INF1040 Oppgavesett 7: Tall og geometrier

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF1040 Oppgavesett 7: Tall og geometrier"

Transkript

1 INF1040 Oppgavesett 7: Tall og geometrier (Kapittel 7.1, , 8 + Appendiks B) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes fasit bakerst i oppgavesettet. Det er ikke nødvendigvis meningen at du skal gjøre alle disse oppgavene. Gjør gjerne noen oppgaver av hver type, og gå videre hvis du synes det går greit. Gjør flere oppgaver av samme type hvis du synes det er vanskelig og ønsker mer trening. 1. Skriv følgende tall i titallsystemet på toer-komplementsform med 8 biters representasjon: (a) -125 (b) -68 (c) -3 (d) 0 (e) Gjør følgende regnestykker ved hjelp av tall på toer-komplementsform. Fører noen av tilfellene til overflyt? (a) (=-125+(-3)) (b) (c) (d) (=-68+(-68)) (e) Bruk en biasrepresentasjon med 4 biter og bias lik 8. Hva blir representasjonen av følgende tall i titallsystemet? 1

2 (a) -8 (b) -5 (c) 0 (d) 3 (e) 7 4. Gjør følgende regnestykker ved hjelp av tall med 4-biters representasjon og en bias lik 8. Fører noen av tilfellene til overflyt? (a) -5-5 (=-5+(-5)) (b) -5+0 (c) -5+3 (d) -5+7 (e) Gjør om følgende tall (i totallsystemet) til normaliserte flyttall: (a) 1011 (b) (c) (d) (e) Hvordan representeres flyttallene fra forrige oppgave ved hjelp av IEEE single precision? 7. Skriv tallene fra 0 10 til 7 10 ved hjelp av en tre-biters Gray-kode. Flervalgsoppgaver I følgende oppgaver er det oppgitt fem alternativer der nøyaktig ett svar er riktig. 8. Hvor mange biter er det i 1 MB (en megabyte) hvis vi følger SI-standarden? (a) (b) (c) (d) (e)

3 9. Hvor mange biter er det i en MiB (en mebibyte) hvis vi følger IECstandarden? (a) (b) (c) (d) (e) Med en fire-biters representasjon, hva blir toer-komplementet til 0? (a) 0000 (b) 0001 (c) 1000 (d) 1110 (e) Anta at vi bruker to biter for en heltallrepresentasjon basert på toerkomplement prinsippet. Hva er tallområdet, uttrykt i desimale tall? (a) 0 til 3 (b) -1 til +2 (c) -2 til +1 (d) -2 til +2 (e) -4 til Anta at vi bruker seks biter for en heltallrepresentasjon basert på toerkomplement prinsippet. Hva er tallområdet, uttrykt i desimale tall? (a) -6 til +6 (b) -31 til +32 (c) -32 til +31 (d) -63 til +64 (e) -64 til Hva er hensikten med toer-komplement representasjonen? (a) Gir en enkel måte for å gange med 2. (b) Gir en enkel måte for å dele på 2. (c) Gir en enkel måte for å trekke et tall fra 2. (d) Gir en enkel måte for å regne med negative tall. (e) Ingen av delene. 3

4 14. Vi ønsker å representere ulike heltall ved hjelp av 8 bitposisjoner og en bias B slik at tallene havner i verdiområdet fra 0 til 255. Hva må biasen B være for at både 2 7 og 2 7 skal falle innenfor det gitte verdiområdet? (a) B må være nøyaktig lik 27 (b) Den minste verdien B kan ha er 27, den største verdien er 27+1 (c) Den minste verdien B kan ha er 27, den største verdien er 28-1 (d) Den minste verdien B kan ha er 27, den største verdien er 28 (e) Det er umulig å finne en slik bias. 15. Hvor mange av tallene π, 1 3, 2100 og kan representeres nøyaktig med IEEE 754 single precision? (a) 0 (b) 1 (c) 2 (d) 3 (e) Hvor mange av tallene π, 1 3, 2100 og kan representeres nøyaktig med IEEE 754 double precision? (a) 0 (b) 1 (c) 2 (d) 3 (e) Anta at vi har gitt et flyttallsformat med et bestemt antall biter i eksponent og mantisse. Vi lager en variant av dette formatet med dobbelt så mange bitposisjoner i eksponenten. Hvilken innvirkning har dette? (a) Vi får ingen forbedret presisjon, men kan representere betydelig større tall. (b) Vi får ingen forbedret presisjon, men kan representere litt større tall. (c) Vi får en forbedret presisjon, men kan ikke representere større tall. (d) Vi får en forbedret presisjon og kan representere litt større tall. (e) Vi får en forbedret presisjon og kan representere betydelig større tall. 4

5 18. Anta at vi har gitt et flyttallsformat med et bestemt antall bitposisjoner i eksponent og mantisse. Så bestemmer vi oss for å lage en variant av dette formatet med dobbelt som mange bitposisjoner i mantissen. Hvilken innvirkning har dette? (a) Vi får ingen forbedret presisjon, men kan representere betydelig større tall. (b) Vi får ingen forbedret presisjon, men kan representere litt større tall. (c) Vi får en forbedret presisjon, men kan ikke representere større tall. (d) Vi får en forbedret presisjon og kan representere litt større tall. (e) Vi får en forbedret presisjon og kan representere betydelig større tall. 19. Fire biters Gray-koding av tallet 8 i titallsystemet gir (a) 0101 (b) 0111 (c) 1000 (d) 1100 (e) Ingen av disse. 20. Hvilken av følgende påstander er korrekt? (a) Gray-koden til et tall finnes ved å ta det tilsvarende binærtallet og legge til nuller først i representasjonen inntil man får det ønskede antall sifre. (b) Gray-koden til et tall finnes ved å ta det tilsvarende binærtallet og legge til nuller bakerst i representasjonen inntil man får det ønskede antall sifre. (c) I Gray-kode er første bit et fortegnsbit som angir om tallet er positivt eller negativt. (d) I Gray-kode er alle tall med 0 som første (mest signifikante) bit større enn alle tall med 1 som første bit. (e) I Gray-kode er alle tall med 1 som første (mest signifikante) bit større enn alle tall med 0 som første bit. 5

6 21. I en vektorrepresentasjon, hvor mange reelle tall trengs for å beskrive plasseringen av et rett linjestykke i et tredimensjonalt rom dersom vi bruker kartesiske koordinater? (a) 2 (b) 3 (c) 4 (d) 5 (e) I en vektorrepresentasjon, hvor mange reelle tall trengs for å beskrive plasseringen av et rett linjestykke i et tredimensjonalt rom dersom vi bruker sylindriske koordinater? (a) 2 (b) 3 (c) 4 (d) 5 (e) I en vektorrepresentasjon, hvor mange reelle tall trengs for å beskrive plasseringen av et rett linjestykke i et tredimensjonalt rom dersom vi bruker sfæriske koordinater? (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 Tenk selv -oppgaver 24. Det oktale tallsystemet I det oktale tallsystemet er grunntallet 8. (a) Hvilke sifre brukes i dette tallsystemet? (b) Skriv tallene fra 0 10 til 7 10 både binært og oktalt, og sammenlign med den tilsvarende tabell for heksadesimale tall på side 3 i læreboken. (c) Hvor mange oktale sifre trengs for å representere et bitmønster på 8 biter? Hvor mange heksedesimale sifre trengs for dette? (d) Hvor mange oktale sifre trengs for å representere et bitmønster på 32 biter? Hvor mange heksedesimale sifre trengs for dette? 6

7 25. Representasjon av heltall og litt regning I denne oppgaven skal du anta at du arbeider med en datamaskin der heltall er representert med åtte (8) biter. (a) Hvilket tallområde kan representeres under forutsetning av at du ikke skal representere negative tall? (b) Hvilket tallområde kan representeres under forutsetning av at negative tall skal representeres som toerkomplementer? (c) Hva er den binære representasjonen for 77? (d) Hva er toerkomplement binære representasjonen for -66? (e) Utfør en binær addisjon av tallene 77 og -66 i toerkomplementsystemet. Kontroller svaret! (f) Utfør en binær addisjon av 77 med seg selv i toerkomplement-systemet. (g) Utfør en binær addisjon av -66 med seg selv i toerkomplement-systemet. 26. Litt mer binærregning Ta de fire desimalsifrene i din fødselsdag (månedsnummeret skjøtt sammen med dagnummeret, for eksempel: 12. januar = 0112). (a) Konverter dette tallet til et binært tall. Vi kaller dette tallet A. (b) Multipliser A med 2. Vi kaller dette tallet B. (c) Dann toerkomplementet av A (du må gjøre en antagelse om hvor mange biter du vil bruke for dine heltall). Vi kaller dette tallet C. (d) Adder B og C - vi kaller resultatet D. (e) Konverter D tilbake til desimaltall. 27. Regning med tall på tekstform Vi vet at tall kan representeres på to høyst ulike måter: Enten på binær form eller som tekst. Den første formen brukes fortrinnsvis for lagring og beregninger, den andre fortrinnsvis i forbindelse med input/output eller når tallet inngår som en integrert del av en tekst. I programmeringsspråket COBOL (Common Business Oriented Language) er det imidlertid vanlig å regne med tall på tekstform, fordi bruksområdet gjør at mengden av regning er relativt beskjeden sammenliknet med mengden av teksthåndtering, og det ofte ikke lønner seg å konvertere tallene fram og tilbake mellom tekstform og binærform. Skisser en algoritme for å addere to ikke-negative tall på tekstlig form. Anta at kodingen er ISO eller Unicode UTF-8. Prøv algoritmen eksempelvis på å addere desimaltallet 73 med seg selv. 7

8 28. Representasjon av flytende tall (litt avansert mest for spesielt interesserte) Før du prøver deg på denne oppgaven, kan det lønne seg å studere konverteringsrutinen på Anta at du har en representasjon av et flytende tall i henhold til prinsippene i IEEE Standard 754, men med bare 8 biter og følgende layout: Fortegnsbit: 1 bit Eksponent: 3 biter bias 3 Mantisse 4 biter For å forenkle ting, antar vi at vi kun opererer med normaliserte mantisser. (a) Hva er det største positive tallet som kan representeres? (b) Hva er det ikke-representerbare området rundt 0?. 29. Vektorrepresentasjoner Hvor få tall kan vi greie oss med i en vektorrepresentasjon for å kunne beskrive (a) en kule? (b) et kuleskall? (c) en trekant i et todimensjonalt rom? (d) en trekant i et tredimensjonalt rom? (e) en sirkel i et todimensjonalt rom? (f) en sirkel i et tredimensjonalt rom? 30. Skjæringspunktet mellom to linjer Vi har to rette linjer i et todimensjonalt kartesisk koordinatsystem, linje A går gjennom punktene (0,3) og (4,3) og ligger dermed parallelt med x-aksen, linje B går gjennom punktene (0,0) og (4,4) og har dermed en vinkel på 45 grader med x-aksen. (a) I en graf er det lett å se hvor linjene krysser hverandre, men hvordan kan vi finne skjæringspunktet ut fra en vektorrepresentasjon der vi kjenner de fire punktene ovenfor? (b) Hvordan kan vi finne skjæringspunktet ut fra en rasterrepresentasjon der rasterpunktene er kvadrater med sidelengde 1? (c) Vi vrir linje B slik at den går gjennom (0,0) og (5,4). På grunn av diskretisering skal skjæringspunktet fremdeles ha heltallskoordinater. Hva skjer med de rette linjene A og B? 31. Representasjon av en kube Vi har en kube der det ene hjørnet ligger i origo og sidekantene strekker seg 3 enheter utover langs x, y og z-aksen. 8

9 (a) Hva er det minste antall punkter vi trenger å kjenne til for denne kuben i vektorrepresentasjon? (b) Anta at vi i rasterrepresentasjon bruker terninger der sidekanten er 1 enhet. Hvor mange slike terninger trengs for hele kuben? (c) Hvor mange trekanter trengs for å beskrive kubens overflate i et Triangulated Irregular Network (TIN)? (d) Hvor mange tetrahedrons (volumer som er avgrenset med fire trekanter, altså en slags tredimensjonal TIN) trengs for å representere volumet av kuben? Prøv selv -oppgaver segment glyfer i SVG Ved hjelp av et såkalt 7-segment-display (se figur) er det mulig å vise fram blant annet alle heksadesimale siffer. (Se org/wiki/7-segment_display for detaljer!) Bruk Scalable Vector Graphics til å tegne opp for eksempel et 3-tall på skjermen. Bruk gjerne svg-filen på som inspirasjonskilde! (Har du fått til 3-tallet, er det en enkel sak å lage tilsvarende svg-representasjoner for de andre sifrene. Og med litt programmeringskunnskaper er det enkelt å konvertere et tekstlig eller binært lagret tall til en svgrepresentasjon for fremvisning på skjermen.) Programmeringsoppgaver (for deg som tar/har tatt INF1000) 33. Skriv et program som tar et helt tall (positivt, negativt eller null), og konverterer det til toer-komplementsform. Bestem selv hvor mange biter du vil bruke i representasjonen. 34. Skriv et program som tar et reelt tall i titallsystemet som input og skriver ut bitmønsteret for dette tallet lagret som et single precision flyttall i henhold til IEEE 754. (Skriv eventuelt også et program som går andre veien, fra single precision representasjon til desimaltall.) 35. Skriv et program som tar et positivt heltall n og konstruerer en n-biters Gray-kode (slik det er gjort for n=4 på side 91 i læreboken). 36. Skriv et program som konverterer et tall til en svg-representasjon som gjort manuelt i oppgave 32. 9

10 Fasit til fasitoppgaver og flervalgsoppgaver Hvis du finner feil i fasiten er det fint om du gir beskjed om dette ved å sende en mail til 1. (a) (b) (c) (d) (e) (a) (ikke overflyt, ekstra bit til venstre kan bare kastes) (b) (ikke overflyt) (c) (ikke overflyt, ekstra bit til venstre kan bare kastes) (d) (overflyt) (e) (overflyt) 3. (a) 0000 (b) 0011 (c) 1000 (d) 1011 (e) (a) = Bias (1000) er større enn dette tallet og kan ikke trekkes fra uten ugylig resultat. (b) = Trekker fra bias og får (c) = Trekker fra bias og får (d) = Trekker fra bias og får (e) = Trekker fra bias og får 10110, dvs overflyt. 5. (a) (b) (c) (d) (e) (a) (b) (c) (d)

11 (e) , 001, 011, 010, 110, 111, (d) 9. (e) 10. (a) 11. (c) 12. (c) 13. (d) 14. (e) 15. (b) 16. (c) 17. (a) 18. (d) 19. (d) 20. (e) 21. (e) 22. (e) 23. (e) 11

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6 Tall Tallsstemer - - - - = = 7B - - -7-8 7 Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = + + + + 7 eller: 7 = ( * ) + ( * ) + ( * ) +

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

INF1040 Oppgavesett 6: Lagring og overføring av data

INF1040 Oppgavesett 6: Lagring og overføring av data INF1040 Oppgavesett 6: Lagring og overføring av data (Kapittel 1.5 1.8) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

Oppsummering 2008 del 1

Oppsummering 2008 del 1 INF1040 Digital it representasjon Oppsummering 2008 del 1 Ragnhild Kobro Runde INF1040-Oppsummering-1 Fredag 5. desember 2008. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

INF1040 Digital representasjon Oppsummering

INF1040 Digital representasjon Oppsummering INF1040 Digital representasjon Oppsummering Ragnhild Kobro Runde, Fritz Albregtsen INF1040-Oppsummering-1 Fredag 7. desember 2007. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet INF1000: Forelesning 12 Digital representasjon av tall og tekst Læringsmål Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet Det heksadesimale Det binære tallsystemet

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

INF1040 Oppgavesett 14: Kryptering og steganografi

INF1040 Oppgavesett 14: Kryptering og steganografi INF1040 Oppgavesett 14: Kryptering og steganografi (Kapittel 19) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver 1. Krypter følgende strenger ved

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 7. desember 2007 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11)

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF 1000 høsten 2011 Uke 11: 2. november

INF 1000 høsten 2011 Uke 11: 2. november INF 1000 høsten 2011 Uke 11: 2. november Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Kursansvarlige: Arne Maus og Siri Moe Jensen 1 Info Obligene skal være

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

INF1040 Oppgavesett 3: Tegn og tekst

INF1040 Oppgavesett 3: Tegn og tekst INF1040 Oppgavesett 3: Tegn og tekst (Kapittel 2) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk.

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk. Flyttalls aritmetikk I datamaskinen er alle tall representert i flyttalls aritmetikk. 1/21 Det betyr at desimal punktet ( float, floating point arithmetic på engelsk) beveger seg slik at store og små tall

Detaljer

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 13. september 2004 En viktig del av den første obligatoriske oppgaven er å få erfaring med hvordan Java håndterer tall. Til å begynne med kan dette

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Oppgavesettet består av 6 (seks) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Matematikk R1 GEOMETRI OG VEKTORER Tillatte hjelpemidler: Alle Varighet: Ubegrenset Dato: 10.4 (Innleveringsfrist) Fagansvarlig:

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

Ut i rommet. Læringsmål. Punkter i endimensjonalt rom Skalarer. Punkt i todimensjonalt rom. Geometrier, tid, kart, bilder, animasjoner, CAD/CAM,

Ut i rommet. Læringsmål. Punkter i endimensjonalt rom Skalarer. Punkt i todimensjonalt rom. Geometrier, tid, kart, bilder, animasjoner, CAD/CAM, Ut i rommet Geometrier, tid, kart, bilder, animasjoner, CAD/CAM, Læringsmål Forstå koordinater og koordinatsstemer Forstå geometrier I rommet Forstå forskjellen mellom vektor- og rasterrepresentasjon,

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 7. oktober 2015. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Kapittel 2 TALL. Tall er kanskje mer enn du tror

Kapittel 2 TALL. Tall er kanskje mer enn du tror Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk

ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk Faglærer: Nina Gausdal Fagbøker/lærestoff: Grunntall 6a og 6b Uke 35-36 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Addere tall med addere to tall ved

Detaljer

Kompendium til TOD065 - Diskret matematisk programmering

Kompendium til TOD065 - Diskret matematisk programmering Kompendium til TOD065 - Diskret matematisk programmering Jon Eivind Vatne Institutt for data- og realfag, HiB, Tlf: 55587112, Mob: 90203117, jev@hib.no 27. oktober 2011 2 Introduksjon Emnet vårt tar for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

INF1040 Oppgavesett 2: Nettsider og XHTML

INF1040 Oppgavesett 2: Nettsider og XHTML INF1040 Oppgavesett 2: Nettsider og XHTML (Kapittel 4) Fasitoppgaver Ingen fasitoppgaver denne gang. Se flervalgsoppgavene under. Flervalgsoppgaver I følgende oppgaver er det oppgitt fem alternativer der

Detaljer

Dagens tema. Nyttige programmer Programmet make. Flyt-tall Representasjon av flyt-tall. Standarden IEEE 754. Systemkall i Unix

Dagens tema. Nyttige programmer Programmet make. Flyt-tall Representasjon av flyt-tall. Standarden IEEE 754. Systemkall i Unix Dagens tema Nyttige programmer Programmet make Flyt-tall Representasjon av flyt-tall Standarden IEEE 754 Systemkall i Unix Ark 1 av 24 Programmet make Det er mange praktiske problemer forbundet med programmering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning: Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (0 poeng) a) Deriver funksjonene f = e 1) ( ) ) g( ) = 3 1 b) Vis at = 1 er en løsning av likningen 3 6 + 6= 0 Bruk polynomdivisjon til å finne de andre løsningene. c)

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin Hvordan telle binært? Binære tall For å bruke bit (0 og 1) som tall, må vi

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 INF 40 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 Utlevering: onsdag 17. oktober 2007, kl. 17:00 Innlevering: fredag 2. november 2007, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Niels Henrik Abels matematikkonkurranse

Niels Henrik Abels matematikkonkurranse Niels Henrik bels matematikkonkurranse 016 017 Første runde 10. november 016 Ikke bla om før læreren sier fra! belkonkurransens første runde består av 0 flervalgsoppgaver som skal løses i løpet av 100

Detaljer

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet.

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet. Ordliste 2 Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med tekst og tall (og litt datakommunikasjon og kryptering) i kurset INF1040 høsten 2004. En del av nøkkelordene

Detaljer

4 kombinatorisk logikk, løsning

4 kombinatorisk logikk, løsning 4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =

Detaljer

Løsningsforslag ukeoppg. 3: sep (INF Høst 2011)

Løsningsforslag ukeoppg. 3: sep (INF Høst 2011) Løsningsforslag ukeoppg. 3: 7. - 13. sep (INF1000 - Høst 2011) Utskrift/ lesing med easyio, arrayer, løkker (kapittel 3-4 i læreboka, "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag.

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 14: Mer om funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) MAT1030

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

Dagens tema. Datamaskinen LC-2 En kort repetisjon. Binære tall Litt om tallsystemer generelt. Binære tall. Heksadesimale og oktale tall

Dagens tema. Datamaskinen LC-2 En kort repetisjon. Binære tall Litt om tallsystemer generelt. Binære tall. Heksadesimale og oktale tall Dagens tema Datamaskinen LC-2 En kort repetisjon Binære tall Litt om tallsystemer generelt Binære tall Heksadesimale og oktale tall Programmering av LC-2 Maskinkode Assemblerkode Kjøring av LC-2-programmer

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9 IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer