Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Størrelse: px
Begynne med side:

Download "Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter."

Transkript

1 Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter viktige. Hvis man f.eks ønsker å vite hvor mye man kan kjøpe for hvis faste kostnader er 300 og enhetspris er 20 må man løse ulikhet x< Hvis x>y har vi også x+2> y+2 og x-2> y-2. Vi kan legge til samme ledd og trekke fra samme ledd i sidene til ulikheten og den er sann for samme verdier på x og y. Hvis x>y har vi også 2x>2y og x/2>y/2. Vi kan multiplisere og dividere med samme positive tall og ulikheten er sann for samme verdier på variablene x og y. ønsker vi å multiplisere eller dele med negative tall blir det lite vanskligere. Hvis -x>-y er x<y. Du kan kanskje se dette hvis du tegner in x,y, -x og -y på tallinja? Hvis vi endrer tegn går det likvel greit hvis vi snur ulikhet. Får å løse en ulikhet kan vi så *** forenkle sidene, gruppere ledd av samme typ og trekke sammen *** legge til begge sidene og trekke fra samme tall eller uttrykk *** multiplisere og dividere begge sidene med samme positive tall *** endre tegn og snu ulikhet

2 Vi begynner med litt oppgaver fra praksis. Eksempel A. Vi løser ulikhet x<50000 fra oven. Hvis vi trekker fra 3000 fra begge sider får vi 20x< og 20x< Vi stryker selvfølgelig en null og får 2x<4700. Deler vi på to har vi x<2350. Vi kan produsere maks Eksempel B. Prisen er gitt ved p= x. Hvor mye kan man produsere hvis man ønsker ha prisen over Vi løser uliket x> Vi trekker fra begge sider og får -0.8x> Vi endrer tegn og må da snu ulikhet og får 0.8x<4000. Vi deler med 0.8 og får x<4000/0.8 =40000/8=5000. Eksempel C. Kostnadsfunksjon er gitt ved x. Hvor mye må man produsere hvis man ønsker ha enhetskostnad under 40. Vi løser ( x)/x = 2000/x+20<40. Vi trekker 20 fra begge sider og får 2000/x<20. Vi stryker selvfølgelig en null og får 200/x<2. Vi søker kun positive x og kan da multiplisere ulikhet med x (hvis x er negativ må man jo snu) og får 200<2x. Deler vi med to får vi 100<x. Vi må minst produsere 100. I alle disse eksemplene kan vi kanskje bruke snarveier. I eksempel A vokser kostnadene med produksjon og hvis vi finner produksjon når kostnadene er vet vi at vi må ha mindre produksjon enn hva vi fikk ved løsning av likhet. I eksempel B kan vi bruke at prisen avtaker og finner vi når prisen er vet vi produksjon må være mindre. I eksempel C minker enhetskostnad ved øket produksjon og finner vi når enhetskostnad er eksakt 40 vet vi produksjon må være større. Vi tar nå eksempel hvor vi vi har uliketer med andregradsledd. Eksempel D. Prisen er gitt ved x 2 Hvor mye kan vi produsere hvis vi ønsker pris over Vi løser ulikhet x Vi trekker fra begge sider og får x 2 0 Denne ulikhet kan faktoriseres med konjugatregelen og vi får x x 0 Vi søker fortegn på faktorene: X< <x<10000 x> x pos pos neg x neg pos pos venstre ledd neg pos neg

3 Kun positiv produksjon x>0 er intressant og da er venstre ledd positiv for x< Venstre ledd er produkt av to faktorer og kan være positiv kun hvis begge faktorene er positive eller begger er negative. Her er det mye enklere å bruke snarvei. Prisen avtaker med øket produksjon og det gjelder kun å finne når prisen er lik ( 0.01x 2 =10000 gir x=100) og se til at produksjon er mindre. Eksempel E. Hvor mye kan vi produserer hvis vi ønsker produksjonskostnader mindre enn 4980 og kostandsfunksjon er 0.001x 2 0.1x 3420 Vi må løse ulikhet x x hvilker er samme som x x Løser vi andregradslikning x x 1560=0 får vi løsninger x=1200 og x= Vi kan da bruke faktoriseringsteorem og skrive ulikhet som x 1200 x Vi søker igjen fortegn Vi ønsker ikke å ha negativ produksjon så venstre ledd er negativ for x<1200. Da er en faktor negativ og andre positiv og produkt er negativ. Her er det igjen mye enklere med snarvei. Kostnadene øker med produksjon og finner vi løsningene til x x 1560=0 krever vi kun produksjon mindre enn positive løsning Eksempel F. For hvilke produksjonsmengde er enhetskostnadene under 2, hvis kostnadsfunksjon er x 2 0.2x 720 Vi må løse ulikhet x 2 0.2x x Vi ser kun på positiv produksjon x og multipliserer begge ledd med x og får x 2 0.2x 720 2x og x 2 1.8x Løser vi likning x 2 1.8x 720=0 får vi løsningene x=600 og x=1200. Vi kan da faktorisere venstre ledd og får 0.001(x-600)(x-1200)<0 Vi ser på fortegn igjen. X< <x<1200 x>1200 x-1200 neg neg pos X+1300 neg pos pos venstre ledd pos neg pos

4 x< <x<1200 x>1200 x-1200 neg neg pos x-600 neg pos pos venstre ledd pos neg pos Venstre ledd er negativ når produksjon er mellom 600 og For x<600 er begge faktorene negativ og produkt er positiv og for x>1200 er begge faktorene positive og produkt er positiv. Nå finner vi ikke mer enkle snarveier. Men man vel sjekke at hvis venstre ledd er negativ for et verdi f eks 1000 mellom 600 og 1200 så kan man vel tro det må være negativ i hele intervall, det kan vel ikke bli postivt uten å være null noen gang? Eksempel G. For hvilken produksjonmengde er inntekt over 660 hvis prisen er gitt ved p= x. Vi må løse ulikhet x x 660 Regner vi litt finner vi at vi må ha x 0.001x 2 0 og løser vi likning x 0.001x 2 =0 har vi løsningene x=600 og x=1100 og vi kan faktorisere venstre ledd i ulikhet og får (x-600)(x-1100)>0 Fortegnsanalyse gir x< <x<1100 x>1100 x-1100 neg neg pos x-600 neg pos pos venstre ledd neg pos neg Venstre ledd er positiv for produksjon mellom 600 og ( Ene faktor er negativ og andre positiv og fortegn til produkt er minus, alt tilsammen gir positiv).

5 Oppgave 1. Ved hvilken produksjonmengde er kostnadene mindre enn 6000 hvis kostnadsfunksjon er gitt ved a) x, b) x c) x Oppgave 2. En produkt er ferdig etter tre trinn. I første trinn er kostnadfunksjon gitt ved x, i andre trinn ved x, i tredje ved x. For hvilke produksjonsmengde er totale kostnadene mindre enn a) 3000 b) c) 1700 Oppgave 3. Kostnadene for bedrift Karabas er gitt ved x og for Buratino ved x. For hvilken produksjonsmengde er kostnadene for Buratino mindre enn for Karabas? Oppgave 4. Prisen er gitt p= x. Ved hvilken produksjonsmengde er prisen over a) 800, b) 500 c) null Oppgave 5. Kostnadsfunksjon er gitt ved x. For hvilke produksjonmengde er enhetskostnad mindre enn a) 140, b) 51, c) 30 Oppgave 6. For hvilke produksjonmengde er kostnad mindre enn 800 hvis kostnadsfunksjon er er gitt ved a) x x 2 b) x x 2 Oppgave 7. Kostnadene for bedrift Karabas er gitt ved x x 2 og for Buratino ved x x 2 For hvilken produksjonsmengde er kostnadene for Buration mindre enn kostnadene for Karabas? Oppgave 8. Prisen er gitt ved p=1300-x/3. Når er inntekt over ?

6 Fasit. Oppgave 1. a) x<120, b) x<153.3, c) x<280 Oppgave 2. Totale kostnad er sum av kostnad i tre trinn = x a) x<20, b) x<180, c) umulig, 1700 er under fastekostnader 2000, algebraisk løsning gir også negativ produksjon Oppgave 3. x<40 Oppgave 4. a) x<5000, b) x<12500, c) x<25000 Oppgave 5. a) x>11, b) x>100, c) umulig, enhetskostnad kan ikke være mindre enn 40 Oppgave 6. a) x<1000, b) x<500 Oppgave 7. x<200 eller x>3000 Oppgave <x<36000, dvs for produksjon mellom 300 og 36000

7 Vi bruker mulighetene side 1 for å løse mer abstrakte ulikheter vi begynner med å løse lineære ulikheter av typ ax+b > 0 Eksempel 1. Vi ønsker løse ulikhet 2x 1 3x 5 4x 6 x Etter forenkling (grupperes og trekker sammen x-leddene og konstante) fås 5x 4 3x 6 For å få x-leddene til venstre og konstantene til høyre trekker vi fra 3x og addere til 4 i begge sidene (flytter over og endrer tegn) 5x 4 3x 4 3x 6 3x 4 Vi får 2x 2 og deler begge sidene med to og får så x>-1 Ulikhet gir altså at x må være større enn -1. Eksempel 2. Vi løser ulikhet 1 (3-x) > 4x + 4. Forenkling gir 1-3+x> 4x+4 eller -2+x>4x+4 Vi finner en ekvivalent ulikhet med x-leddene til venstre: -3x > 6. Vi dividerer begge sidene med 3 og får -x>2. Nå endrer vi tegn og snur ulikhet hvilket gir: x<-2 (Vi tenker, hvis -x er større enn 2 så må x være negativ for å få positiv -x og x må være mindre enn -2 for å få -x større enn 2)

8 Hvis vi ønsker å løse ulikheter med andregradsledd er det vanligt at det er enklest å flytte alt til venstre side og faktorisere og ha null til høyre. Eksempel 3. Vi løser x 2 16 Vi kan tenke over hva dette betyr. Tallet x 2 øker hvis x er positiv og øker. For x=4 har vi x 2 =16 og så er x 2 16 for positive x<4. Tallet øker hvis x er negativ og minker. For x=-4 har vi x 2 =16 og så er x 2 16 for negative x>-4. Dersom ulikhet er gyldig for x=0 får vi at ulikhet gjelder for -4<x<4 Det er også muligt å se på ulikhet på en annen måte. Ofte er det lettere å løse hvis man setter kun null til høyre og alle andre ledd til venstre: x Faktoriserer vi venstre side fås (x-4)(x+4)<0 Vi kan finne tegn får denne produkt fra et fortegnskjema: -4 4 x x (x-4)(x+4) Vi ser at x-4 er negativ for x<4 og positiv for x>4. Vi ser også at x+4 er negativ for x<-4 og positiv for x>-4. Vi får så at produkt er negativ hvis den ene faktor er negativ og den andre positiv. Dette skjer så når x er mellom -4 og 4.

9 Eksempel 4. Vi ønsker å løse 4x 2 20 x x 2 2x 48 Denne er enklest å løse ved å flytte alt til venstre og få null til høyre. 4x 2 20x x 2 2x 48=3x 2 18x 48 0 Vi prøver å faktorisere. Vi ser at alle leddene har 3 som felles faktor. Vi deler ulikhet med 3 og får. x 2 6x 16 0 Nå kan vi faktorisere venstre ledd gjennom å bruke røttene fra andregradslikning. x 2 x 8 0 Vi kan igjen bruke fortegnskjema: -8 2 x x (x-2)(x+8) Vi ser at uttrykket er negativ mellom -8 og 2 så ulikhet er sann for -8< x <2 Eksempel 4a. Vi løser ulikhet 32 2 x 6 x Vi ser vi kan dele med to og får 16 x 6 x =6x x 2 To er jo positiv så vi trenger ikke til å snu ulikhet Vi flytter alt til venstre og får 16 6x x 2 0 Nå er det nok best å endre tegn og snu ulikhet. Vi får x 2 6x 16 0 Dette er samme ulikhet som i eksempel 4 og vi får samme resultat. Eksempel 4b. Vi løser ulikhet 4x 2 20 x x 2 2x 48 Det er samme som i eksempel 4 men vi kan ogå ha likhet. Etter forenklinger får vi igjen x 2 x 8 0 Vi kan bruke samme fortegnskjema men må ta med muligheter for uttrykk å bli null, dvs når x=2 eller x=-8. Vi får da 8 x 2

10 Samme typ av fortegnskjema kan brukes for brøk. Eksempel 5. Vi løser 2 x x 1 1 Vi ønsker igjen å få null til høyre så vi regner 2 x x 1 2 x x 1 1= = 1 2x x 1 x 1 0 Hvis vi endrer tegn får vi 2x 1 x 1 0 Vi bruker nå fortegnskjema for brøk. 2x-1-1 1/ x+1 (2x-1)/(x+1) * Dersom nevner ikke kan bli null kan vi ikke ha x=-1 og legger en stjerne der. Vi ser at brøken er positiv for x<-1 eller x>1/2. Eksempel 5a. Vi løser 2 x x 1 1 Etter forenkling får vi igjen 2x 1 x 1 0 Vi kan bruke samme fortegnskjema som i eksempel 5. Brøken er null ved ½ men ikke ved -1 når nevner er null. Vi får nå at ulikhet er sann for x<-1 eller x 1 2

11 Eksempel 6. Vi løser Faktoriserer vi fås x 2 2x 1 2x x 1 2 x 1 2 x 50 x 50 0 x 1 Bruker vi fortegnskjema ser vi at (gjør dette!) uttrykk til venstre er positivt for -50<x<-1 og -1<x<1 og x>50. Uttrykk er null ved x=-1, -50 og 50 så ulikhet er sann for 50 x 1 og x 50 Man har ofte bruk for et begrepp som kalles absoluttverdien. Det betegnes x definieres som x hvis x er positiv eller null -x hvis x er negativ Det betyr altså at taller er seg selv men endrer tegn hvis det er negativt. Det betyr også avstand til null på tallinja. Ulikheter med uttrykk som har absoluttverdier kan være vansklige å løse fordi man trenger ofte til å dele inn i forskjellige fall. Eksempel 7. Vi løser x 4 5 Hvis x-4>0 har vi ulikhet x-4<5 hvilket betyr x<9. Dersom x-4>0 betyr x>4 ser vi at ulikhet er sann for 4<x<9 Hvis x-4<0 har vi ulikhet -(x-4)<5 hvilket blir 4-x<5 og x>-1. Dersom x-4<0 betyr x<4 ser vi at ulikhet er sann for -1<x<4. Dersom 4<5 er ulikhet sann for x=0. Summeres fås at ulikhet er sann for -1<x<9. Men egentlig betyr det kun at avstand til 4 er mindre enn 5.

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Rasjonale potenser. For å finne side av kvadrat med gitt areal A løser vi likning x 2 = A.

Rasjonale potenser. For å finne side av kvadrat med gitt areal A løser vi likning x 2 = A. Rasjonale potenser Vi har tidligere sett hvordan man definierer potenser med heltall. Vi skal nå se hvordan man naturlig definierer potenser også for rasjonale tall, dvs brøk hvor teller og nevner er heltall.

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b. TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter. Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles

Detaljer

Forkurshefte i matematikk variant 1

Forkurshefte i matematikk variant 1 Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette

Detaljer

Matematisk julekalender for 8.-10. trinn, 2013

Matematisk julekalender for 8.-10. trinn, 2013 Matematisk julekalender for 8.-10. trinn, 2013 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2.

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2. /14/016 S1 014 høst LØSNING matematikk.net S1 014 høst LØSNING Contents DEL EN Oppgave 1 x 10 = x(x 5) x + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7± x = x = 5 lg( ) + = 5 x lg( ) = x = 10 lg( x ) 10 x =

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Tall og mengder. Per G. Østerlie. 30. september 2013

Tall og mengder. Per G. Østerlie. 30. september 2013 Tall og mengder Per G. Østerlie 30. september 2013 1 Introduksjon Nå skal vi se på hva mengder og intervaller er og hvilke symboler vi benytter. Vi starter med å se på tall og hvordan vi kan dele opp i

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr 4 Hvordan du regner med bokstaver, likninger og formler (elementær algebra) Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com 1 Opplsning: Faste,

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

. Vi får dermed løsningene x = 0, x = 1 og x = 2.

. Vi får dermed løsningene x = 0, x = 1 og x = 2. Innlevering i FO99A - Matematikk Innlevering 1 Innleveringsfrist. oktober 010 Antall oppgaver 11 Løsningsforslag Oppgave 1 a) ( 3 + 1)( 7 + ) 1 + 3 = 3 7 + 7 + 3 + 3 + 3 = 1 + 7 + 5. b) 5/3 3 50 = 3 5

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Løsningsforslag MATEMATIKK 1, MX130

Løsningsforslag MATEMATIKK 1, MX130 Løsningsforslag ATEATIKK 1, X130 UTSATT EKSAEN 8. januar 2010 Oppgave 1 a) Alle flisene forutsettes å være like store. Vi tenker oss at sidekantene på flisene er 1 enhet lang og at arealet av hver flis

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Sinus 1P > Tallregning og algebra

Sinus 1P > Tallregning og algebra 1 Book Sinus 1P.indb Sinus 1P > Tallregning og algebra 01-0- 1:: Tallregning og algebra MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

SUBTRAKSJON FRA A TIL Å

SUBTRAKSJON FRA A TIL Å SUBTRAKSJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til subtraksjon S - 2 2 Grunnleggende om subtraksjon S - 2 3 Ulike fremgangsmåter S - 2 3.1 Tallene under hverandre

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden.

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden. Likning En likning inneholder alltid et likhetstegn og minst e n ukjent. Den ukjente kaller vi som regel eller y, men alle bokstavene i alfabetet kan brukes. löse likninger gôr ut pô Ô nne den ukjente

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Innledning. Mål. for opplæringen er at eleven skal kunne

Innledning. Mål. for opplæringen er at eleven skal kunne 8 1 Innledning Mål for opplæringen er at eleven skal kunne løse likninger, ulikheter og likningssystemer av første og andre grad og enkle likninger med eksponential- og logaritme funksjoner, både ved regning

Detaljer

Halvårsplan i matematikk Vår 5. trinn 2011-2012

Halvårsplan i matematikk Vår 5. trinn 2011-2012 Halvårsplan i matematikk Vår 5. trinn 2011-2012 UKE 1 EMNE / PÅ SKOLEN Varmt og kaldt Tallinjen SIDE TALL RØD 12 13 SIDE TALL Gul 22 23 HJEMMELEKSE GRØNN RØD SVART Du skal vite hvordan man setter opp en

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som dere kan jobbe videre

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge 24 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6 Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

ECON2200: Oppgaver til plenumsregninger

ECON2200: Oppgaver til plenumsregninger University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi Lokal læreplan Lærebok: Gruntall Antall uker 34-37 Tall -lære de fire regneartene i hele tall, desimaltall og negative tall og i hoderegning og overslagsregning. -lære å bruke lommeregner og regneark -kjenne

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Kids - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Forelesning i konkurranseteori imperfekt konkurranse

Forelesning i konkurranseteori imperfekt konkurranse Forelesning i konkurranseteori imperfekt konkurranse Drago Bergholt (Drago.Bergholt@bi.no) 1. Innledning 1.1 Generell profittmaksimering Profitten til en bedrift er inntekter minus kostnader. Dette gjelder

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Multiplikasjon og divisjon av brøk

Multiplikasjon og divisjon av brøk Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen

Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen For å tegne grafen til en likning, skal vi bruke kommandoen Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen with plots Gjør det (altså: trykk linjeskift med

Detaljer