjøre

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 26. august 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/48 Introduksjon Introduksjon p.2/48 Introduksjon p.3/48

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 19. april 2004 KJM3600 - Molekylmodellering p.1/36 Tetthetsfunksjonalteori (DFT) - repetisjon Tetthetsfunksjonalteori (DFT) - repetisjon

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO 2. september 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/50 Repetisjon Repetisjon p.2/50 Repetisjon p.3/50

Detaljer

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon

KJM Molekylmodellering. Molekyler i løsning. Introduksjon. Introduksjon KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekyler i løsning 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

KJM-MEF Modul 3 Kvantekjemiske metoder

KJM-MEF Modul 3 Kvantekjemiske metoder KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder Vebjørn Bakken Kjemisk institutt, UiO Høst 2004 KJM-MEF 4010 - Modul 3 Kvantekjemiske metoder p.1/134 Introduksjon Introduksjon p.2/134 Introduksjon p.3/134

Detaljer

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk

Eten. Innledning. TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk TFY4215 Innføring i kvantefysikk Øving 11 Molekylfysikk Eten. Innledning Etylen, C2H4, eller eten, som det i følge IUPAC (International Union of Pure and Applied Chemistry) egentlig skal kalles, er en

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO 24. mai 2004 KJM3600 - Molekylmodellering p.1/41 Molekyler i løsning Molekyler i lsning p.2/41 Introduksjon Solvatisering Reaksjoner i

Detaljer

Eten % 1.2%

Eten % 1.2% TFY4215 Innføring i kvantefysikk Molekylfysikk Løsningsforslag til Øving 11 Eten. 6. Med Hartree-Fock-metoden og basissettet 3-21G finner man en likevektsgeometri for eten med bindingslengdene C-H = 1.074

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

KJM2600-Laboratorieoppgave 1

KJM2600-Laboratorieoppgave 1 KJM2600-Laboratorieoppgave 1 Sindre Rannem Bilden Gruppe 1 4. mars 2015 1 Hensikt Hensikten med oppgaven var å demonstrere anvendelsen av kvantekjemiske beregninger i kjemi. 2 Teori Oppgaven baserer seg

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag

FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2009 Kjemisk fysikk Øving 1 Innleveringsfrist: Mandag 04.05.09 Innledning Eten. Etylen, C 2 H 4, eller eten, som det i

Detaljer

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering

KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Introduksjon Våren 2004 KJM3600 - Molekylmodellering p.1/507 Introduksjon p.2/507 Molekylmodellering Molekylmodellering Flere navn på

Detaljer

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2:

Eten. Innledning. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: gruppe 2: TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 1 Innleveringsfrist, gruppe 1: 25.04. gruppe 2: 29.04. Innledning Eten. Etylen, C 2 H 4, eller eten, som det i følge IUPAC (International

Detaljer

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll

Computerøvelse. Eksperiment 2. Ina Molaug og Anders Leirpoll Eksperiment 2 Ina Molaug og Anders Leirpoll 1 1 Innhold 2 Formål... 1 3 Beregningsoppgave... 1 3.1 Oppgave 1: Beregninger på etenmolekylet... 1 3.1.1... 1 3.1.2... 2 3.1.3... 2 3.1.4... 3 3.2 Isomerisme

Detaljer

Kvantekjemi kjemiens nye verktøy

Kvantekjemi kjemiens nye verktøy 1 Kvantekjemi kjemiens nye verktøy Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Norsk Kjemisk Selskap Rådsmøte 13 april 2007 DNVA, Drammensveien

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 4 Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO 05.09.2017 1 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/50 Molekylmekanikk Molekylmekanikk p.2/50 Oversikt Introduksjon Detaljert beskrivelse av kraftfeltmetoder

Detaljer

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo

MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo MNF, UiO 24 mars 2014 Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemi: et mangepar.kkelproblem Molekyler er enkle: ladete partikler i bevegelse styrt av kvantemekanikkens lover HΨ=EΨ men

Detaljer

KJM2600-Laboratorieoppgave 2

KJM2600-Laboratorieoppgave 2 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Det virtuelle kjemilaboratoriet. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo

Det virtuelle kjemilaboratoriet. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo 1 Det virtuelle kjemilaboratoriet Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Etterutdanningskurs for lærere i Oslo kommune Skolelaboratoriet,

Detaljer

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding.

Det enkleste svaret: Den potensielle energien er lavere dersom det blir dannet binding. Kapittel 9 Kovalent binding Repetisjon 1 (11.11.03) 1. Kovalentbinding Deling av elektron mellom atom for å danne binding o vorfor blir denne type binding dannet? Det enkleste svaret: Den potensielle energien

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NTURVITENSKPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSMEN I KJ 2031 UORGNISK KJEMI VK Torsdag 16. mai 2013 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karsten Kirste tlf. 93825195 Institutt

Detaljer

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk

Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):

Detaljer

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x

Detaljer

TFY løsning øving 9 1 LØSNING ØVING 9

TFY løsning øving 9 1 LØSNING ØVING 9 TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Fredag 11. desember 2009 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Åpen dag, 10. mars 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på datamaskiner

Detaljer

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7 NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2016 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 26.08.2016 1 Biologiske makromolekyler DNA PROTEIN t-rna 26.08.2016 2 Biologiske makromolekyler

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo CTCC-seminar, 4. februar 2011 Trygve Helgaker (Kjemisk institutt, UiO) Kvantemekanikk på datamaskiner

Detaljer

FY1006/TFY Øving 9 1 ØVING 9

FY1006/TFY Øving 9 1 ØVING 9 FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Atomets oppbygging og periodesystemet

Atomets oppbygging og periodesystemet Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - atomorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 3 Bindingsteori - atomorbitaler Einar Sagstuen, Fysisk institutt, UiO 28.08.2017 1 Biologiske makromolekyler DNA PROTEIN t-rna 28.08.2017 2 Biologiske makromolekyler

Detaljer

Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger

Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger Oppgave 1 Introduksjon til Linux og kvantekjemiske beregninger KJM-MEF4010 Kvantekjemiske metoder Vår 2006 1 Introduksjon Hensikten med denne oppgaven er å gi en kort introduksjon til viktige og nyttige

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM2600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Fredag 5. juni, 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Kvantekjemi fremtidens virtuelle laboratorium

Kvantekjemi fremtidens virtuelle laboratorium 1 Kvantekjemi fremtidens virtuelle laboratorium Gruppen for teoretisk kjemi: Knut Fægri, Trygve Helgaker Peter Macak Vebjørn Bakken, Alf Hennum, Torgeir Ruden Kjetil Jacobsen, Ola Lutnæs, Seema Singh Arbeidsfelt:

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Fredag 21. mai 2012 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget,

Detaljer

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell

KJM Molekylmodellering. Molekylmekanikk - repetisjon. Kraftfeltenergien. Klassisk modell KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO Molekylmekanikk - repetisjon KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon p.2/49 Klassisk modell Kraftfeltenergien

Detaljer

Atommodeller i et historisk perspektiv

Atommodeller i et historisk perspektiv Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSAMEN I KJ 2031 UORGANISK KJEMI VK Onsdag 4. juni 2014 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen tlf. 73 59 62

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Kvantemekanikk på datamaskiner: kjemiens nye verktøy

Kvantemekanikk på datamaskiner: kjemiens nye verktøy Kvantemekanikk på datamaskiner: kjemiens nye verktøy Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemien stemmer fagkurs Thon Hotel Opera, Oslo, 24. mai 2012 Trygve Helgaker (Kjemisk institutt,

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Kvantekjemi. en fascinerende kjemi helt uten eksperimenter. Trygve Helgaker. Kjemisk institutt, Universitetet i Oslo

Kvantekjemi. en fascinerende kjemi helt uten eksperimenter. Trygve Helgaker. Kjemisk institutt, Universitetet i Oslo Kvantekjemi en fascinerende kjemi helt uten eksperimenter Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Nydalen videregående skole Oslo, 21. mars 2013 Trygve Helgaker (Kjemisk institutt, UiO)

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon

Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon Kapittel 10 Kjemisk binding II Molekyl struktur og hybridisering av orbitaler Repetisjon 1 13.11.03 1. Molekylstruktur VSEPR modellen Elektronparene (bindende eller ikke-bindende) vil prøve å være så lang

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI NORGES TEKNISK NTURVITENSKPELIGE UNIVERSITET INSTITUTT FOR KJEMI EKSMEN I KJ 2031 UORGNISK KJEMI VK Onsdag 3. desember 2008 Tid: 09.00 13.00 Faglig kontakt under eksamen: Karina Mathisen, Realfagbygget

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

Hvorfor studere kjemi?

Hvorfor studere kjemi? Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers

Forelesningsnotat om molekyler, FYS2140. Susanne Viefers Forelesningsnotat om molekyler, FYS Susanne Viefers. mai De fleste grunnstoffer (unntatt edelgassene) deltar i formingen av molekyler. Molekyler er sammensatt av enkeltatomer som holdes sammen av kjemiske

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Angir sannsynligheten for å finne fordelingen av elektroner i rommet

Angir sannsynligheten for å finne fordelingen av elektroner i rommet Atom Orbitaler Angir sannsynligheten for å finne fordelingen av elektroner i rommet Matematisk beregning gir formen og orientering av s, p, d og f orbitaler Kun s og p orbitalene viktige i organisk kjemi

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Centre for Theoretical and Computational Chemistry. Trygve Helgaker Universitetet i Oslo

Centre for Theoretical and Computational Chemistry. Trygve Helgaker Universitetet i Oslo Centre for Theoretical and Computational Chemistry Trygve Helgaker Universitetet i Oslo Centre for Theore+cal and Computa+onal Chemistry Kjemi med beregninger og simuleringer i sentrum Numeriske simuleringer:

Detaljer

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en

1) Redoksreaksjoner, reaksjoner hvor en forbindelse. 2) Syre basereaksjoner, reaksjoner hvor en. elektronrik forbindelse reagerer med en Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

IKTiSU KJ1041 Pilotprosjekt. Eirik Hjertenæs og Henrik Koch Høsten 2013

IKTiSU KJ1041 Pilotprosjekt. Eirik Hjertenæs og Henrik Koch Høsten 2013 IKTiSU KJ1041 Pilotprosjekt Eirik Hjertenæs og Henrik Koch Høsten 2013 KJ1041- Kjemisk binding, spektroskopi og kinetikk Obligatorisk emne for MTKJ i 2. klasse og BKJ 3. klasse Teoretisk fundament for

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Dette gir ingen informasjon om hvor en nukleofil vil angripe.

Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2016 Molekylfysikk Løsningsforslag til Øving 13 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClC3: Dette gir ingen informasjon om

Detaljer

KAPITEL 1. STRUKTUR OG BINDINGER.

KAPITEL 1. STRUKTUR OG BINDINGER. KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5 FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter

Detaljer

Numerisk integrasjon

Numerisk integrasjon Numerisk integrasjon Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vil vil finne en numerisk approksimasjon

Detaljer

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved

VÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.

Detaljer

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale

1.1. Tegn opp et to-dimmensjonalt mønster av tettest mulige pakkede kuler. Identifiser den todimensjonale Sett 3: Oppgave 1 og 2 omfatter mange av eksemplene som er gitt i kompendiet. Krystallstrukturer som er avledet av kulepakkingsmodellen opptrer for metaller (se oppgave 2), for ioniske forbindelser (f.eks.

Detaljer

Basepar i DNA. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 3 Innleveringsfrist, gruppe 1: gruppe 2:

Basepar i DNA. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 3 Innleveringsfrist, gruppe 1: gruppe 2: TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 3 Innleveringsfrist, gruppe 1: 07.05. gruppe 2: 09.05. Basepar i DNA. Innledning DNA, deoxyribonucleic acid er molekylene som inneholder

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/49 Molekylmekanikk - repetisjon Molekylmekanikk - repetisjon p.2/49 Klassisk modell Ren klassisk beskrivelse

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

FYS1120 Elektromagnetisme - Ukesoppgavesett 2

FYS1120 Elektromagnetisme - Ukesoppgavesett 2 FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene

Detaljer