Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl (3 timer)

Størrelse: px
Begynne med side:

Download "Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)"

Transkript

1 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl (3 timer) Tillatte hjelpemidler: B1: Enkel kalkulator. Ingen andre hjelpem. Oppgaveteksten er på 5 (fem) sider inkl. vedlegg. NB: Ved bedømmelsen teller hver oppgave like mye (totalt 6 oppgaver). AKTUELLE FYSISKE KONSTANTER OG MATEMATISKE FORMLER ER OPPGITT BAKERST I OPPGAVESETTET Oppgave 1: Røntgenstråling I et røntgenrør gjennomløper elektroner et spenningsfall V før de treffer en metallanode hvor røntgenstråling genereres. Et eksempel på et spektrum av røntgenstråling generert på denne måten er vist i Figur 1 (på neste side). (i) Hva er den generelle sammenhengen mellom spenningsfallet V og den minste bølgelengden λ min i røntgenspektret? (ii) Bruk figuren til å anslå (for dette eksemplet) (A) spenningsfallet V, (B) den maksimale frekvens f max for røntgenstrålingen og (C) den maksimale energi E max for røntgenstrålingen (målt i elektronvolt). Oppgave 2: Fotonhypotesen De fleste fysikere ble overbevist om at lys og annen elektromagnetisk stråling også har partikkelnatur av tre eksperimentelle observasjoner: (1) Spektret til røntgenstråling, (2) fotoelektrisk effekt og (3) Compton-effekten. Forklar kort hvordan disse observasjonene samt den teoretiske tolkningen av disse, sterkt indikerte at elektromagnetisk stråling også har partikkelnatur. Oppgave 3: Spesiell relativitetsteori (i) Forklar kort hva som ligger i begrepet lengdekontraksjon.

2 2 Figure 1: Eksempel på spektrum av røntgenstråling, dvs. intensitet som funksjon av bølgelengde λ. (ii) En ustabil partikkel med γ = 1 som suser forbi en observatør, observeres å bevege seg 6 meter før den desintegrerer. (A): Hvilken levetid har partikkelen i systemet til observatøren? (B): Hva er levetiden i partikkelens hvilesystem? Her er γ 1 1 v 2 /c 2, og Lorentz-transformasjonen er gitt ved x = γ(x vt), y = y, z = z, t = γ(t vx/c 2 ). Oppgave 4: Schrödingerligningen Den tidsavhengige Schrödingerligningen for en partikkel med masse m som beveger seg i et potensial V (x) i 1 romlig dimensjon, er gitt ved Ψ(x, t) i h = HΨ(x, t) = [ h2 t 2m (i) Hva er den fysiske tolkningen av bølgefunksjonen Ψ(x, t)? 2 ] x 2 + V (x) Ψ(x, t).

3 3 (ii) Anta at bølgefunksjonen faktoriserer i en rom- og en tidsfunksjon, Ψ(x, t) = ψ(x)f(t). Bestem f(t) eksplisitt, og vis at likningen som ψ(x) må oppfylle er den såkalte stasjonære Schrödingerligningen gitt ved [ h2 2 ] 2m x 2 + V (x) ψ(x) = Eψ(x). (iii) Hvorfor kalles en slik løsning stasjonær? Oppgave 5: Partikkel i boks og brønn Vi ser nå på problemet partikkel-i-boks i 1 romlig dimensjon. I dette systemet er partikkelpotensialet gitt ved { for < x < L V (x) =. for x < og x > L Ved løsning av den stasjonære Schrödingerlikningen i oppgave 4 med dette potensialet finner en at spektret av energiegenverdier og tilhørende normerte egenfunksjoner er gitt ved E n = h2 π 2 2mL 2 n2, 2 ( nπx ) ψ n (x) = L sin L i boksen, og ψ n (x) = ellers, hvor n = 1, 2,...,. [Dette skal ikke vises.] (i) Beregn for partikkelen i grunntilstanden sannsynligheten for å finne partikkelen i (A) intervallet < x < L/2 og (B) intervallet < x < L/4. (ii) Operatoren for impuls (bevegelsesmengde) i én romlig dimensjon, p x,op, er gitt ved p x,op = h i d dx. Har en partikkel i grunntilstanden for partikkel-i-boks en bestemt impuls p x? Begrunn svaret. (iii) I det beslektede problemet partikkel-i-brønn er partikkelpotensialet gitt ved { for < x < L V (x) = for x < og x > L V hvor V er en konstant. For samme bredde L, vil grunntilstandsenergien til partikkel-i-brønn være høyere, like stor eller lavere enn for partikkel-i-boks? Begrunn svaret.

4 4 Figure 2: Eksiterte tilstander i litiumatomet (Li). Oppgave 6: Tilstander for litiumatomet Litiumatomet (Li) med atomnummer 3 har i grunntilstanden elektronkonfigurasjonen 1s 2 2s. Vi skal nå se på noen tilstander hvor det siste elektronet (valenselektronet) til Li er i en eksitert tilstand. I Figur 2 vises energinivåene for noen slike tilstander. For tilstandene med det siste elektronet i 2p og 3s er energiene (oppgitt i ev) målt relativt til grunntilstanden. (i) Valenselektronet har to 2p-tilstander til rådighet: 2P 3/2 og 2P 1/2. (A) Hva henspeiler indeksene 3/2 og 1/2 på? (B) Hvilken fysisk effekt ligger bak at 2P 1/2 har lavere energi enn 2P 3/2? (ii) Vi antar nå at et Li-atom har valenselektronet i en 3s-orbital, og at det deretter ikke påvirkes av omgivelsene. Gjør rede for de ulike elektrisk-dipol-overgangene som kan skje før atomet er blitt stabilt. Hvilken utvalgsregel gjelder for kvantetallet l for slike overganger? (iii) Hva er den korteste bølgelengden av elektromagnetisk stråling som blir utsendt i disse elektrisk-dipol-overgangene? [Her trenger du ikke å bry deg om den lille energiforskjellen mellom P 3/2 og P 1/2 -tilstander.] Oppgitte fysiske størrelser som kan komme til nytte: Lyshastigheten: c = m/s Elementærladning: e = C Boltzmanns konstant: k B = J/K Koblingsparameter i Coulombs lov: k e 2 = 1.44 ev nm Plancks konstant: h = J s, h = h/2π = J s

5 5 Elektronets masse: m e = kg Bohr radius: a = =.53 Å h2 m e ke 2 Rydberg-energien: E = h2 2m e a 2 = m e(ke 2 ) 2 2 h 2 = 13.6 ev Oppgitte matematiske sammenhenger som kan komme til nytte: sin 2 x dx = 1 2 sin x cos x + x 2 + C cos 2 x dx = 1 2 sin x cos x + x 2 + C sin m x cos x dx = 1 m + 1 sinm+1 x + C, m 1 sin x cos m x dx = 1 m + 1 cosm+1 x + C, m 1 sin 2x = 2 cos x sin x cos 2x = cos 2 x sin 2 x π e βx2 dx = β π e β(x+ic)2 dx =, hvor i: imaginær enhet, c: vilkårlig reell konstant β x 2 e βx2 dx = 1 π 2β β e x dx = 1 x e x dx = 1 x 2 e x dx = 2 x 3 e x dx = 6 x 4 e x dx = 24 Volumelement i kartesiske koordinater: Volumelement i kulekoordinater: dv = dx dy dz dv = r 2 sin θ dr dθ dφ Gaute T. Einevoll (faglærer) (m)

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4 FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver

Detaljer

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N LÆRINGSSENTERET Fysikk 3FY AA6227 Elever 6. juni 2003 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste side. Eksamenstid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Er naturkonstantene konstante?

Er naturkonstantene konstante? Er naturkonstantene konstante? Jan Myrheim Institutt for fysikk NTNU 18. mars 2009 Er naturkonstantene konstante? 1. Unnskyld hva var spørsmålet? To eksempler: lyshastigheten, Newtons 2. lov 2. Enhetssystemet

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

FYS2140 - Kvantefysikk. Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no

FYS2140 - Kvantefysikk. Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no FYS2140 - Kvantefysikk Are Raklev Teoretisk fysikk, rom FØ456, ahye@fys.uio.no Plan for dagen Oppmøteliste husk å signere! Praktisk informasjon om FYS2140. Hvordan overleve Kvantefysikk. Fysikk anno 1900.

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A) Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte

Detaljer

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen!

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Jeg burde starte med noen blomstrende ord om at målet med å ta et kurs er å lære mest mulig og å utvikle seg personlig, ikke å gjøre

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen?

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen? UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 6. oktober 2009, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR TEKNOLOGI INST. FOR BIOINGENIØR- OG RADIOGRAFUTDANNING Kandidatnr: Eksamensdato: Varighet: Fagnummer: Fagnavn: Klasse(r): Vekttall: Faglærer(e): Hjelpemidler: Oppgavesettet

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

Fasehastighet: Gruppehastighet:

Fasehastighet: Gruppehastighet: Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store

Detaljer

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON Fysisk institutt, UiO 17.1 Røntgenstråling 17.1.1 Bremsestråling og karakteristisk stråling Røntgenstråling er elektromagnetisk stråling med bølgelengde i området 10

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013 Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt

Detaljer

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom FY6/TFY45 - Løysing øving 6 Løysing oppgåve LØYSING ØVING 6 Grunntilstanden i hydrogenliknande atom a) Vi merkar oss fyrst at vinkelderivasjonane i Laplace-operatoren gjev null bidrag til r, sidan (r)

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

Kvantefysikk i 100 år

Kvantefysikk i 100 år Moderne fysikk og erkjennelsesmessige konsekvenser Kvantefysikk i 100 år Charles Addams Fra Planck til Zeilinger C Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn (1) Fysikken fram til omtrent 1900

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 10. juni 2014 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.

Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk

Detaljer

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

Braggdiffraksjon. Nicolai Kristen Solheim

Braggdiffraksjon. Nicolai Kristen Solheim Braggdiffraksjon Nicolai Kristen Solheim Abstract Gjennom denne øvelsen skal vi gjøre oss kjent med røntgenstråling og elektrondiffraksjon. Herunder finner vi bremsestråling, karakteristisk stråling, energispektrum,

Detaljer

Den franske fysikeren Charles de Columb er opphavet til Colombs lov.

Den franske fysikeren Charles de Columb er opphavet til Colombs lov. 4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes

Detaljer

Nano, mikro og makro. Frey Publishing

Nano, mikro og makro. Frey Publishing Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Tirsdag 30.05.06 EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Avsluttende eksamen i AST1100, 1. desember 2009, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 15 sider Tillatte hjelpemidler:

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for elektroteknikk og databehandling Eksamen i MIK130, Systemidentifikasjon Dato: Mandag 28. november 2005 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Kompendium i Kjemisk binding, spektroskopi og kinetikk (KJ1041) Einar Baumann Send en e-post til einar.baumann@gmail.com om du finner feil!

Kompendium i Kjemisk binding, spektroskopi og kinetikk (KJ1041) Einar Baumann Send en e-post til einar.baumann@gmail.com om du finner feil! Kompendium i Kjemisk binding, spektroskopi og kinetikk (KJ1041) Einar Baumann Send en e-post til einar.baumann@gmail.com om du finner feil! 13. november 2011 Innhold 0 Symboler, konstanter og operatorer

Detaljer

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen.

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen. EKSAMEN Emnekode: ITD12011 Emne: Fysikk og kjemi Dato: 30. April 2013 Eksamenstid: kl.: 9:00 til kl.: 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator. Gruppebesvarelse,

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Prosessteknologi FO173N, 9 studiepoeng, AMMT, HiST,. august 2007 Side 1 (av 6) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato:.august 2007 Varighet: Fagnummer:

Detaljer

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL)

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 6. desember 2011. Tid : 09.00-13.00. Sted: : Adm. bygget, Aud. max. eller B154. Tillatte hjelpemidler : Alle

Detaljer

DATALOGGING AV RADIOAKTIVITET

DATALOGGING AV RADIOAKTIVITET Elevverksted: DATALOGGING AV RADIOAKTIVITET Astrid Johansen, 2009 RADIOAKTIVITET Læreplanmål: Elevene skal kunne gjennomføre forsøk med radioaktivitet, halveringstid og bakgrunnsstråling og forklare fenomenene.

Detaljer

AVDELING FOR INGENIØRUTDANNING

AVDELING FOR INGENIØRUTDANNING AVDELIG FR IGEIØRUTDAIG Emne: Analytisk kjemi Fagnr: L435K Faglig veileder: Hanne Thomassen Gruppe(r):2KA Dato: 15. desember 2005 Eksamenstid: 9.00-14.00 Eksamensoppgaven består av: Antall sider (inkl.

Detaljer

EKSAMENSOPPGAVE I FYS-1002

EKSAMENSOPPGAVE I FYS-1002 Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:

Detaljer

Andreas. har 8 sider

Andreas. har 8 sider Instituttt for fysikk Eksamensoppgave i TFY 4102 Fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 8. juni 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee

Detaljer

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00 EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon (10 sp) Dato: Mandag 8 desember 2008 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

Eksamen i fag TFY 4305 Ikkelineær dynamikk Onsdag 30. november 2005 Tid: 15.00 19.00

Eksamen i fag TFY 4305 Ikkelineær dynamikk Onsdag 30. november 2005 Tid: 15.00 19.00 Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fsikk Faglig kontakt under eksamen: Navn: Jan Mrheim Telefon: 93653 eller 9 7 51 72 Eksamen i fag TFY 435 Ikkelineær dnamikk Onsdag

Detaljer

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400

EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt under eksamen: Navn: Helge E. Engan Tlf.: 9440 EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING

Detaljer

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE HØGSKOLEN I SØR-TRØNDELAG ADELING FOR TEKNOLOGI HØGSKOLEN I SØR-TRØNDELAG TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE Dato: Onsdag 07.05.08 arighet: 09.00-14.00 Klasser: 1FA 1FB 1FC 1FD Faglærere: Guri

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et skoleår. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Fasehastighet: Gruppehastighet:

Fasehastighet: Gruppehastighet: Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Eksamensoppgive FYSIKK. Nynorsk. 6. august 2002. Eksamenstid: 5 timar. Hielpemiddel: Lommereknar

Eksamensoppgive FYSIKK. Nynorsk. 6. august 2002. Eksamenstid: 5 timar. Hielpemiddel: Lommereknar UNIVERSITETS. OG HOGSKOLERADEI Eksamensoppgive FYSIKK Nynorsk 6. august 2002 Forkurs for ingeniorutdanning og maritim hogskoleutdanning Eksamenstid: 5 timar Hielpemiddel: Lommereknar Tabellar i fysikk

Detaljer

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag HØGSKOLEN I BERGEN Avdeling for helse og sosialfag EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE Utdanning Kull Emnekode/navn Eksamensform : Radiografutdanning : R09 : BRE 103 Del 3 Strålefysikk, strålevern og apparatlære

Detaljer

EKSAMEN Styring av romfartøy Fagkode: STE 6122

EKSAMEN Styring av romfartøy Fagkode: STE 6122 Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,

Detaljer

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2 FY006/TFY45 Innføring i kvantefysikk - Øving Frist for innlevering: tirsdag 4. februar Oppgave ØVING Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m bevegar seg

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Atomets oppbygging og periodesystemet

Atomets oppbygging og periodesystemet Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

Eksamen TFY 4104 Fysikk Hausten 2009

Eksamen TFY 4104 Fysikk Hausten 2009 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november

Detaljer

Theory Norwegian (Norway)

Theory Norwegian (Norway) Q3-1 Large Hadron Collider (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på denne oppgaven. I denne oppgaven blir fysikken ved partikkelakseleratoren

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Introduksjon til partikkelfysikk. Trygve Buanes

Introduksjon til partikkelfysikk. Trygve Buanes Introduksjon til partikkelfysikk Trygve Buanes Tidlighistorie Fundamentale byggestener gjennom historien De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF 1100 Klimasystemet Eksamensdag: Torsdag 8. oktober 2015 Tid for eksamen: 15:00 18:00 Tillatte hjelpemidler: Kalkulator Oppgavesettet

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

1 Stokastisk variabel

1 Stokastisk variabel FY1/TFY415 Innføring i kvantefysikk - Notat om sannsynlegheit 1 1 Stokastisk variabel Før vi byrjar på oppgåvene gjev vi ein liten briefing om stokastiske variable, middelverdiar, usikkerheiter osb. Ein

Detaljer