Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6

Størrelse: px
Begynne med side:

Download "Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6"

Transkript

1 Tall Tallsstemer = = 7B Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = eller: 7 = ( * ) + ( * ) + ( * ) + ( * ) + (7 * ) Potenser av = = = * = = ** = = *** = osv Vi har fingre og bruker et -talls-sstem. Tilfeldig? INF-tall- Veiing med skålvekt titallsstemet g g g g g g g g g g g g ggg g g g g g g g g g g g g g g g gg g g Loddsats titallssstemet INF-tall-

2 Den generelle formelen for titallsstemet Hvis n er antall siffer, er den generelle formelen for titallsstemet = s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) k= Eksempel: = 7 dvs n = : Veiing med skålvekt det binære tallsstemet g gg g 8g g g ( * ) + ( * ) + ( * ) + ( * ) + (7 * ) 8g g g g g 8g g g g s s s s s k = Loddsats binærsstemet (totallsstemet) INF-tall- INF-tall- Det binære tallsstemet Har bare to siffer, og Bgger på posisjonssstemet som titallsstemet Posisjonenes verdi er potenser av Eksempel: = + + eller = ( * ) + ( * ) + ( * ) + ( * ) + ( * ) = + + = Potenser av = = = * = = ** = 8 = *** = osv Vi viser med en liten subskript at tallet er binært Den generelle formelen for det binære tallsstemet Hvis n er antall siffer, er den generelle formelen for det binære tallsstemet = s (n-) + s * (n-) + + s n- * () + s n * () = s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) k= Dette er nøaktig samme formel som for titallsstemet, bortsett fra at grunntallet er bttet ut med grunntallet = INF-tall-7 INF-tall-8

3 Veiing med skålvekt det heksadesimale tallsstemet Det heksadesimale tallsstemet Har siffer: A B C D E F gg g g g g gg g g g g g g g g g g g g gg g g g g g g g g ggg g g g g g g ggg g g g g Loddsats det heksadesimale sstemet Bgger på posisjonssstemet som titallsstemet Posisjonenes verdi er potenser av Eksempel: AC = A * + * + C * eller AC = ( * ) + ( * ) + ( * ) = * + * + = 8 INF-tall-9 INF-tall- De heksadesimale sifrene heksadesimalt siffer verdi i titallsstemet A B C D E F INF-tall- Den heksadesimale landeplage (?) Mel.: Kjerringa med staven C er tolv og D er tretten E er fjorten, F er femten seksten ganger seksten, det er to fem seks ganger seksten, det er førti nitti seks (ganger seksten, det er seks fem fem tre seks) A er ti, B er el ve Heksa B er el ve Nttig heksadesimal kunnskap: A = = B = = 9 C = = D = E = F = INF-tall-

4 Den generelle formelen for det heksadesimale tallsstemet Hvis n er antall siffer, er den generelle formelen for det heksadesimale tallsstemet = s * (n-) + s * (n-) + + s n- * () + s n * () = s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) k= Dette er nøaktig samme formel som for titallsstemet, bortsett fra at grunntallet er bttet ut med grunntallet = Tallsstemer - en veiingsanalogi Titallsstemet = = =8 lodd Det binære tallsstemet = Det heksadesimale tallsstemet A lodd A INF-tall- INF-tall- Nttige konverteringer mellom tallsstemer Titallsstemet Hva er en algoritme? Algoritme (latin, opprinnelig arabisk): Metode eller formel for en utregning Har en bestemt input Det heksadesimale tallsstemet Det binære tallsstemet Har en bestemt output Har bestemte trinn Kan utføres av en maskin Algoritmen vil terminere hvis input er korrekt Vi bruker algoritmer for å konvertere mellom tallsstemene INF-tall- INF-tall-

5 Fra titallsstemet til det binære tallsstemet En algoritme: La tallet være. Heltallsdivider med, kvotient gir n og rest r r er siste binærsiffer Heltallsdivider n med, kvotient gir n og rest r r er nest siste binærsiffer. Fortsett til blir Eksempel: / rest = Det heksadesimale tallsstemet Algoritmen: Er tallet et oddetall eller et partall? Er halvparten av tallet et oddetall eller et partall? INF-tall-7 Det binære tallsstemet Fra titallsstemet til det binære tallsstemet En alternativ algoritme: La tallet være. Finn den største toerpotensen som er mindre enn og sett en i denne posisjonen Trekk denne toerpotensen fra og få en n Finn den største toerpotensen som er mindre enn og sett en i denne posisjonen Fortsett inntil = Eksempel: k - k k 8 = INF-tall-8 Fra det binære til det heksadesimale tallsstemet Det heksadesimale tallsstemet Det binære tallsstemet Grupper de binære sifrene og (bakfra) Erstatt hver gruppe med det tilsvarende heksadesimale sifferet Eksempel: = For å komme fra det heksadesimale til det binære tallsstemet bruker vi tabellen motsatt vei binær siffergruppe heksadesimalt siffer A B C D E F INF-tall-9 Fra det heksadesimale tallsstemet til titallsstemet Vi bruker formelen s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) k= Eksempel: = * + = Titallsstemet Titallsstemet Titallsstemet Det heksadesimale Det binære tallsstemet tallsstemet Titallsstemet Det heksadesimale Det binære tallsstemet tallsstemet Ringen er sluttet! Det finnes mange konverteringstjenester på nettet, for eksempel INF-tall-

6 Ekstranummer: Fra det binære tallsstemet til titallsstemet Vi bruker formelen s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) k= Eksempel: = = = Det heksadesimale tallsstemet Titallsstemet Det binære tallsstemet Enklere å gå via det heksadesimale sstemet? Representasjon av tall Lærebokas kapittel 7 INF-tall- INF-tall- To måter å representere tall Som binær tekst Eksempel: '' i ISO 889- og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL Som binært tall (internt, native ) Eksempel: = Brukes som internt format ved lagring og beregninger se også Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Vi skal her se nærmere på binære tall Tall positive, negative heltall, fltende tall INF-tall- INF-tall-

7 Enkel addisjonstabell + = + = + = + = med i mente Binære regnestkker Binær addisjon - eksempel = = Enkel multiplikasjonstabell * = * = * = * = Et binært tall ganges med ved å føe til en bakerst Disse operasjonene kan utføres på nanosekunder i datamaskinenes elektroniske kretser = * + * = + = 7 INF-tall- INF-tall- Binær multiplikasjon - eksempel =, = Overflt ("overflow") I en datamaskin regner vi som regel med tallrepresentasjoner med et fastlagt antall biter (vanligvis 8,,, eller ) * = * + * + 9 * = = INF-tall-7 Dersom en aritmetisk operasjon fører til at resultatet faller utenfor det mulige tallområdet, har vi en overflt ("overflow") Regneenheten sender da et signal til den omkringliggende programvaren slik at den kan ta seg av situasjonen (feilmelding) Eksempel forutsetter 8 biters tallrepresentasjon mente -> overflt = = 8 biter begrenser mulig tallområde til [,,] + = 9 INF-tall-8

8 Gra-kode Binært tallsstem Gra-kode Titallsstem Et ikke-posisjonssstem der representasjonen av et tall og det neste tallet i tallrekken atskiller seg i bare én bit INF-tall-9 Konvertering binært tallsstem Gra-kode Fra det binære tallsstemet til Gra-kode : eclusive or -operasjonen to like biter gir, to ulike biter gir Fra Gra-kode til det binære tallsstemet Huskeregel: I begge konverteringer XOR es med forrige bit i det binære tallsstemet! INF-tall- Negative tall "Klokkearitmetikk" Mange representasjonsmuligheter, men stor fordel om vi kan bruke samme elektronikk for å regne som for positive tall Derfor representeres negative tall som komplementer Vi ser først på litt "klokkearitmetikk" (modulo-operasjoner) Deretter lager vi oss en -timers ( biters) klokke, og blir enige om at tallene på venstre del av skiven (som alle starter med en binær ) skal tolkes som negative Modulo-operatoren utføres ganske enkelt ved å se bort fra overflten Hvis klokka er, hvor me er den om timer? Jo: (+)% %: Modulo-operatoren (rest av heltallsdivisjon) INF-tall- INF-tall-

9 Negative tall som toer-komplement "Klokkearitmetikk" toer-komplement Forutsetter -biters tallrepresentasjon, gir verdiområdet [ 8,,7] Tenk deg en digital teller som står på. Drei den i negativ retning. Første ne tall som dukker opp er komplementet til, dvs Hvis klokka er, hvor me er den om timer? Jo: (+)% INF-tall- INF-tall- Toer-komplementet Det binære toer-komplementet er lett å beregne: Ta et binært tall Erstatt alle med, alle med (legg merke til at vi må vite antall biter for tallrepresentasjonen) Legg til Eksempel: = (forutsetter 8 biter) toer-komplementet er + =, dvs. * + * = Regne ut + ( ): + = = * = Hva er det binære toer-komplementet til? Noen observasjoner om toer-komplement Positive binære tall begnner på (mest signifikante bit, MSB =) Negative binære tall begnner på (mest signifikante bit, MSB =) Dersom vi adderer to tall og får mente som renner over i forkant, skal menten bare kastes dette er en konsekvens av trikset med toer-komplement- representasjon Men dersom de to menteposisjonene lengst til venstre (inkludert menten som renner over ) er ulike, er vi kommet utenfor det tallområdet som kan representeres. Vi har altså en overflt! Dersom vi legger sammen et binært tall med dets toer-komplement, får vi (selvfølgelig ) toer-komplementet av toer-komplementet av et tall er tallet Gjelder ikke for det siste negative tallet ( the weird number ) overflt! mente INF-tall- INF-tall-

10 En annen vri tall med "bias" Vi skal representere tallene [ 8,,7] (8 biters tallrepresentasjon) Vi legger en bias 8 til alle tallene, slik at vi istedenfor kan representere tallene [,,] og det er jo helt kurant Ved addisjon kommer bias med to ganger, så vi må trekke den fra igjen Eksempel (forutsetter 8 biters tallrepresentasjon og derfor bias 8): Vi skal addere og. bias 8 = 8 = - bias 8 = 7 = = + - = = * = = bias 8 Dette prinsippet brukes for eksponenten i fltende tall, se lsark INF-tall- datatpe bte short int long antall biter 8 Heltallstper i Java minste tall største tall Legg merke til at største tall er en mindre enn minste tall med motsatt fortegn. Tallet tar den første positive plassen! INF-tall-7 INF-tall-8 Flttall Binære flttall Hva hvis heltallsområdet ikke er stort nok? Hva med desimaler etter komma? Svaret er flttall! Vi ser først på den desimale verden: Et tall kan skrives som eksponent * mantisse Eksempler: *, = *, = *, = *, =, - *, =, *, =, - *, =, *, =, Et binært flttall er basert på eksponent * mantisse Vi må representere eksponent og mantisse Begge må kunne være både positive og negative (og null) Mange representasjonsmuligheter, verden har imidlertid standardisert på IEEE 7 To varianter: -biter representasjon (single precision, datatpe real ) -biter representasjon (double precision, datatpe double ) se INF-tall-9 INF-tall-

11 Single precision Double precision Binære flttall (forts.) fortegnsbit 8 eksponent med bias 7 mantisse. Ikke-lagret ledende med antatt binærpunkt fortegnsbit eksponent med bias mantisse. Ikke-lagret ledende med antatt binærpunkt Mantissen er normalisert, slik at første bit alltid er. Derfor sparer vi plass ved ikke å lagre denne biten! Vi legger en bias til eksponenten slik at representasjonen aldri er negativ! INF-tall- datatpe real double Flttallsområder i IEEE 7 (og i Java) antall biter minste positive tall + = + ~,8 + = + ~, og tilsvarende for negative tall minste positive tall overflow-område underflow-område største positive tall + ( )* 7 = + ~ 8, + ( )* = + ~ 8. største positive tall overflow-område Spesielle verdier: Null: Både eksponent og mantisse er (både + og ) Uendelig: Eksponent med bare ere, mantisse med bare ere Not A Number: Eksponent med bare ere, mantisse Mantisse som starter med : Resultat av en udefinert operasjon (eksempel: /) Mantisse som starter med : Resultat av en ulovlig operasjon (eksempel: N/) INF-tall- Om presisjon og nøaktighet Presisjon ( precision ): Hvor presist vi ønsker å representere et tall. Er direkte avhengig av hvor mange biter vi velger å bruke. Ut i rommet Heltall er alltid presist representert innenfor tallområdet. Presisjonen for flttall varierer, men er omvendt proporsjonal med tallets størrelse. Jo mindre tall, jo større presisjon! Nøaktighet ( accurac ): Hvor nøaktig vi ønsker (eller greier) å måle eller observere en størrelse. Siden mange tall ikke kan representeres eksakt, må de snappes til nærmeste representerbare tall. Dette kalles diskretisering. Lærebokas kapittel 8 INF-tall- INF-tall-

12 Punkter i endimensjonalt rom Punkter i todimensjonalt rom Et tall kan oppfattes som et punkt i et endimensjonalt rom Tallet er da en koordinatverdi Eksempler: Punktene -.,, π -. π I et todimensjonalt rom trenger vi et koordinatpar. Eksempel: Punktet (,) (,) Kartesisk koordinatsstem (,) (π,) origo π INF-tall- INF-tall- Punkter i tredimensjonalt rom I et todimensjonalt rom trenger vi et koordinattrippel. Tredimensjonalt rom vist som animasjon Eksempel: Punktet (,, π) Z= Z= π Kartesisk koordinatsstem Z= Z= Z=π Z= (,) (,, π) Z= Z=π Z= (,) Z= Z= Z= - Animasjon langs -aksen INF-tall-7 INF-tall-8

13 Alternativ til kartesiske koordinater to dimensjoner Alternativer til kartesiske koordinater tre dimensjoner (,) (.7π,.7) r=.7 h r v v v=.7π - - r v Polarkoordinater Slinderkoordinater Sfæriske koordinater INF-tall-9 INF-tall- Diskretisering i rommet Punkter i flerdimensjonale rom må snappes til nærmeste representerbare punkt på samme måte som tall (punkter i det endimensjonale rom) snappes til nærmeste representerbare tall Geometrier i rommet En geometri kan oppfattes som en punktsk med uendelig mange punkter (tett punktmengde). Dimensjonaliteten kan ikke være større enn rommets dimensjonalitet Endimensjonalt rom Eksakt verdi Diskretisert verdi Todimensjonalt rom Tredimensjonalt rom INF-tall- INF-tall-

14 Representasjoner av geometri Regulære geometrier En uendelig mengde punkter med uendelig presis beliggenhet kan ikke representeres i en datamaskin Endimensjonalt rom Rett linje To ulike løsninger; Vektorrepresentasjon : Representere noen viktige punkter, og avlede de øvrige punktene matematisk ved behov. Egnet for regulære geometrier. Todimensjonalt rom (, ) Rett linje (. ) Sirkel r Rasterrepresentasjon Bgge opp representasjonen av et endelig antall punkter med utstrekning. Gir vanligvis bare en tilnærmet korrekt geometri. Tredimensjonalt rom (,, ) r (,, ) INF-tall- Rett linje Kuleskall INF-tall- Interpolasjonsteknikker Lineær interpolasjon i to dimensjoner Interpolasjon med konstant Lineær interpolasjon Interpolasjon med glatting INF-tall- INF-tall-

15 Triangulated irregular network (TIN) Quad-tre INF-tall-7 INF-tall-8 Endimensjonalt raster Rasterrepresentasjon I rasterrepresentasjon bgges geometrien opp av punkter med utstrekning Todimensjonalt raster Tredimensjonalt raster Tall oppsummering Tall kan representeres tekstlig, som binære tall, i Gra-kode eller som flttall. For negative binære heltall brukes vanligvis toer-komplementer. Andre alternativer er bruk av fortegnsbit eller bruk av bias, Tall kan betraktes som punkter i et rom tallene fungerer da som koordinater. Punkter som ikke kan representeres eksakt, må snappes til nærmeste representerbare punkt såkalt diskretisering. Geometrier med utstrekning kan ikke ha høere dimensjonalitet enn rommet de er plassert i. For geometrier med utstrekning kan vi bruke enten vektorrepresentasjon eller rasterrepresentasjon. INF-tall-9 INF-tall-

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

INF1040 Digital representasjon TALL

INF1040 Digital representasjon TALL TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til

Detaljer

INF1040 Oppgavesett 7: Tall og geometrier

INF1040 Oppgavesett 7: Tall og geometrier INF1040 Oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende

Detaljer

Ut i rommet. Læringsmål. Punkter i endimensjonalt rom Skalarer. Punkt i todimensjonalt rom. Geometrier, tid, kart, bilder, animasjoner, CAD/CAM,

Ut i rommet. Læringsmål. Punkter i endimensjonalt rom Skalarer. Punkt i todimensjonalt rom. Geometrier, tid, kart, bilder, animasjoner, CAD/CAM, Ut i rommet Geometrier, tid, kart, bilder, animasjoner, CAD/CAM, Læringsmål Forstå koordinater og koordinatsstemer Forstå geometrier I rommet Forstå forskjellen mellom vektor- og rasterrepresentasjon,

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Tallsystemer. Posisjonstallsystemer. Måling med desimal målestokk. Den generelle formelen for titallsystemet 123 = = 7B 16

Tallsystemer. Posisjonstallsystemer. Måling med desimal målestokk. Den generelle formelen for titallsystemet 123 = = 7B 16 Posisjostallsystemer Tallsystemer Vårt velkjete -talls-systemet er et posisjossystem: = + + + + = = B INF-Tall- eller: = ( * ) + ( * ) + ( * ) + ( * ) + ( * ) Poteser av = = = * = = ** = = *** = osv Vi

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

INF1040 Digital representasjon Oppsummering

INF1040 Digital representasjon Oppsummering INF1040 Digital representasjon Oppsummering Ragnhild Kobro Runde, Fritz Albregtsen INF1040-Oppsummering-1 Fredag 7. desember 2007. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

Oppsummering 2008 del 1

Oppsummering 2008 del 1 INF1040 Digital it representasjon Oppsummering 2008 del 1 Ragnhild Kobro Runde INF1040-Oppsummering-1 Fredag 5. desember 2008. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

Oppsummering 2008 del 1

Oppsummering 2008 del 1 INF1040 Digital it representasjon Oppsummering 2008 del 1 Fredag 5. desember 2008. 09.00 12.00 Eksamen I Møt senest 08.45! Ta med legitimasjon! Ingen hjelpemidler tillatt, heller ikke kalkulator. Ragnhild

Detaljer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer Forstå posisjostallsystemer Lærigsmål Tallsystemer Kue biærtall og heksadesimale tall Kue kovertere mellom ulike tallsystemer: Ti 3 = = 7B 6 (Kapittel 6 + 7.-7.3) Kue ekel regig med biærtall addisjo multiplikasjo

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 13. september 2004 En viktig del av den første obligatoriske oppgaven er å få erfaring med hvordan Java håndterer tall. Til å begynne med kan dette

Detaljer

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk.

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk. Flyttalls aritmetikk I datamaskinen er alle tall representert i flyttalls aritmetikk. 1/21 Det betyr at desimal punktet ( float, floating point arithmetic på engelsk) beveger seg slik at store og små tall

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 8. oktober 2014. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke) KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder

Detaljer

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet INF1000: Forelesning 12 Digital representasjon av tall og tekst Læringsmål Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet Det heksadesimale Det binære tallsystemet

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 7. oktober 2015. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

INF1400 Kap 1. Digital representasjon og digitale porter

INF1400 Kap 1. Digital representasjon og digitale porter INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell

Detaljer

Oblig3Pi - en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 høsten 2010 ett av to alternativer for oblig 3.

Oblig3Pi - en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 høsten 2010 ett av to alternativer for oblig 3. Oblig3Pi - en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF høsten ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl. 6.. Viktig: les slutten

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MAT1030 Plenumsregning 3

MAT1030 Plenumsregning 3 MAT1030 Plenumsregning 3 Ukeoppgaver Mathias Barra - 30. januar 2009 (Sist oppdatert: 2009-02-02 14:26) Plenumsregning 3 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58 8+1 465 8+6 3726. Svar: 3726

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Kompendium til TOD065 - Diskret matematisk programmering

Kompendium til TOD065 - Diskret matematisk programmering Kompendium til TOD065 - Diskret matematisk programmering Jon Eivind Vatne Institutt for data- og realfag, HiB, Tlf: 55587112, Mob: 90203117, jev@hib.no 27. oktober 2011 2 Introduksjon Emnet vårt tar for

Detaljer

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Alt er bit! Hvordan lagre tall tekst bilder lyd som bit i en datamaskin Hvordan telle binært? Binære tall Skal vi telle med bit ( og ), må vi telle binært. Dette gjøres egentlig

Detaljer

kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4

kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4 Innleveringsfrist: Øvingsveiledning: 12:15-14:00 EL5 kl 12:00 - mandag 31. mars 2008 Odde: uke 11 (12. mars 2008) Utlevert: fredag 7. mars 2008 Like: uke 13 (26. mars 2008) Regneøving 4 Oppgave 1: 30 poeng

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hashfunksjoner Hashfunksjoner Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hash: «Kutte opp i biter og blande sammen» Perfekt hashfunksjon: Lager aldri kollisjoner

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: 11. juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 8

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 30: Kompleksitetsteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne

Detaljer

Forelesning 30. Kompleksitetsteori. Dag Normann mai Informasjon. Oppsummering

Forelesning 30. Kompleksitetsteori. Dag Normann mai Informasjon. Oppsummering Forelesning 30 Kompleksitetsteori Dag Normann - 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne våren på semestersiden. Det blir ikke ordinære gruppetimer fra og med

Detaljer

Oblig3Pi en matematisk rettet variant av oppgave nr. 3 (av 4) i INF1000 våren 2009 ett av to alternativer for oblig 3.

Oblig3Pi en matematisk rettet variant av oppgave nr. 3 (av 4) i INF1000 våren 2009 ett av to alternativer for oblig 3. Oblig3Pi en matematisk rettet variant av oppgave nr. 3 (av 4) i INF000 våren 2009 ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag 3. april kl 6.00. Viktig: les slutten

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

MAT-INF 1100 Modellering og beregninger. Fredag 12. oktober 2018 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen MAT-INF 1100 Modellering og beregninger Fredag 12. oktober 2018 kl 1430-1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller 3

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF1400 Kombinatorisk Logikk Hva lærte vi forrige uke? www.socrative.com Student login Omid Mirmotahari 1 Læringsutbytte Kunnskapsmål: Kunnskap om hvordan addisjon og subtraksjon for binære tall gjøres

Detaljer

Del 1 En oversikt over C-programmering

Del 1 En oversikt over C-programmering Del 1 En oversikt over C-programmering 1 RR 2016 Starten C ble utviklet mellom 1969 og 1973 for å re-implementere Unix operativsystemet. Er et strukturert programmeringsspråk, hvor program bygges opp av

Detaljer

INF 1000 høsten 2011 Uke 11: 2. november

INF 1000 høsten 2011 Uke 11: 2. november INF 1000 høsten 2011 Uke 11: 2. november Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Kursansvarlige: Arne Maus og Siri Moe Jensen 1 Info Obligene skal være

Detaljer

INF 1000 høsten Innhold uke 11. Digital representasjon av tekster, tall, former,

INF 1000 høsten Innhold uke 11. Digital representasjon av tekster, tall, former, Info INF 1000 høsten 2011 Uke 11: 2. november Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Kursansvarlige: Arne Maus og Siri Moe Jensen Obligene skal være kommentert,

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

7) Radix-sortering sekvensielt kode og effekten av cache

7) Radix-sortering sekvensielt kode og effekten av cache ) Radix-sortering sekvensielt kode og effekten av cache Dels er denne gjennomgangen av vanlig Radix-sortering viktig for å forstå en senere parallell versjon. Dels viser den effekten vi akkurat så tilfeldig

Detaljer

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Knut Mørken 3. november 2004 Etter samtale med noen av dere de siste dagene skjønner jeg at noen strever med del 2 av oblig2. Problemene

Detaljer

NY EKSAMEN Emnekode: ITD13012

NY EKSAMEN Emnekode: ITD13012 NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Oversikt. INF1000 Uke 2. Repetisjon - Program. Repetisjon - Introduksjon

Oversikt. INF1000 Uke 2. Repetisjon - Program. Repetisjon - Introduksjon Oversikt INF1000 Uke 2 Variable, enkle datatyper og tilordning Litt repetisjon Datamaskinen Programmeringsspråk Kompilering og kjøring av programmer Variabler, deklarasjoner og typer Tilordning Uttrykk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet.

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet. Ordliste 2 Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med tekst og tall (og litt datakommunikasjon og kryptering) i kurset INF1040 høsten 2004. En del av nøkkelordene

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer