Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Størrelse: px
Begynne med side:

Download "Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I"

Transkript

1 Løsningsforslag, Ukeoppgaver 9 INF2310, våren Vi har gitt følgende bilde: kompresjon og koding del I a. Finn Huffman-kodingen av dette bildet. Hvor mange biter blir det per piksel I gjennomsnitt etter koding hvis vi ser bort fra at vi trenger plass til å lagre kodeboken? Vi har følgende forekomster, først i rekkefølge etter symbolverdiene, deretter sortert. Slår sammen først 0 og 4, så dette med 1, så 3 og 2 sammen, så dette med resten, som vist i grafen nedenfor: 0 0: 2 2: : 12 3: : 18 1: : 16 4: : 6 0: Merk: vi ikke har laget frekvenstabell bare brukt histogrammet. Huffman-kodene blir da (her er det flere mulige riktige løsninger!): 2: 00 3: 01 1: 10 4: 110 0: 111 Og det gjennomsnittlige antall bits pr piksel etter koding blir (( )*2+8*3)/54 = (92+24)/54 = 116/54 =2.15 bits per piksel. b. Ved differansetransform tar vi differansen mellom et piksel og dets nabo til venstre. Siden pikslene lengst til venstre i bildet ikke har noen venstre nabo, beholder vi pikselverdien her. Finn differanse-transformen av bildet ovenfor.

2 Etter differansetransform vil bildet se slik ut: c. Finn så Huffman-koden for det differansetransformerte bildet, slik at du kan beregne det gjennomsnittlige antall bits per piksel for det differansetransformerte bildet. Vi har følgende forekomster, først i rekkefølge etter symbolverdiene, deretter sortert. Slår sammen først -1 og 2, så dette med 1, så dette med 0, som vist i grafen nedenfor: 1 2: 4 0: 21 1: 20 1: : 21-1: : 9 2: Huffman-kodene blir da (her er det igjen flere mulige riktige løsninger!): 0: 1 1: 00-1: 010 2: 011 Og det gjennomsnittlige antall bits pr piksel etter differansetransform og Huffman-koding blir (21+20*2+13*3)/54 = ( )/54 = 100/54 =1.85 bits per piksel. Altså færre bits pr symbol ved å gjøre differansekoding først og så Huffman, enn med bare Huffman. d. Entropien til bildet vi startet med er Hvorfor ble det gjennomsnittlige antall biter per piksel større enn entropien i deloppgave a, men mindre enn 2.06 i deloppgave c? Entropien beregnet fra histogrammet til bildet er en nedre grense for hvor kompakt bildet kan kodes, hvis vi bare ser på ett piksel av gangen.

3 Denne grensen er bare mulig å oppnå hvis alle sannsynlighetene i det normaliserte histogrammet er av typen 1/2k, der k er et heltall. Dette kravet er ikke oppfylt i det opprinnelige bildet. Derfor er ikke Huffman-transformen optimal, og vi får et gjennomsnittlig antall bits som er litt større enn entropien. I deloppgave c ser vi ikke bare på ett piksel av gangen, men på differansen mellom to og to piksler. Da kan vi kode mer kompakt enn det som er gitt av entropien for enkelt-piksler. e. Hvis det bildet du fikk oppgitt i starten av oppgaven var det andre bildet i en bildesekvens, og det første var Hvilke to bilder ville du da komprimere, og hvor mange biter vil du i gjennomsnitt trenge per piksel for hvert av de to bildene? Man ville først komprimere det bildet som kommer først (det rett ovenfor). Her er det forholdsvis greit å finne histogrammet og Huffman-koden: 2: 1; 3: 00; 1: 010; 4: : 9 2: 18 2: 18 3: : 18 1: : 9 4: Det gjennomsnittlige antall bits pr piksel blir (18*1+18*2+9*3+9*3)/54 = 108/54 =2 bits per piksel. Og så ville man kode differansebildet, dvs det sist mottatte bildet minus det forrige, piksel for piksel. Det ser slik ut: Dette er et binært bilde som bare trenger 1 bit per piksel.

4 7. Anta at det er G=2 8 forskjellige gråtone-nivåer i hvert sample, og at når vi sorterer dem etter hvor ofte de forekommer i et bilde, så finner vi i et spesielt tilfellet at sannsynlighetene er ½, ¼, 1/8, 1/16,, 1/128, 1/256, 1/256. a) Hvor mange slike bilder kan vi overføre i parallell på en 64 kbits/s linje med Huffman-koding av amplitudene? Hint 1: Entropien er gitt ved H = G 1 i= 0 Dessuten: Og til slutt: p i log p i 2 ( ) log(teller/nevner) = log(teller) log(nevner) log 2 (2 n ) = n Hint 2: Summen ½+2/4+3/8 +4/16+5/32 + konvergerer raskt mot 2. Her er det ikke nødvendig å finne Huffman-koden. Vi har terpet at en Huffman-koding der alle sannsynlighetene kan skrives som brøker der telleren er 1 og nevneren er en toer-potens er optimal i den forstand at det gjennomsnittlige antall bits per sample er lik entropien til signalet. Entropien er her gitt ved H = - (½ log 2 (1/2) +1/4 log 2 (1/4) + 1/8 log 2 (1/8) + ) (se Hint 1 ) = ½ + 2/4 + 3/8 + = 2 (som angitt i Hint 2 ovenfor). Det gjennomsnittlige antall bits per sampel blir altså bare 2 bits/sampel. Men for å kunne svare på spørsmålet må vi vite hvor mange sampler vi får fra hvert bilde pr tidsenhet. La oss si at samplingsfrekvensen er 8 khz. Da er antall bilder vi kan overføre i parallell: bits/s /( sampler/s * 2 bits/sampel) =4.

5 3. Optimal Huffman-koding: Finn kodeboken for en Huffman-koding av DIGITAL OVERALT!. Hvorfor kan vi uten å gjøre noen logaritme-beregninger si hva entropien til denne teksten er? Det sorterte histogrammet og kodeboken blir som vist i tabellen nedenfor I T A L D G O V E R ! Vi har i alt 16 tegn, men bare 12 forskjellige, og hyppighetene er enten 2 (i,t,a,l) eller 1 (d,g,,o,v,e,r,!). Så alle de N=12 sannsynlighetene kan skrives som brøker der telleren er 1 og nevneren er en toerpotens (8 eller 16). Altså kan sannsynlighetene for hvert symbol uttrykkes som for heltalls verdier av k. 1 p( s i ) = k 2 Da vet vi at det gjennomsnittlige antall biter per symbol er lik entropien. N R = p( si ) bi = p( si )log2( p( si )) = H Og R er lett å regne ut: R= ( 8*3 + 8*4 ) /16 = 56 /16 =3.5. Vi får selvsagt det samme hvis vi faktisk regner ut entropien: H = 4(1/2 3 ) log 2 (2 3 ) + 8 (1/2 4 ) log 2 (2 4 ) = = 3.5 N i= 1 i= 0

6 4. En fax-oppgave: a) Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet på biter/sekund. Vi bruker en standard fax med 1728 fotosensorer per linje og 1075 linjer per side. Faxmaskinen gjør en terskling av bildet av siden. Hvor lang tid tar det å overføre en side uten kompresjon? Etter terskling trenger vi selvsagt 1 bit per piksel for å representere 0 og 1. 1 bit/piksel * 1728 piksler/linje * 1075 linjer/side = bits/side bits/side / bits/sekund = 387 sekunder = 6 min 27 s. b) Anta at vi hadde kunnet gjøre tekstgjenkjenning på den delen av arket som inneholder tekst, og representert symboler og mellomrom med 7 bits ASCII. Anta at det maksimalt er 60 tegn pr linje og 50 linjer pr side. Anta også at vi kunne beskrevet strektegningene som maksimalt 500 rektangler per side, og at sidene på rektanglene er parallelle med kantene på siden. Gi et worst case estimat av hvor mange biter du vil trenge for å beskrive innholdet på siden med en oppløsning som svarer til faxens oppløsning, og hvor lang tid det vil ta å overføre dette over modemlinjen. For å representere et rektangel og dets plassering trengs følgende: en koordinat for et punkt på rektanglet, f eks øverste venstre hjørne rektanglets bredde og rektanglets høyde Kordinatene for øvre venstre hjørne til et rektangel vil ligge mellom (0,0) og (1728,1075). Det betyr at begge koordinatene krever 11 biter (2048). Det samme gjelder høyde og bredde. Til sammen blir dette 4 * 11 biter = 44 biter. Da blir regnestykket slik: 500 rektangler: 44 biter/rektangel* 500 rektangler = biter 50*60 tegn: tegn * 7 biter/tegn = biter Worst case er altså at vi trenger biter pr side. Med en overføringskapasitet på bits/sekund tar dette t = biter / biter/s = 4,6 sekunder. c) Vi vil gjerne undersøke hvor mye det er å spare på å separere ASCII-tegn fra alt annet i en fax, og sende 7 bits ASCII kode for hvert tegn, mens resten sendes ukomprimert uansett hva det er. Hvis halvparten av hver side i gjennomsnitt er ASCII-tegn, hvor mye sparer vi da i forhold til ordinær fax? (7 biter/tegn * 3000/2 tegn + 1 bit/pixel *1728*1075/2 piksler)/(1728*1075) = ( ) / = 0,5056 Vi sparer altså 100%-50.56% = 49.43%.

7 5. Huffman-koding av løpelengder i binært bilde: Utsnittet på 25 * 10 piksler av et binært bilde nedenfor kan representeres med 250 biter. Ser vi på runlength-representasjonen av det samme utsnittet, finner vi at det består av 82 runs med lengder mellom 1 og 8 piksler. Hvis vi bruker 3 biter på hver, blir dette 246 biter. Imidlertid er det mulig å gjøre dette litt mer kompakt ved å Huffman-kode de 82 løpelengdene. Ved løpelengdetransformasjon av binære bilder trenger vi ikke å lagre tallpar (gråtone, løpelengde) slik som for gråtonebilder. Vi trenger bare løpelengdene, for det er bare to mulige intensitetsverdier. Løpelengdene finnes i tabellen til høyre. Finn Huffmann-koden til løpelengdene i tabellen til høyre over, og finn det totale antall biter etter koding av løpelengdene. Nedenfor har vi løpelengde, lengden på hvert kodeord, kodeordet, og antall forekomster av hver løpelengde. Og helt til høyre kodetreet Og det totale antall bits etter koding blir 36*1+21*3+20*4+5*5= =204 biter

8 6. Teorioppgave: Løpelengdekoding i binært bilde med naturlig binærkode: Du skal gjøre en løpelengde ( run-length ) transform på et 2 n 2 n piksels binært bilde. Anta at du gjør dette linje for linje i bildet, ved å angi første pikselverdi, deretter løpelengdene, og verdien 0 to ganger etter hverandre som EOL-markør. Anta også at du bruker en felles naturlig binærkode for både pikselverdiene og løpelengdene. a. Finn et uttrykk for det høyeste antall løpelengder, N, som du med disse forutsetningene kan ha i en linje i bildet hvis løpelengde-transformen skal gi noen kompresjon i forhold til det binære bildet? Svar: Det er den maksimale løpelengden vi kan ha i bildet som bestemmer ordlengden (i biter) til den naturlige binærkoden. Siden bildet er 2 n piksler bredt, må vi ha en ordlengde på n biter. Hvis vi har N runs per linje kommer vi til å bruke n(n+3) biter til å representere dette med en n-biters naturlig binærkode, mens en linje i det binære bildet krever 2 n biter. For å få kompresjon må run-length representasjonen ta et mindre antall biter enn den originale. Altså n(n+3) < 2 n eller N < (1/n) 2 n - 3. b. Hva blir den høyeste verdien av N for hhv. n = 4, n = 8 og n = 10? Er forholdet mellom det maksimale antall løpelengder vi kan ha og fortsatt oppnå kompresjon, og bredden av bildet konstant etter hvert som vi øker størrelsen på bildet? Svar: For n=4 får vi N < (1/4)2 4 3 = 16/4 3 =1 => N < 1. For n=8 får vi N < (1/8)2 8 3 = 256/8 3 =29 => N < 29. For n=10 får vi N < (1/10) = 1024/10 3 = 99.4 => N < 99. Forholdet mellom det maksimale antall løpelengder (N) vi kan ha og fortsatt oppnå kompresjon og størrelsen på bildet (2 n ), er omtrent 2 n / n / 2 n = 1/n. Så dette forholdet er slett ikke konstant: For store bilder kan vi tillate oss å ha mange runs, men forholdet mellom det maksimale antall runs og antall piksler per linje avtar (langsomt) med bildestørrelsen.

9 7. I denne oppgaven er det fire delspørsmål som hver gir inntil 16 poeng. a. Anta at vi har et piksels gråtonebilde med 8 bitplan. Pikselverdien er 0 langs venstre kant av bildet, og øker med 32 i jevne trappetrinn mot høyre, slik at det dannes 8 vertikale striper som vist i figuren nedenfor. Hvor mange biter vil vi måtte bruke per linje hvis vi løpelengdetransformerer dette gråtonebildet og bruker en felles naturlig binærkode for både pikselverdier og løpelengder, og bruker verdien 0 to ganger etter hverandre til å indikere slutten av en linje (EOL)? Hver linje vil bestå av 8 løpelengder. Alle løpelengdene er lik 512/8 = 64. Pikselverdiene trenger 8 biter. Altså får vi (8 * 2 + 2) * 8 = 18*8 = 144 biter. b. Vis kodetreet og finn kodeboken for en Huffman-koding av resultatet av løpelengde-transformen ovenfor. Anta fortsatt at vi bruker (0 0) til å indikere EOL. Svar: Bildet inneholder 512 like linjer. Hver linje kommer til å bli beskrevet som Et sortert histogram for hver linje vil gi følgende hyppigheter. En mulig trestruktur og kodebok er slik: c. Finn en omtrentlig verdi for det gjennomsnittlige antall biter per piksel (i det opprinnelige bildet) når du bruker denne Huffman-koden. Angi også den omtrentlige kompresjonsfaktoren.

10 Svar: Vi ser kodeordlengdene i tabellen ovenfor. Multipliserer vi hver kodeordlengde med de tilsvarende hyppighetene får vi det totale antall biter som blir brukt til å representere løpelengdetransformen og EOL-merket: 1*9+3*3 + 6*(4*1) = = 42 biter per linje. Men det er 512 piksle per linje i det opprinnelige bildet. Altså har vi 42/ biter per piksel (fordi 8*5 = 40). Siden det var 8 biter per piksel i det opprinnelige bildet får vi CR 8/0.08 = 100. Hvis vi hadde bedt om den gjennomsnittlig kodeordlengde for løpelengdetransformen, inklusive EOL-merket, ville svaret vært 42/ biter/kodeord. d. Anta at vi hadde gjort en differansetransform av gråtonebildet som er vist i del-oppgave a. Bruk et enkelt resonnement til å forklare hvorfor kompresjonsraten ved kompresjon av enkeltpiksler etter differansetransformen er nøyaktig 3 ganger så høy som den kompresjonsraten vi kan oppnå ved kompresjon uten differansetransform. Svar: I det opprinnelige bildet er det åtte forskjellige gråtoner, og alle er like sannsynlige. 8 verdier krever 3 biter. Her kunne vi ha argumentert med at entropien til dette bildet er eksakt 3, uttrykt i biter: 8*(-(1/8)log 2 (1/8)) =8*3/8 =3. Men vi trenger ingen entropi-koding med ulik lengde på kodeordene for å oppnå dette. Når alle 8 sannsynlighetene er like er jo en naturlig binærkoding med 3 biters kodeord optimal, og vi får CR=8/3. I det differansetransformerte bildet vil vi finne sju verdier lik -32 (ved overgangen mellom trappetrinnene ). Alle de andre verdiene (i alt 505 verdier) vil være 0. Her kunne vi også ha argumentert med entropi: Hvis alle verdiene hadde vært like, ville differansebildet hatt en entropi lik 0, og i dette tilfellet må vi være ganske nær denne verdien (entropien er 0.104). Men vi trenger ikke å se på entropien. For når det bare finnes to verdier i bildet, vil vi bruke én bit: 0 på den mest sannsynlige og 1 på den minst sannsynlige verdien, eller omvendt. Altså en kompresjonsrate CR =8/1= 8. Altså er kompresjonsraten 3 ganger så høy etter differansetransformen..

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (løsningsforslag) (kapittel 18) Tenk selv -oppgaver IN høsten : Oppgavesett Kompresjon og koding (løsningsforslag) (kapittel ) Tenk selv -oppgaver. Heksadesimal Sudoku Vi har en kvadratisk matrise med * elementer som igjen er delt opp i * blokker på * elementer.

Detaljer

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18)

INF 1040 høsten 2009: Oppgavesett 13 Kompresjon og koding (kapittel 18) asitoppgaver IN høsten : Oppgavesett Kompresjon og koding (kapittel ) enne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. et er ikke nødvendigvis meningen

Detaljer

INF 1040 Løsningsforslag til kapittel

INF 1040 Løsningsforslag til kapittel INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 18.7.2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO okmål ksamen i IN igital representasjon. des. UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i : IN igital representasjon ksamensdag : Onsdag. desember Tid for eksamen :.. Oppgavesettet

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Hvor mye informasjon inneholder en melding? 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

KOMPRESJON OG KODING

KOMPRESJON OG KODING KOMPRESJON OG KODING Et kapittel fra boken Fritz Albregtsen & Gerhard Skagestein Digital representasjon av tekster, tall former, lyd, bilder og video 2. utgave Unipub 2007 - Med enkelte mindre endringer

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Anvendelser. Noen begreper. Kompresjon

Anvendelser. Noen begreper. Kompresjon Anvendelser INF 30 Digital it ildeehandling dli 7.04.0 Kompresjon og koding Del I Tre steg i kompresjon Redundans Bildekvalitet Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Digital video digital bildeanalyse. Noen begreper. Kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Digital video digital ildeanalyse Tema i dag :. Hvor mye informasjon inneholder en melding?. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme

Kompresjon. Noen begreper. Plass og tid. Kompresjon. Digitale data kan ta stor plass. Eksemper : Overføring av data tar tid: Dekompresjonsalgoritme Kompresjon Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Litteratur : Cyganski kap. 7 Compressing Information kap. 8 Image Compression kap. 9 Digital Video Data Kompresjon Lagring eller oversending

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a 512 512 8 bits 3 farger 63 10 6 bits KOMPRESJON OG KODING 30/4 2001 b 24 36 mm fargefilm digitalisert ( x = y=12µm) 2000 3000 8 3

Detaljer

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling

Anvendelser. Kompresjon. Noen begreper. INF 2310 Digital bildebehandling Anvendelser IF 3 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman GW: Kap. 8 unntatt 8..7, 8.., 8..6, 8.., 8.3 Kompresjon

Detaljer

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling

Anvendelser. Noen begreper. Kompresjon. INF 2310 Digital bildebehandling Anvendelser INF 30 Digital ildeehandling Kompresjon og koding Del I Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m. 8.7. + Appendiks B Kompresjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF2310 Digital bildebehandling FORELESNING 11 KOMPRESJON OG KODING II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Forelesning 11 Kompresjon og koding II Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon INF2310 Digital bildebehandling Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon Tapsfri prediktiv koding Kompendium: 18.4, 18.7.3

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF230 Digital bildebehandling Forelesning Kompresjon og koding II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Differansetransform Løpelengdetransform LZW-transform JPEG-kompresjon

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

Prøve- EKSAMEN med løsningsforslag

Prøve- EKSAMEN med løsningsforslag Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme

INF 1040 Kompresjon og koding. Noen begreper. De tre stegene i kompresjon. Kompresjon. Dekompresjonsalgoritme. Kompresjonsalgoritme INF 4 Kompresjon og koding Noen egreper Kompresjonsalgoritme Dekompresjonsalgoritme Tema i dag :. Noen egreper. Redundans Data Kompresjon Lagring eller oversending Dekompresjon Data. Differanse- og løpelengdetransformer

Detaljer

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 INF 40 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 Utlevering: onsdag 17. oktober 2007, kl. 17:00 Innlevering: fredag 2. november 2007, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

da INF 2310 Digital bildebehandling

da INF 2310 Digital bildebehandling Ulike typer redundans da INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i

Detaljer

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER PLASS og TID INF 60-30042002 Fritz Albregtsen Tema: komprimering av bilder Litteratur: Efford, DIP, kap 2 Digitale bilder tar stor plass Eksempler: a 52 52 8 bits 3 farger 63 0 6 bits b 24 36 mm fargefilm

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Midtveiseksamen. INF Digital Bildebehandling

Midtveiseksamen. INF Digital Bildebehandling INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 106 Introduksjon til signal- og bildebehandling Eksamensdag: Mandag 29. mai 2000 Tid for eksamen: 29. mai 2000 kl 09:0031.

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman

FORELESNING 11. KOMPRESJON OG KODING I Andreas Kleppe. Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Anvendelser INF30 Digital ildeehandling FORELESNING KOMPRESJON OG KODING I Andreas Kleppe Tre steg i kompresjon Redundanser Transformer Koding og entropi Shannon-Fano og Huffman Kompendium: Frem t.o.m.

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Repetisjon: Kompresjon

Repetisjon: Kompresjon Repetisjon: Kompresjon INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 7. desember 2007 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen & Erik Velldal Universitetet i Oslo 22. februar, 2013 Tema 2 Forrige uke Data-abstraksjon Lister av lister Tre-rekursjon Prosedyrer som datastruktur

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Ole Marius Hoel Rindal Gråtonetrasformasjoner Histogramtransformasjoner 2D diskret Fourier-transform (2D DFT Filtrering i Fourierdomenet Kompresjon og koding Segmentering

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

INF 1040 løsningsforslag til kapittel 17

INF 1040 løsningsforslag til kapittel 17 INF 1040 løsningsforslag til kapittel 17 Oppgave 1: Bilder og histogrammer Her ser du pikselverdiene i et lite bilde. Kan du regne ut histogrammet til bildet, dvs. lage en tabell over hvor mange piksler

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2220 Algoritmer og datastrukturer Eksamensdag: 16. desember 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING IN 06, V-200 DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. BILDE-DANNING SAMPLING og KVANTISERING BILDE-FORBEDRING I BILDE-DOMENET 2/3 200 Fritz Albregtsen. Trinn: Legg

Detaljer

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling

Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling Objekt-bilde relasjonen IN 3 Digital bildebehandling Oppsummering II, våren 7: y f f s s y Avbildning Naboskapsoperasjoner og konvolusjon Segmentering Kompresjon og koding av bilder argerom og bildebehandling

Detaljer

INF2220: Time 4 - Heap, Huffmann

INF2220: Time 4 - Heap, Huffmann INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Løsningsforslag MATEMATIKK 1, MX130

Løsningsforslag MATEMATIKK 1, MX130 Løsningsforslag ATEATIKK 1, X130 UTSATT EKSAEN 8. januar 2010 Oppgave 1 a) Alle flisene forutsettes å være like store. Vi tenker oss at sidekantene på flisene er 1 enhet lang og at arealet av hver flis

Detaljer

EKSAMEN. Bildebehandling og mønstergjenkjenning

EKSAMEN. Bildebehandling og mønstergjenkjenning EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan Generelle Tips INF2220 - lgoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo Du blir bedømt etter hva du viser at du kan Du må begrunne svar Du må ikke skrive av bøker

Detaljer

INF2810: Funksjonell Programmering. Huffmankoding

INF2810: Funksjonell Programmering. Huffmankoding INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Huffmankoding Erik Velldal Universitetet i Oslo 20. februar 2015 Tema I går Trær som lister av lister Trerekursjon Mengder som trær

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Svarforslag til ukeoppgaver til INF 4130

Svarforslag til ukeoppgaver til INF 4130 Svarforslag til ukeoppgaver til INF 4130 15. november 2011 Oppgave 1: Løs 14.4 (hvori innbakt svaret på oppgave 14.5) Vi skal altså vise at Hungarian-algoritmen kan implementeres i tid O(n 3 ), der n er

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON Filtrering i bildedomenet INF3 Digital bildebehandling FORELESNING 5 REPETISJON Andreas Kleppe Filtrering i bildedomenet D diskret Fourier-transform (D DFT) Kompresjon og koding Morfologiske operasjoner

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11)

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det

Detaljer

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme

Detaljer