Husk å registrer deg på emnets hjemmeside!

Størrelse: px
Begynne med side:

Download "Husk å registrer deg på emnets hjemmeside!"

Transkript

1 IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper og attributter Ulike typer lister Hvordan lage tabeller? Øving 2: HTML (må godkjennes på sal neste uke) Idag: Lagring av informasjon vha bitmønstre (rekker av er og er) kapittel.4-.7 Heltall og flyttall toers komplement notasjon og flyttallsnotasjon Tegnsett Tallsystem Vi bruker tallsystemer for å representere kvantitet/antall Hvor mange hus ser du ovenfor? 5 i titallsystemet 2 i totallsystemet Begge er like riktige! Multipler av potenser I titallsystemet: 34 = * + 3* + 4* = 2, = og = Potenser av (grunntallet til tallsystemet) Hver posisjon representerer en kvantitet I totallsystemet: Grunntallet er nå 2! Når vi flytter oss mot venstre stiger verdien til tallet med 2-gangen: 2 4, 2 3, 2 2, 2, 2 som er 6, 8, 4, 2,. Potenser av 2! Generellt om tallsystemer Alltid potenser av grunntallet! Hvilken kvantitet representerer 35 x? i sekstallsystemet? base 6 tallsystem i åttetallsystemet? base 8 tallsystem Konvertering Konvertering fra totallsystemet til titallsystemet er veldig greit: 35 6 = * *6 + 5*6 = *36 + 3*6 + 5* = = * *8 + 5*8 = *64 + 3*8 + 5* =93 Merk: feil i boka

2 Konvertering (2) Oppgave Fra titallsystemet til totallsystemet er litt værre, men overkommelig Vi har en fremgangsmåte for dette som vi kan følge slavisk Eks. Hva er 35 i totallsystemet?. Ta tallet og del det på to, ta vare på kvotient og rest. 2. Fortsett og del på to til kvotient blir Restene du får vil sammen være totallsrepresentasjonen Tal l Deler på to! Kvotient Rest 35 = 2 Hva er 78 representert i totallsystemet? Hvorfor styre med totallsystemet i dette faget? Tall representert i totallsystemet er enkle å lagre i datamaskinen Inni maskinen brukes høy/lav spenning, strøm/ikke-strøm, lys/ikke-lys til å lagre data Slik kan tall som kun består av og lett lagres ved at feks lav spenning = og høy spenning = Dette er billigere og mer pålitelig enn å lagre direkte i titallsystemet Hvorfor? Flyttall og brøker Vi har selvsagt lov til å ha komma i totallsystemet Feks hva er. 2? Tilsvarende til høyre for komma som til venstre (bare motsatt vei) I titallsystemet: /, /, / osv. I totallsystemet: ½, ¼, /8, /6 osv. Hva med -. 2?. 2 = 5.25 Fortegn og plassering av komma Så hvordan får vi lagret fortegn og plassering av komma i datamaskinen (som bare kan forholde seg til er og er)? Vi har notasjoner for dette Toers komplement notasjon og eksess notasjon for positive og negative heltall Flyttallsnotasjon for brøker (tall med komma) Toers komplement notasjon Setter av halvparten av tallene til negative tall Ikke tenk på hvorfor!

3 Addisjon av tall representert i toers komplement notasjon To positive tall 5 pluss : + = Hva dersom vi prøver med negative tall? 3 pluss - : + = Dersom vi kutter av evt tall til helt til venstre kan vi bruke samme fremgangsmåte for substraksjon som for addisjon! Hvordan finne toers komplement representasjon til tall? Positivt tall: konverter til totallsystemet og du har svaret 6 = 2 Negativt tall: konverter til totallsystemet (se bort fra minus), deretter kopier fra høyre til venstre helt til første er, deretter snur du fra til og til (ta komplementet) -6 = (minus) 2 = tkn Kode -6 i toers komp notasjon - Ilustrasjon fra boka Addisjons i toers komplement eksempler fra boka Overflow (overflyt) Normalt satt av 32 bit ( er og er) til heltall Kan da lagre heltall fra til Hva skjer når vi legger sammen to tall som har et resultat som ligger utenfor det området vi kan lagre? Vi får såkalt overflyt! Eksess-notasjon for lagring av pos og neg heltall En annen notasjon for å lagre positive og negative heltall kalles eksess-notasjon Fyller opp nedenfra 4 +4 = tkn + tkn = tkn Uansett om vi setter = -8 av 64, 28 bit eller mer så kan vi ikke År-2 problemet? telle til uendelig!

4 Flyttall (ikke hele tall) notasjon: Floating point notation Tar utg pkt i totallsystemtallet -. 2 Hvordan representere dette fullstendig binært? Dvs vha bit-mønster. Vi må lagre fortegn, men også posisjonen til komma (engelsk: radix) Floating point notation (flyttallsnotasjon) Setter av sign-bit til å ta vare på fortegn Setter av exponent til å ta vare på posisjonen til komma Setter av mantissa til å ta vare på råtallene - 2 Koding av 2 ¼ (=2.25 ) Normalisert form Finn råtallene i totallsystemet og sett disse i mantissa 2 ¼ =.. Råtall blir da I utg pkt er komma plassert til venstre for råtallene. Lagre i exponent hvor mange flytt som skal gjøres mot høyre Dette skal lagres i eksess-notasjon! Lagre fortegn i sign bit = positiv verdi = negativ verdi Mest signifikante bit (den helt til venstre) i mantissa skal være den første er i totallsrepresentasjonen Eks /8 er lik. i totallsystemet Råtall/mantissa blir og ikke i normalisert form Dette for å hindre at samme brøk kan ha ulike representasjoner i flyttallsnotasjon Obs! Sjekk om mantissa er stor nok til å representere brøken/flyttallet I boka har signbit+exponent+mantissa en lengde på 8 bit. I datamaskinen kan dette typisk være 32 eller 64 bit. For liten mantissa kan gi avrundingsfeil Eks: brøken 2 5/8 =.625 5/8 = ½ + /8 Truncation error (avrundingsfeil) Hva skjer om vi skal legge sammen feks 4 ½ og ¼? 4 ½ i totallsystemet:.. i flyttallsnotasjon: ¼ i totallsystemet:.. i flyttallsnotasjon: 4 ½ + ¼ = 4 ¾, men kan 4 ¾ representeres i 8-bits flyttallsnotasjon? 4 ¾ =. (for mange bits!)

5 Vi kan øke mantissa Det er vanlig å bruke 32-bits flyttallsnotasjon for å lagre flyttall Men blir flyttallene for lange får vi likevel avrundingsfeil Eks i Java: public class Test { public static void main(string[] args) { float a = f; float b =.f; System.out.println(a+b); } } Hva skrives ut på skjerm? Ikke. som er riktig svar, men. Et annet problem med å lagre brøker Kan /3 representeres eksakt i titallsystemet? Nei, vi får Dette kalles problemet med ikkeavsluttende ekspansjoner (nondeterming expansions) Vi møter samme problemet i totallsystemet, men for enda flere brøker Feks / Rekkefølgen brøker legger sammen kan avgjøre om vi får avrundingsfeil eller ikke Gitt 8-bits flyttallsnotasjon: Vi skal legge sammen 2 ½ + /8 + /8 Dersom vi først legger sammen 2 ½ og /8, og deretter legger til /8 får vi avrundingsfeil fordi mellomsvaret 2 ½ + /8 som er 2 5/8 ikke kan representeres i flyttallsnotasjon på 8 bit Dersom vi legger sammen /8 og /8 først og deretter legger til 2 ½ får vi riktig svar. Hvorfor? Hva har dette å si? Det settes av nok bit til at man klarer å representere nøyaktig nok (stort sett) Men prøver vi å legge sammen med. feks i Excel får vi problemer For vanlig bruk er ikke dette noe stort problem, men feks i et navigasjonssystem eller værberegningssystem kan det være kritisk! Binær representasjon av tekst Prinsipp: Hvert tegn tildeles hvert sitt bitmønster A =, B = Se Appendix A i Brookshear Men hvordan bli enige om hvilke bitmønstre som repr hvilke tegn? ANSI (American National Standards Institute) har laget en standard ASCII (American Standard Code for Information Interchange) Hadde opprinnelig en lengde på 7 bit Hvor mange tegn kan man representere vha 7 bit? 2 7 = 28 Eksempel ASCII er idag utvidet til 8 bit og man kan representere 256 ulike tegn (2 8 ) De ekstre 28 tegnene brukes til nasjonale tegn (feks æ,ø, å eller õ, ö etc.) En rekke av bits vil således kunne representere et ord eller en setning H E L L O.

6 Andre tegnsett I dag Mandag: kap. i Brookshear Unicode (hvert tegn lengde 6 bits) Kan representere ulike tegn ISO (The International Organization for Standardization) har laget et tegnsett med bitmønstre på 32 bits Kan representere milliarder av tegn! Representere informasjon binært vha bitmønstre (rekker av er og er) Over Heltall (tar utg pkt i totallsystemet) -flow Toers komplement notasjon Eksess notasjon Flyttall/brøker (tar utg pkt i totallsystemet) Flyttallsnotasjon Tekst Tegnsett som ASCII og Unicode Avr. feil

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave IT Informatikk basisfag 4/9 Sist gang: manipulering av bits I dag: Representasjon av bilde og lyd Heksadesimal notasjon Organisering av data i hovedminne og masselager (elektronisk, magnetisk og optisk

Detaljer

Forskjeller mellom masselager og hovedminne. Permanent? Allokasjonstabell. Filer. Sekvensielle filer. Operativsystemets rolle

Forskjeller mellom masselager og hovedminne. Permanent? Allokasjonstabell. Filer. Sekvensielle filer. Operativsystemets rolle IT1101 Informatikk basisfag, dobbeltime 17/11 Sist uke: datastrukturer Tabell Lenket liste Stakk Kø inært tre Sammenhengende blokk vs pekermetoden I dag: Filstrukturer Forskjell hovedminne og masselager

Detaljer

En oppsummering (og litt som står igjen)

En oppsummering (og litt som står igjen) En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

156C. Algoritmer og maskinspråk. IT1101 Informatikk basisfag. Maskinspråk: det maskinen forstår. Assembler / assemblerspråk

156C. Algoritmer og maskinspråk. IT1101 Informatikk basisfag. Maskinspråk: det maskinen forstår. Assembler / assemblerspråk IT1101 Informatikk basisfag I dag Programmeringsspråk Problemer med maskinspråk I dag: 5.1-5.3 Fra lavnivå til høynivå programmeringsspråk - utvikling Kompilator / tolker Programmeringsparadigmer Tradisjonelle

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Velkommen til IT1101 Informatikk basisfag. Faglærer og forelesninger. Lærebok. Øvinger. IT1101 Fagstab. Fagets hjemmeside

Velkommen til IT1101 Informatikk basisfag. Faglærer og forelesninger. Lærebok. Øvinger. IT1101 Fagstab. Fagets hjemmeside Velkommen til IT1101 Informatikk basisfag I dag: Praktisk info Lærebok, øvinger, oppmeldingskrav, vurderingsform i emnet, hva skjer fremover Introduksjon til informatikk Informasjon Teknologi Algoritmer

Detaljer

Argumenter fra kommandolinjen

Argumenter fra kommandolinjen Argumenter fra kommandolinjen Denne veiledningen er laget for å vise hvordan man kan overføre argumenter fra kommandolinjen til et program. Hvordan transportere data fra en kommandolinje slik at dataene

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde

Norsk informatikkolympiade 2014 2015 1. runde Norsk informatikkolympiade 2014 2015 1. runde Sponset av Uke 46, 2014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5

Detaljer

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler Plan for dagen Vprg 4 LC191D Videregående programmering Høgskolen i Sør-Trøndelag Avdeling for informatikk og e-læring Anette Wrålsen Del: Intro til tekstfiler Del II: Mer om tekstfiler, Scanner-klassen

Detaljer

Kompendium til TOD065 - Diskret matematisk programmering

Kompendium til TOD065 - Diskret matematisk programmering Kompendium til TOD065 - Diskret matematisk programmering Jon Eivind Vatne Institutt for data- og realfag, HiB, Tlf: 55587112, Mob: 90203117, jev@hib.no 27. oktober 2011 2 Introduksjon Emnet vårt tar for

Detaljer

Sprettende ball Introduksjon Processing PDF

Sprettende ball Introduksjon Processing PDF Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som

Detaljer

Å lese tall fra en fil, klassen Scanner

Å lese tall fra en fil, klassen Scanner Å lese tall fra en fil, klassen Scanner 1. Et Scanner-objekt kan knyttes til et strømobjekt eller til en streng. 2. Kan skanne teksten etter data av ulike typer. 3. Kan kun skanne framover i teksten. Vis

Detaljer

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012 INF1000 - Uke 10 Ukesoppgaver 10 24. oktober 2012 Vanlige ukesoppgaver De første 4 oppgavene (Oppgave 1-4) handler om HashMap og bør absolutt gjøres før du starter på Oblig 4. Deretter er det en del repetisjonsoppgaver

Detaljer

En algoritme for permutasjonsgenerering

En algoritme for permutasjonsgenerering Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere

Detaljer

13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER

13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER .9.22 LITT OM OPPLEGGET INF EKSTRATILBUD Stoff fra uke - 2. September 22 Siri Moe Jensen Målgruppe: De som mangler forståelse for konseptene gjennomgått så langt. Trening får du ved å jobbe med oppgaver,

Detaljer

Kapittel 0 Introduksjon

Kapittel 0 Introduksjon Kapittel 0 Introduksjon 0. ALGORITMENS ROLLE Algoritme: Oppskrift på hvordan man løser en bestemt oppgave (eks. matoppskrift). Før en maskin kan utføre en oppgave, må en algoritme for hvordan oppgaven

Detaljer

1.2 Posisjonssystemer

1.2 Posisjonssystemer MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java:

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java: Variable og tilordninger Heltall, desimaltall og sannhetsverdier Kompilering og kjøring Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo

Detaljer

Lese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder:

Lese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder: Lese fra fil Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo INF1000 : Forelesning 5 Vi må først importere pakken easyio Vi åpner

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matematikk 5 V-008 Løsningsforslag til øving 9 OPPGVE Husk at N = {alle naturlige tall} = {0,,,,... }, Z = {alle heltall} = {...,,, 0,,,,... }, R = {alle reelle tall} og = {alle komplekse tall} = { z :

Detaljer

Forelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min.

Forelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min. Forelesning inf1000 - Java 5 Forelesningsquiz Tema: En liten quiz (se utdelt ark) Filbehandling Tekster Ole Christian Lingjærde, 19. september 2012 Sett dere to (eller tre) sammen og besvar de fire spørsmålene

Detaljer

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

Ta inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man

Ta inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man Eksempel med to-dimensjonal array Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 6 Vi skal lage et program som illustrerer

Detaljer

Oblig 4Hybelhus litt mer tips enn i oppgaven

Oblig 4Hybelhus litt mer tips enn i oppgaven Oblig 4Hybelhus litt mer tips enn i oppgaven lørdag 19. okt 2013 Arne Maus Obligatorisk oppgave 4 Gulbrand Grås husleiesystem I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer,

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Norsk informatikkolympiade 2013 2014 1. runde

Norsk informatikkolympiade 2013 2014 1. runde Norsk informatikkolympiade 2013 2014 1. runde Sponset av Uke 46, 2013 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det?

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det? Obligatorisk oppgave 3 Gulbrand Grås husleiesystem Oblig 3hus litt mer tips enn i oppgaven I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer, nummerert fra -3. I hver etasje

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Programmeringsspråket C Laget til implementasjon av Unix ved AT&Ts Bell labs i Palo Alto 1969 73. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI-standard

Detaljer

INF1000 Behandling av tekster

INF1000 Behandling av tekster INF1000 Behandling av tekster Marit Nybakken marnybak@ifi.uio.no 23. februar 2004 Tekster Vi kommer nesten aldri utenom å bruke tekststrenger i programmene våre, ikke minst fordi det nesten alltid skal

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Fredag 4. desember 2015 Tid for eksamen: 14.30 (4 timer)

Detaljer

www.slektshistorielaget.no og Java

www.slektshistorielaget.no og Java www.slektshistorielaget.no og Java Versjon 3, 6 september 2015 G. Thorud Her beskrives konfigurering av Java på Windows 7, 8.0 og 8.1 for å bruke databaser på www.slektshistorielaget.no Windows 10 Oppskriften

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk Side 1 av 20 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Institutt for informatikk Bokmål Eksamen i emnet INF100 Grunnkurs i programmering Torsdag 27. november 2014 Tid: 09:00 14:00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

INF1000 Variable. Marit Nybakken 27. januar 2004

INF1000 Variable. Marit Nybakken 27. januar 2004 INF1000 Variable Marit Nybakken marnybak@ifi.uio.no 27. januar 2004 Hva er en variabel Datamaskinens minne (eller hurtiglager) består av en masse celler som kan inneholde verdier. Hver av cellene har en

Detaljer

IT1101 Informatikk basisfag, dobbeltime 18/9. Kommunikasjon med perifere enheter. Kontrollere. Kontrollere (2) I/O-instruksjoner

IT1101 Informatikk basisfag, dobbeltime 18/9. Kommunikasjon med perifere enheter. Kontrollere. Kontrollere (2) I/O-instruksjoner IT1101 Informatikk basisfag, dobbeltime 18/9 I dag: Kommunikasjon med perifere enheter (på maskinspråknivå) Kommunikasjonsrater Kommunikasjonsfeil Feildetektering Feilkorrigering (Hammingdistanse) Operativsystemer

Detaljer

09.12.2003 9-14. ~ta11 oppgaver: 4. Nle skriftlige hjelpemidler-både trykte og håndskrevne, er tillatt

09.12.2003 9-14. ~ta11 oppgaver: 4. Nle skriftlige hjelpemidler-både trykte og håndskrevne, er tillatt I Kontrollert I høgskolen i oslo Emne Emnekode: Faglig veileder: Algoritmer og datastrukturer 80 131A UlUttersrud ppe(r): Dato: Eksamenstid:- 09.12.2003 9-14 Eksamensoppgaven består av: ta11 sider (inkl

Detaljer

BINÆRT TRYLLERI. Be noen tenke på et tall mellom 1 og 31, og deretter peke ut alle rutene som dette tallet er med i (se også baksiden).

BINÆRT TRYLLERI. Be noen tenke på et tall mellom 1 og 31, og deretter peke ut alle rutene som dette tallet er med i (se også baksiden). BINÆRT TRYLLERI Be noen tenke på et tall mellom 1 og 31, og deretter peke ut alle rutene som dette tallet er med i (se også baksiden). Hvis du kan det binære tallsystemet kan du nå si hvilket tall personen

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Løse reelle problemer

Løse reelle problemer Løse reelle problemer Litt mer om løkker, metoder med returverdier og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve Repetisjon fra forrige uke: while Syntaks: while (condition) do1; do2;... Eksempel:

Detaljer

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv

Detaljer

I dag skal vi se på. INF 1000 (uke 2) Variabler, tilordninger og uttrykk. Gruppene starter denne uken! Klart for første oblig

I dag skal vi se på. INF 1000 (uke 2) Variabler, tilordninger og uttrykk. Gruppene starter denne uken! Klart for første oblig INF 1000 (uke 2) Variabler, tilordninger og uttrykk Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo I dag skal vi se på Flere praktiske opplysninger Litt repetisjon Hva er en variabel

Detaljer

Innlesning fra tastatur med easyio. INF1000 høst 2010. Vi må først skrive i toppen av programmet: import easyio.*;

Innlesning fra tastatur med easyio. INF1000 høst 2010. Vi må først skrive i toppen av programmet: import easyio.*; Innlesning fra tastatur med easyio INF1000 høst 2010 Forelesning 2: Innlesning fra terminal Boolean-variable if-setninger Løkker Litt mer om heltall: divisjon og modulo Vi må først skrive i toppen av programmet:

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster 3 emner i dag! INF1000 Uke 5 Litt om objekter, pekere og null Filer og easyio Litt mer om tekster Litt om objekter, filer med easyio, tekst 1 2 Objekter og pekere Vi lager pekere og objekter når vi bruker

Detaljer

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert. Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen

Detaljer

81,9(56,7(7(7,26/2 'HWPDWHPDWLVNQDWXUYLWHQVNDSHOLJHIDNXOWHW

81,9(56,7(7(7,26/2 'HWPDWHPDWLVNQDWXUYLWHQVNDSHOLJHIDNXOWHW 81,9(56,7(7(7,26/2 'HWPDWHPDWLVNQDWXUYLWHQVNDSHOLJHIDNXOWHW (NVDPHQL,1)²*UXQQNXUVLREMHNWRULHQWHUWSURJUDPPHULQJ (NVDPHQVGDJ )UHGDJGHVHPEHU 7LGIRUHNVDPHQ ² 2SSJDYHVHWWHWHUSnVLGHU%RNPnO 9HGOHJJ VWN 7LOODWWHKMHOSHPLGOHU$OOHWU\NWHRJVNUHYQH

Detaljer

JAVA CHRISTOFFER MARTINSEN

JAVA CHRISTOFFER MARTINSEN JAVA CHRISTOFFER MARTINSEN 1 2 CHRISTOFFER MARTINSEN Contents 1. Introduksjon 3 1.1. Innledning 3 1.2. Buzzwords 3 1.2.1. Simple 3 1.2.2. Object Oriented 3 1.2.3. Distributed 3 1.2.4. Robust 3 1.2.5. Secure

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014 Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS Løkker og if-tester Gløer Olav Langslet Sandvika VGS 29.08.2011 Informasjonsteknologi 2 Funksjoner, løkker og iftester Læreplansmål Eleven skal kunne programmere med enkle og indekserte variabler eller

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Klasser, objekter, pekere og UML. INF1000 - gruppe 13

Klasser, objekter, pekere og UML. INF1000 - gruppe 13 Klasser, objekter, pekere og UML INF1000 - gruppe 13 Klasse Beskriver ofte ting fra den virkelige verden Veldig ofte et substantiv (Person, Bok, Bil osv.) class Person { String navn; int alder; } class

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Vedlegg 3 ephorte brukerveiledning for utvalgssekretær 1

Vedlegg 3 ephorte brukerveiledning for utvalgssekretær 1 Vedlegg 3 ephorte brukerveiledning for utvalgssekretær 1 Innhold 1. Oppstart og innlogging... 3 1. Registrere og vedlikeholde medlemmer... 3 2. Oppsett av sakskart... 4 3. Oppsett av faste saker... 4 4.

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Brukerveiledning Konvertere Excel til TelePay

Brukerveiledning Konvertere Excel til TelePay Brukerveiledning Brukerveiledning Konvertere Excel til TelePay INNHOLD 1 Innledning... 2 2 Konvertere Excel til Telepay... 2 3 Brukerveiledningen... 2 4 Maler... 3 4.1 Inndata i malene... 3 4.2 Malen for

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 4.mai 2011 Varighet: 0900-1300 Emnekode: Emnenavn: Klasse(r): LO191D / LC191D Campus: LC191D Videregående

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

1 t:n'v'\ekode LO325E. Alle ~vne og trykte. GOd'"j(jent kalkulator

1 t:n'v'\ekode LO325E. Alle ~vne og trykte. GOd'j(jent kalkulator 1 t:n'v'\ekode j Emne: 11nformatiklc Il LO325E I Faglig veileder Hilde Hemmer 1 Gruppe(r) I DOtO:14~1~ E ksamenstld 900-1400 I Eksamen~pgaven består av: Antall sider (Inkl forsiden og vedlegg):6 Antal

Detaljer

Årsplan Matematikk Skoleåret 2015/2016

Årsplan Matematikk Skoleåret 2015/2016 Årsplan Matematikk Skoleåret 2015/2016 Mål for faget Elevene elsker matematikk og gleder seg over hver time de skal ha i faget. Elevene skal kjenne tallsymbolene fra 0 til 20. Elevene skal beherske å skrive

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Binære tall og andre morsomheter

Binære tall og andre morsomheter Lærerveiledning Binære tall og andre morsomheter Passer for: Varighet: Vg1T og Vg2P 90 minutter Binære tall og andre morsomheter er et skoleprogram hvor elevene får en annerledes tilnærming til totallsystemet,

Detaljer

TOD063 Datastrukturer og algoritmer

TOD063 Datastrukturer og algoritmer TOD063 Datastrukturer og algoritmer Øving : 4 Utlevert : Veke 9 Innleveringsfrist : 19. mars 2010 Klasse : 1 Data og 1 Informasjonsteknologi Ta gjerne 1 og 2 først! Gruppearbeid: 2 personar pr. gruppe

Detaljer

INF1010, 21. januar 2016. Klasser med parametre = Parametriserte klasser = Generiske klasser

INF1010, 21. januar 2016. Klasser med parametre = Parametriserte klasser = Generiske klasser INF1010, 21. januar 2016 Klasser med parametre = Parametriserte klasser = Generiske klasser Stein Gjessing Inst. for Informatikk Universitetet i Oslo Først litt repetisjon fra i går class LagBiler { public

Detaljer

Eksamen. Objektorientert Programmering IGR 1372

Eksamen. Objektorientert Programmering IGR 1372 + JVNROHQL1DUYLN $YGHOLQJIRU7HNQRORJL Eksamen i Objektorientert Programmering IGR 1372 7LG'HVHPEHU± 7LOODWWHKMHOSHPLGOHU 6NULYHVDNHU2UGE NHU -DYD6RIWZDUH6ROXWLRQV)RXQGDWLRQVRI3URJUDP 'HVLJQVNUHYHWDY/HZLV

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus

VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Forelesere Knut Mørken og Martin Reimers, Matematisk institutt, 10. etg i Niels Henrik Abels hus Arbeider med

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

INF1010, 15. januar 2014 2. time. Parametriserte klasser (generiske klasser) Stein Gjessing Inst. for Informatikk Universitetet i Oslo

INF1010, 15. januar 2014 2. time. Parametriserte klasser (generiske klasser) Stein Gjessing Inst. for Informatikk Universitetet i Oslo INF1010, 15. januar 2014 2. time Parametriserte klasser (generiske klasser) Stein Gjessing Inst. for Informatikk Universitetet i Oslo Repetisjon fra gamle dager: Metoder med parametre En metode uten parameter:

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering

TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering 1 TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering Anders Christensen anders@idi.ntnu.no Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Læringsmål Skal kunne forstå og

Detaljer

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

Den analoge verden blir digitalisert

Den analoge verden blir digitalisert Den analoge verden blir digitalisert Lindem 4. mai 2008 Med bestemte tidsintervall går vi inn og avleser (digitaliserer) den analoge verdien til signalet. Nyquist Shannon sampling theorem: Skal vi beholde

Detaljer