Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl (3 timer)

Størrelse: px
Begynne med side:

Download "Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)"

Transkript

1 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl (3 timer) Tillatte hjelpemidler: B1: Enkel kalkulator. Ingen andre hjelpem. Oppgaveteksten er på 5 (fem) sider inkl. vedlegg. NB: Ved bedømmelsen teller hver oppgave like mye (totalt 6 oppgaver). AKTUELLE FYSISKE KONSTANTER OG MATEMATISKE FORMLER ER OPPGITT BAKERST I OPPGAVESETTET Oppgave 1: Røntgenstråling I et røntgenrør gjennomløper elektroner et spenningsfall V før de treffer en metallanode hvor røntgenstråling genereres. Et eksempel på et spektrum av røntgenstråling generert på denne måten er vist i Figur 1 (på neste side). (i) Hva er den generelle sammenhengen mellom spenningsfallet V og den minste bølgelengden λ min i røntgenspektret? (ii) Bruk figuren til å anslå (for dette eksemplet) (A) spenningsfallet V, (B) den maksimale frekvens f max for røntgenstrålingen og (C) den maksimale energi E max for røntgenstrålingen (målt i elektronvolt). Oppgave 2: Fotonhypotesen De fleste fysikere ble overbevist om at lys og annen elektromagnetisk stråling også har partikkelnatur av tre eksperimentelle observasjoner: (1) Spektret til røntgenstråling, (2) fotoelektrisk effekt og (3) Compton-effekten. Forklar kort hvordan disse observasjonene samt den teoretiske tolkningen av disse, sterkt indikerte at elektromagnetisk stråling også har partikkelnatur. Oppgave 3: Spesiell relativitetsteori (i) Forklar kort hva som ligger i begrepet lengdekontraksjon.

2 2 Figure 1: Eksempel på spektrum av røntgenstråling, dvs. intensitet som funksjon av bølgelengde λ. (ii) En ustabil partikkel med γ = 1 som suser forbi en observatør, observeres å bevege seg 6 meter før den desintegrerer. (A): Hvilken levetid har partikkelen i systemet til observatøren? (B): Hva er levetiden i partikkelens hvilesystem? Her er γ 1 1 v 2 /c 2, og Lorentz-transformasjonen er gitt ved x = γ(x vt), y = y, z = z, t = γ(t vx/c 2 ). Oppgave 4: Schrödingerligningen Den tidsavhengige Schrödingerligningen for en partikkel med masse m som beveger seg i et potensial V (x) i 1 romlig dimensjon, er gitt ved Ψ(x, t) i h = HΨ(x, t) = [ h2 t 2m (i) Hva er den fysiske tolkningen av bølgefunksjonen Ψ(x, t)? 2 ] x 2 + V (x) Ψ(x, t).

3 3 (ii) Anta at bølgefunksjonen faktoriserer i en rom- og en tidsfunksjon, Ψ(x, t) = ψ(x)f(t). Bestem f(t) eksplisitt, og vis at likningen som ψ(x) må oppfylle er den såkalte stasjonære Schrödingerligningen gitt ved [ h2 2 ] 2m x 2 + V (x) ψ(x) = Eψ(x). (iii) Hvorfor kalles en slik løsning stasjonær? Oppgave 5: Partikkel i boks og brønn Vi ser nå på problemet partikkel-i-boks i 1 romlig dimensjon. I dette systemet er partikkelpotensialet gitt ved { for < x < L V (x) =. for x < og x > L Ved løsning av den stasjonære Schrödingerlikningen i oppgave 4 med dette potensialet finner en at spektret av energiegenverdier og tilhørende normerte egenfunksjoner er gitt ved E n = h2 π 2 2mL 2 n2, 2 ( nπx ) ψ n (x) = L sin L i boksen, og ψ n (x) = ellers, hvor n = 1, 2,...,. [Dette skal ikke vises.] (i) Beregn for partikkelen i grunntilstanden sannsynligheten for å finne partikkelen i (A) intervallet < x < L/2 og (B) intervallet < x < L/4. (ii) Operatoren for impuls (bevegelsesmengde) i én romlig dimensjon, p x,op, er gitt ved p x,op = h i d dx. Har en partikkel i grunntilstanden for partikkel-i-boks en bestemt impuls p x? Begrunn svaret. (iii) I det beslektede problemet partikkel-i-brønn er partikkelpotensialet gitt ved { for < x < L V (x) = for x < og x > L V hvor V er en konstant. For samme bredde L, vil grunntilstandsenergien til partikkel-i-brønn være høyere, like stor eller lavere enn for partikkel-i-boks? Begrunn svaret.

4 4 Figure 2: Eksiterte tilstander i litiumatomet (Li). Oppgave 6: Tilstander for litiumatomet Litiumatomet (Li) med atomnummer 3 har i grunntilstanden elektronkonfigurasjonen 1s 2 2s. Vi skal nå se på noen tilstander hvor det siste elektronet (valenselektronet) til Li er i en eksitert tilstand. I Figur 2 vises energinivåene for noen slike tilstander. For tilstandene med det siste elektronet i 2p og 3s er energiene (oppgitt i ev) målt relativt til grunntilstanden. (i) Valenselektronet har to 2p-tilstander til rådighet: 2P 3/2 og 2P 1/2. (A) Hva henspeiler indeksene 3/2 og 1/2 på? (B) Hvilken fysisk effekt ligger bak at 2P 1/2 har lavere energi enn 2P 3/2? (ii) Vi antar nå at et Li-atom har valenselektronet i en 3s-orbital, og at det deretter ikke påvirkes av omgivelsene. Gjør rede for de ulike elektrisk-dipol-overgangene som kan skje før atomet er blitt stabilt. Hvilken utvalgsregel gjelder for kvantetallet l for slike overganger? (iii) Hva er den korteste bølgelengden av elektromagnetisk stråling som blir utsendt i disse elektrisk-dipol-overgangene? [Her trenger du ikke å bry deg om den lille energiforskjellen mellom P 3/2 og P 1/2 -tilstander.] Oppgitte fysiske størrelser som kan komme til nytte: Lyshastigheten: c = m/s Elementærladning: e = C Boltzmanns konstant: k B = J/K Koblingsparameter i Coulombs lov: k e 2 = 1.44 ev nm Plancks konstant: h = J s, h = h/2π = J s

5 5 Elektronets masse: m e = kg Bohr radius: a = =.53 Å h2 m e ke 2 Rydberg-energien: E = h2 2m e a 2 = m e(ke 2 ) 2 2 h 2 = 13.6 ev Oppgitte matematiske sammenhenger som kan komme til nytte: sin 2 x dx = 1 2 sin x cos x + x 2 + C cos 2 x dx = 1 2 sin x cos x + x 2 + C sin m x cos x dx = 1 m + 1 sinm+1 x + C, m 1 sin x cos m x dx = 1 m + 1 cosm+1 x + C, m 1 sin 2x = 2 cos x sin x cos 2x = cos 2 x sin 2 x π e βx2 dx = β π e β(x+ic)2 dx =, hvor i: imaginær enhet, c: vilkårlig reell konstant β x 2 e βx2 dx = 1 π 2β β e x dx = 1 x e x dx = 1 x 2 e x dx = 2 x 3 e x dx = 6 x 4 e x dx = 24 Volumelement i kartesiske koordinater: Volumelement i kulekoordinater: dv = dx dy dz dv = r 2 sin θ dr dθ dφ Gaute T. Einevoll (faglærer) (m)

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3 FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

NORSK TEKST Side 1 av 5

NORSK TEKST Side 1 av 5 NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,

Detaljer

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har

Detaljer

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4 FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N LÆRINGSSENTERET Fysikk 3FY AA6227 Elever 6. juni 2003 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste side. Eksamenstid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

FYS2140 - Kvantefysikk. Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no

FYS2140 - Kvantefysikk. Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no FYS2140 - Kvantefysikk Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no Plan for dagen Oppmøteliste husk å signere! Praktisk informasjon om FYS2140. Hvordan overleve Kvantefysikk. Fysikk anno 1900.

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014

Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

Fasit for besvarelse til eksamen i A-112 høst 2001

Fasit for besvarelse til eksamen i A-112 høst 2001 Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge

Detaljer

Er naturkonstantene konstante?

Er naturkonstantene konstante? Er naturkonstantene konstante? Jan Myrheim Institutt for fysikk NTNU 18. mars 2009 Er naturkonstantene konstante? 1. Unnskyld hva var spørsmålet? To eksempler: lyshastigheten, Newtons 2. lov 2. Enhetssystemet

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31 REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31

REPETISJON FYS2140. Susanne Viefers. Fysisk Institutt, Teorigruppa. REPETISJON FYS2140 p.1/31 REPETISJON FYS2140 Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa REPETISJON FYS2140 p.1/31 Teoretisk pensum I Første del, Forelesningsnotater Enheter og størrelser i Fys2140 Sort

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen!

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Jeg burde starte med noen blomstrende ord om at målet med å ta et kurs er å lære mest mulig og å utvikle seg personlig, ikke å gjøre

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

FYS2140 KVANTEFYSIKK

FYS2140 KVANTEFYSIKK FYS2140 KVANTEFYSIKK Susanne Viefers s.f.viefers@fys.uio.no Fysisk Institutt, Teorigruppa FYS2140 KVANTEFYSIKK p.1/55 Første uke, 16-20 januar Mandag: Første time: Presentasjon av kurset med opplegg m.m.

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A) Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte

Detaljer

Ein par(kkel i 3 dimensjonar

Ein par(kkel i 3 dimensjonar Ein par(kkel i 3 dimensjonar Kvantemekanisk beskrivelse av ein par0kkel som kan bevege seg i 3 dimensjonar Bølgjefunksjon: Ψ(x, y, z, t) =Ψ(r, t) Ψ(x, y, z, t) dx dy dz Tolking: er sannsynlegheiten for,

Detaljer

EKSAMEN i TFY4108 FYSIKK

EKSAMEN i TFY4108 FYSIKK Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR TEKNOLOGI INST. FOR BIOINGENIØR- OG RADIOGRAFUTDANNING Kandidatnr: Eksamensdato: Varighet: Fagnummer: Fagnavn: Klasse(r): Vekttall: Faglærer(e): Hjelpemidler: Oppgavesettet

Detaljer

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 13. august 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON Fysisk institutt, UiO 17.1 Røntgenstråling 17.1.1 Bremsestråling og karakteristisk stråling Røntgenstråling er elektromagnetisk stråling med bølgelengde i området 10

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

Eksamensoppgave i TFY4210 Kvanteteorien for mangepartikkelsystemer

Eksamensoppgave i TFY4210 Kvanteteorien for mangepartikkelsystemer Institutt for fysikk Eksamensoppgave i TFY420 Kvanteteorien for mangepartikkelsystemer Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. juni Eksamenstid

Detaljer

Eksamen REA3024 Matematikk R2

Eksamen REA3024 Matematikk R2 Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen?

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen? UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 6. oktober 2009, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO

Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO Kan vi lære litt kvantefysikk ved å lytte til noen lydprøver? Arnt Inge Vistnes Fysisk institutt, UiO La oss starte med lyttingen... Vi spiller fire ulike lydprøver. Oppgaven er å bestemme tonehøyden.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU53005-A (Utsatt) Emnenavn: Naturfag 2, EMNE 2 Studiepoeng: 15 Eksamensdato: 13.05.2015 Varighet/Timer: Målform: Kontaktperson/faglærer:

Detaljer

Siste uke, mai

Siste uke, mai Siste uke, 10. - 14. mai Mandag: Repetisjon Tirsdag: Ingen forelesning Onsdag: Gjennomgang av oblig 12. Siste frist for levering av etterslengere Torsdag/fredag: Fri Pensum Kompendium Læreboka (se kursets

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME ide 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

Braggdiffraksjon. Nicolai Kristen Solheim

Braggdiffraksjon. Nicolai Kristen Solheim Braggdiffraksjon Nicolai Kristen Solheim Abstract Gjennom denne øvelsen skal vi gjøre oss kjent med røntgenstråling og elektrondiffraksjon. Herunder finner vi bremsestråling, karakteristisk stråling, energispektrum,

Detaljer

Fasehastighet: Gruppehastighet:

Fasehastighet: Gruppehastighet: Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store

Detaljer

Eksamen i KJ133 våren Løsningsforslag for kvantemekanikkoppgaven

Eksamen i KJ133 våren Løsningsforslag for kvantemekanikkoppgaven 1 Eksamen i KJ133 våren 1998 Løsningsforslag for kvantemekanikkoppgaven T. Helgaker Henvisningene er til Atkins' Physical Chemistry, 6th edition a) Kravet om heltallig m følger fra den sykliske grensebetingelsen

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK

Detaljer

Atomfysikk og kausallov

Atomfysikk og kausallov Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn: Heisenberg

Detaljer

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013 Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt

Detaljer

Kvantefysikk i 100 år

Kvantefysikk i 100 år Moderne fysikk og erkjennelsesmessige konsekvenser Kvantefysikk i 100 år Charles Addams Fra Planck til Zeilinger C Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn (1) Fysikken fram til omtrent 1900

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 May 24, 2007 Oppgave 1 a) Lorentztransformasjonane er x = γ(x V t), t = γ(t V x), der γ = 1/ 1 V 2 Vi tar differensiala av desse

Detaljer

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom FY6/TFY45 - Løysing øving 6 Løysing oppgåve LØYSING ØVING 6 Grunntilstanden i hydrogenliknande atom a) Vi merkar oss fyrst at vinkelderivasjonane i Laplace-operatoren gjev null bidrag til r, sidan (r)

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 10. juni 2014 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst

Detaljer

Den franske fysikeren Charles de Columb er opphavet til Colombs lov.

Den franske fysikeren Charles de Columb er opphavet til Colombs lov. 4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer