Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I"

Transkript

1 Løsningsforslag, Ukeoppgaver 9 INF2310, våren Vi har gitt følgende bilde: kompresjon og koding del I a. Finn Huffman-kodingen av dette bildet. Hvor mange biter blir det per piksel I gjennomsnitt etter koding hvis vi ser bort fra at vi trenger plass til å lagre kodeboken? Vi har følgende forekomster, først i rekkefølge etter symbolverdiene, deretter sortert. Slår sammen først 0 og 4, så dette med 1, så 3 og 2 sammen, så dette med resten, som vist i grafen nedenfor: 0 0: 2 2: : 12 3: : 18 1: : 16 4: : 6 0: Merk: vi ikke har laget frekvenstabell bare brukt histogrammet. Huffman-kodene blir da (her er det flere mulige riktige løsninger!): 2: 00 3: 01 1: 10 4: 110 0: 111 Og det gjennomsnittlige antall bits pr piksel etter koding blir (( )*2+8*3)/54 = (92+24)/54 = 116/54 =2.15 bits per piksel. b. Ved differansetransform tar vi differansen mellom et piksel og dets nabo til venstre. Siden pikslene lengst til venstre i bildet ikke har noen venstre nabo, beholder vi pikselverdien her. Finn differanse-transformen av bildet ovenfor.

2 Etter differansetransform vil bildet se slik ut: c. Finn så Huffman-koden for det differansetransformerte bildet, slik at du kan beregne det gjennomsnittlige antall bits per piksel for det differansetransformerte bildet. Vi har følgende forekomster, først i rekkefølge etter symbolverdiene, deretter sortert. Slår sammen først -1 og 2, så dette med 1, så dette med 0, som vist i grafen nedenfor: 1 2: 4 0: 21 1: 20 1: : 21-1: : 9 2: Huffman-kodene blir da (her er det igjen flere mulige riktige løsninger!): 0: 1 1: 00-1: 010 2: 011 Og det gjennomsnittlige antall bits pr piksel etter differansetransform og Huffman-koding blir (21+20*2+13*3)/54 = ( )/54 = 100/54 =1.85 bits per piksel. Altså færre bits pr symbol ved å gjøre differansekoding først og så Huffman, enn med bare Huffman. d. Entropien til bildet vi startet med er Hvorfor ble det gjennomsnittlige antall biter per piksel større enn entropien i deloppgave a, men mindre enn 2.06 i deloppgave c? Entropien beregnet fra histogrammet til bildet er en nedre grense for hvor kompakt bildet kan kodes, hvis vi bare ser på ett piksel av gangen.

3 Denne grensen er bare mulig å oppnå hvis alle sannsynlighetene i det normaliserte histogrammet er av typen 1/2k, der k er et heltall. Dette kravet er ikke oppfylt i det opprinnelige bildet. Derfor er ikke Huffman-transformen optimal, og vi får et gjennomsnittlig antall bits som er litt større enn entropien. I deloppgave c ser vi ikke bare på ett piksel av gangen, men på differansen mellom to og to piksler. Da kan vi kode mer kompakt enn det som er gitt av entropien for enkelt-piksler. e. Hvis det bildet du fikk oppgitt i starten av oppgaven var det andre bildet i en bildesekvens, og det første var Hvilke to bilder ville du da komprimere, og hvor mange biter vil du i gjennomsnitt trenge per piksel for hvert av de to bildene? Man ville først komprimere det bildet som kommer først (det rett ovenfor). Her er det forholdsvis greit å finne histogrammet og Huffman-koden: 2: 1; 3: 00; 1: 010; 4: : 9 2: 18 2: 18 3: : 18 1: : 9 4: Det gjennomsnittlige antall bits pr piksel blir (18*1+18*2+9*3+9*3)/54 = 108/54 =2 bits per piksel. Og så ville man kode differansebildet, dvs det sist mottatte bildet minus det forrige, piksel for piksel. Det ser slik ut: Dette er et binært bilde som bare trenger 1 bit per piksel.

4 7. Anta at det er G=2 8 forskjellige gråtone-nivåer i hvert sample, og at når vi sorterer dem etter hvor ofte de forekommer i et bilde, så finner vi i et spesielt tilfellet at sannsynlighetene er ½, ¼, 1/8, 1/16,, 1/128, 1/256, 1/256. a) Hvor mange slike bilder kan vi overføre i parallell på en 64 kbits/s linje med Huffman-koding av amplitudene? Hint 1: Entropien er gitt ved H = G 1 i= 0 Dessuten: Og til slutt: p i log p i 2 ( ) log(teller/nevner) = log(teller) log(nevner) log 2 (2 n ) = n Hint 2: Summen ½+2/4+3/8 +4/16+5/32 + konvergerer raskt mot 2. Her er det ikke nødvendig å finne Huffman-koden. Vi har terpet at en Huffman-koding der alle sannsynlighetene kan skrives som brøker der telleren er 1 og nevneren er en toer-potens er optimal i den forstand at det gjennomsnittlige antall bits per sample er lik entropien til signalet. Entropien er her gitt ved H = - (½ log 2 (1/2) +1/4 log 2 (1/4) + 1/8 log 2 (1/8) + ) (se Hint 1 ) = ½ + 2/4 + 3/8 + = 2 (som angitt i Hint 2 ovenfor). Det gjennomsnittlige antall bits per sampel blir altså bare 2 bits/sampel. Men for å kunne svare på spørsmålet må vi vite hvor mange sampler vi får fra hvert bilde pr tidsenhet. La oss si at samplingsfrekvensen er 8 khz. Da er antall bilder vi kan overføre i parallell: bits/s /( sampler/s * 2 bits/sampel) =4.

5 3. Optimal Huffman-koding: Finn kodeboken for en Huffman-koding av DIGITAL OVERALT!. Hvorfor kan vi uten å gjøre noen logaritme-beregninger si hva entropien til denne teksten er? Det sorterte histogrammet og kodeboken blir som vist i tabellen nedenfor I T A L D G O V E R ! Vi har i alt 16 tegn, men bare 12 forskjellige, og hyppighetene er enten 2 (i,t,a,l) eller 1 (d,g,,o,v,e,r,!). Så alle de N=12 sannsynlighetene kan skrives som brøker der telleren er 1 og nevneren er en toerpotens (8 eller 16). Altså kan sannsynlighetene for hvert symbol uttrykkes som for heltalls verdier av k. 1 p( s i ) = k 2 Da vet vi at det gjennomsnittlige antall biter per symbol er lik entropien. N R = p( si ) bi = p( si )log2( p( si )) = H Og R er lett å regne ut: R= ( 8*3 + 8*4 ) /16 = 56 /16 =3.5. Vi får selvsagt det samme hvis vi faktisk regner ut entropien: H = 4(1/2 3 ) log 2 (2 3 ) + 8 (1/2 4 ) log 2 (2 4 ) = = 3.5 N i= 1 i= 0

6 4. En fax-oppgave: a) Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet på biter/sekund. Vi bruker en standard fax med 1728 fotosensorer per linje og 1075 linjer per side. Faxmaskinen gjør en terskling av bildet av siden. Hvor lang tid tar det å overføre en side uten kompresjon? Etter terskling trenger vi selvsagt 1 bit per piksel for å representere 0 og 1. 1 bit/piksel * 1728 piksler/linje * 1075 linjer/side = bits/side bits/side / bits/sekund = 387 sekunder = 6 min 27 s. b) Anta at vi hadde kunnet gjøre tekstgjenkjenning på den delen av arket som inneholder tekst, og representert symboler og mellomrom med 7 bits ASCII. Anta at det maksimalt er 60 tegn pr linje og 50 linjer pr side. Anta også at vi kunne beskrevet strektegningene som maksimalt 500 rektangler per side, og at sidene på rektanglene er parallelle med kantene på siden. Gi et worst case estimat av hvor mange biter du vil trenge for å beskrive innholdet på siden med en oppløsning som svarer til faxens oppløsning, og hvor lang tid det vil ta å overføre dette over modemlinjen. For å representere et rektangel og dets plassering trengs følgende: en koordinat for et punkt på rektanglet, f eks øverste venstre hjørne rektanglets bredde og rektanglets høyde Kordinatene for øvre venstre hjørne til et rektangel vil ligge mellom (0,0) og (1728,1075). Det betyr at begge koordinatene krever 11 biter (2048). Det samme gjelder høyde og bredde. Til sammen blir dette 4 * 11 biter = 44 biter. Da blir regnestykket slik: 500 rektangler: 44 biter/rektangel* 500 rektangler = biter 50*60 tegn: tegn * 7 biter/tegn = biter Worst case er altså at vi trenger biter pr side. Med en overføringskapasitet på bits/sekund tar dette t = biter / biter/s = 4,6 sekunder. c) Vi vil gjerne undersøke hvor mye det er å spare på å separere ASCII-tegn fra alt annet i en fax, og sende 7 bits ASCII kode for hvert tegn, mens resten sendes ukomprimert uansett hva det er. Hvis halvparten av hver side i gjennomsnitt er ASCII-tegn, hvor mye sparer vi da i forhold til ordinær fax? (7 biter/tegn * 3000/2 tegn + 1 bit/pixel *1728*1075/2 piksler)/(1728*1075) = ( ) / = 0,5056 Vi sparer altså 100%-50.56% = 49.43%.

7 5. Huffman-koding av løpelengder i binært bilde: Utsnittet på 25 * 10 piksler av et binært bilde nedenfor kan representeres med 250 biter. Ser vi på runlength-representasjonen av det samme utsnittet, finner vi at det består av 82 runs med lengder mellom 1 og 8 piksler. Hvis vi bruker 3 biter på hver, blir dette 246 biter. Imidlertid er det mulig å gjøre dette litt mer kompakt ved å Huffman-kode de 82 løpelengdene. Ved løpelengdetransformasjon av binære bilder trenger vi ikke å lagre tallpar (gråtone, løpelengde) slik som for gråtonebilder. Vi trenger bare løpelengdene, for det er bare to mulige intensitetsverdier. Løpelengdene finnes i tabellen til høyre. Finn Huffmann-koden til løpelengdene i tabellen til høyre over, og finn det totale antall biter etter koding av løpelengdene. Nedenfor har vi løpelengde, lengden på hvert kodeord, kodeordet, og antall forekomster av hver løpelengde. Og helt til høyre kodetreet Og det totale antall bits etter koding blir 36*1+21*3+20*4+5*5= =204 biter

8 6. Teorioppgave: Løpelengdekoding i binært bilde med naturlig binærkode: Du skal gjøre en løpelengde ( run-length ) transform på et 2 n 2 n piksels binært bilde. Anta at du gjør dette linje for linje i bildet, ved å angi første pikselverdi, deretter løpelengdene, og verdien 0 to ganger etter hverandre som EOL-markør. Anta også at du bruker en felles naturlig binærkode for både pikselverdiene og løpelengdene. a. Finn et uttrykk for det høyeste antall løpelengder, N, som du med disse forutsetningene kan ha i en linje i bildet hvis løpelengde-transformen skal gi noen kompresjon i forhold til det binære bildet? Svar: Det er den maksimale løpelengden vi kan ha i bildet som bestemmer ordlengden (i biter) til den naturlige binærkoden. Siden bildet er 2 n piksler bredt, må vi ha en ordlengde på n biter. Hvis vi har N runs per linje kommer vi til å bruke n(n+3) biter til å representere dette med en n-biters naturlig binærkode, mens en linje i det binære bildet krever 2 n biter. For å få kompresjon må run-length representasjonen ta et mindre antall biter enn den originale. Altså n(n+3) < 2 n eller N < (1/n) 2 n - 3. b. Hva blir den høyeste verdien av N for hhv. n = 4, n = 8 og n = 10? Er forholdet mellom det maksimale antall løpelengder vi kan ha og fortsatt oppnå kompresjon, og bredden av bildet konstant etter hvert som vi øker størrelsen på bildet? Svar: For n=4 får vi N < (1/4)2 4 3 = 16/4 3 =1 => N < 1. For n=8 får vi N < (1/8)2 8 3 = 256/8 3 =29 => N < 29. For n=10 får vi N < (1/10) = 1024/10 3 = 99.4 => N < 99. Forholdet mellom det maksimale antall løpelengder (N) vi kan ha og fortsatt oppnå kompresjon og størrelsen på bildet (2 n ), er omtrent 2 n / n / 2 n = 1/n. Så dette forholdet er slett ikke konstant: For store bilder kan vi tillate oss å ha mange runs, men forholdet mellom det maksimale antall runs og antall piksler per linje avtar (langsomt) med bildestørrelsen.

9 7. I denne oppgaven er det fire delspørsmål som hver gir inntil 16 poeng. a. Anta at vi har et piksels gråtonebilde med 8 bitplan. Pikselverdien er 0 langs venstre kant av bildet, og øker med 32 i jevne trappetrinn mot høyre, slik at det dannes 8 vertikale striper som vist i figuren nedenfor. Hvor mange biter vil vi måtte bruke per linje hvis vi løpelengdetransformerer dette gråtonebildet og bruker en felles naturlig binærkode for både pikselverdier og løpelengder, og bruker verdien 0 to ganger etter hverandre til å indikere slutten av en linje (EOL)? Hver linje vil bestå av 8 løpelengder. Alle løpelengdene er lik 512/8 = 64. Pikselverdiene trenger 8 biter. Altså får vi (8 * 2 + 2) * 8 = 18*8 = 144 biter. b. Vis kodetreet og finn kodeboken for en Huffman-koding av resultatet av løpelengde-transformen ovenfor. Anta fortsatt at vi bruker (0 0) til å indikere EOL. Svar: Bildet inneholder 512 like linjer. Hver linje kommer til å bli beskrevet som Et sortert histogram for hver linje vil gi følgende hyppigheter. En mulig trestruktur og kodebok er slik: c. Finn en omtrentlig verdi for det gjennomsnittlige antall biter per piksel (i det opprinnelige bildet) når du bruker denne Huffman-koden. Angi også den omtrentlige kompresjonsfaktoren.

10 Svar: Vi ser kodeordlengdene i tabellen ovenfor. Multipliserer vi hver kodeordlengde med de tilsvarende hyppighetene får vi det totale antall biter som blir brukt til å representere løpelengdetransformen og EOL-merket: 1*9+3*3 + 6*(4*1) = = 42 biter per linje. Men det er 512 piksle per linje i det opprinnelige bildet. Altså har vi 42/ biter per piksel (fordi 8*5 = 40). Siden det var 8 biter per piksel i det opprinnelige bildet får vi CR 8/0.08 = 100. Hvis vi hadde bedt om den gjennomsnittlig kodeordlengde for løpelengdetransformen, inklusive EOL-merket, ville svaret vært 42/ biter/kodeord. d. Anta at vi hadde gjort en differansetransform av gråtonebildet som er vist i del-oppgave a. Bruk et enkelt resonnement til å forklare hvorfor kompresjonsraten ved kompresjon av enkeltpiksler etter differansetransformen er nøyaktig 3 ganger så høy som den kompresjonsraten vi kan oppnå ved kompresjon uten differansetransform. Svar: I det opprinnelige bildet er det åtte forskjellige gråtoner, og alle er like sannsynlige. 8 verdier krever 3 biter. Her kunne vi ha argumentert med at entropien til dette bildet er eksakt 3, uttrykt i biter: 8*(-(1/8)log 2 (1/8)) =8*3/8 =3. Men vi trenger ingen entropi-koding med ulik lengde på kodeordene for å oppnå dette. Når alle 8 sannsynlighetene er like er jo en naturlig binærkoding med 3 biters kodeord optimal, og vi får CR=8/3. I det differansetransformerte bildet vil vi finne sju verdier lik -32 (ved overgangen mellom trappetrinnene ). Alle de andre verdiene (i alt 505 verdier) vil være 0. Her kunne vi også ha argumentert med entropi: Hvis alle verdiene hadde vært like, ville differansebildet hatt en entropi lik 0, og i dette tilfellet må vi være ganske nær denne verdien (entropien er 0.104). Men vi trenger ikke å se på entropien. For når det bare finnes to verdier i bildet, vil vi bruke én bit: 0 på den mest sannsynlige og 1 på den minst sannsynlige verdien, eller omvendt. Altså en kompresjonsrate CR =8/1= 8. Altså er kompresjonsraten 3 ganger så høy etter differansetransformen..

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Løsningsforslag til kapittel 15 Fargerom og fargebilder

Løsningsforslag til kapittel 15 Fargerom og fargebilder Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

INF 1040 løsningsforslag til kapittel 17

INF 1040 løsningsforslag til kapittel 17 INF 1040 løsningsforslag til kapittel 17 Oppgave 1: Bilder og histogrammer Her ser du pikselverdiene i et lite bilde. Kan du regne ut histogrammet til bildet, dvs. lage en tabell over hvor mange piksler

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

PHOTO STORY 3 BRUKERVEILEDNING TILRETTELAGT AV JAN HALLSTENSEN LGA SKOLENES IT-SENTER

PHOTO STORY 3 BRUKERVEILEDNING TILRETTELAGT AV JAN HALLSTENSEN LGA SKOLENES IT-SENTER PHOTO STORY 3 BRUKERVEILEDNING TILRETTELAGT AV JAN HALLSTENSEN LGA SKOLENES IT-SENTER TROMSØ TROMSØ KOMMUNE - 2006 LGA SKOLENES IT-SENTER 2 1. Starte programmet Start Photo Story 3 1. Klikk og velg 2.

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave IT Informatikk basisfag 4/9 Sist gang: manipulering av bits I dag: Representasjon av bilde og lyd Heksadesimal notasjon Organisering av data i hovedminne og masselager (elektronisk, magnetisk og optisk

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

R2-01.09.14 - Løsningsskisser

R2-01.09.14 - Løsningsskisser R - 0.09.4 - Løsningsskisser Algebra Oppgave Finn den eksplisitte formelen for n te ledd i tallfølgene: a), 4, 6, 8, 0,... b),, 5, 7, 9,... c), 4, 9, 6, 5,... d),, 4, 5 4, 6 5,... a) Vi ser at følgen med

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Derivasjonen som grenseverdi

Derivasjonen som grenseverdi Gitt graf. Start/stopp. Fra sekant til tangent. Veien til formelen for den deriverte til funksjon f i et punkt Animasjonens jem: ttp://ome.ia.no/~cornelib/animasjon/ matematikk/mate-online-at/ablgrenz/

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet.

Ordliste. Adaptiv filtrering (adaptive filtering) Et filter som endrer oppførsel etter det lokale innholdet i bildet eller signalet. Ordliste Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med lyd, bilder og kompresjon i kurset INF1040 høsten 2004. En del av nøkkelordene er IKKE brukt i kurset INF1040,

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 27.08.2013 20.08.13 Revidert Log GKS 22.08.12

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde

Norsk informatikkolympiade 2014 2015 1. runde Norsk informatikkolympiade 2014 2015 1. runde Sponset av Uke 46, 2014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG EKSAMENSOPPGAVE Fag: Lærer: IAD20003 Algoritmer og datastrukturer André Hauge Grupper: D2A Dato: 21.12.2004 Tid: 0900-1300 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 24.08.2010 23.08.10 Revidert Log GKS 20.08.09

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 13. november 2014 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Sprettende ball Introduksjon Processing PDF

Sprettende ball Introduksjon Processing PDF Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

DV - CODEC. Introduksjon

DV - CODEC. Introduksjon DV - CODEC EN KORT PRESENTASJON I INF 5080 VED RICHARD MAGNOR STENBRO EMAIL: rms@stenbro.net 21. April 2004 Introduksjon Dv-codecen ble utviklet spesielt for bruk i både profesjonelle og konsumer kamera.

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

www.ir.hiof.no/~eb/viz.htm Side 1 av 12

www.ir.hiof.no/~eb/viz.htm Side 1 av 12 VIZhtm Side 1 av 12 Innhold Side MÅL 1 OPPGAVE / RESULTAT 1 BESKRIVELSE ØVING 6A 2 BESKRIVELSE ØVING 6B 9 BESKRIVELSE ØVING 6C 12 MÅL Når du har utført denne øvingen, skal du kunne: Benytte et kamera som

Detaljer

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS Løkker og if-tester Gløer Olav Langslet Sandvika VGS 29.08.2011 Informasjonsteknologi 2 Funksjoner, løkker og iftester Læreplansmål Eleven skal kunne programmere med enkle og indekserte variabler eller

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Den analoge verden blir digitalisert

Den analoge verden blir digitalisert Den analoge verden blir digitalisert Lindem 4. mai 2008 Med bestemte tidsintervall går vi inn og avleser (digitaliserer) den analoge verdien til signalet. Nyquist Shannon sampling theorem: Skal vi beholde

Detaljer

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003 Informasjonsteori Skrevet av Joakim von Brandis, 18.09.200 1 Bits og bytes Fundamentalt for informasjonsteori er at all informasjon (signaler, lyd, bilde, dokumenter, tekst, etc) kan representeres som

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:

Detaljer

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Kids - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Sampling, kvantisering og lagring av lyd

Sampling, kvantisering og lagring av lyd Litteratur : Temaer i dag: Neste uke : Sampling, kvantisering og lagring av lyd Cyganski kap 11-12 Merk: trykkfeilliste legges på web-siden Sampling av lyd Kvantisering av lyd Avspilling av samplet og

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

Guide til system for flervalgsprøver

Guide til system for flervalgsprøver Guide til system for flervalgsprøver Systemet skal i utgangspunktet være selvforklarende, og brukere oppfordres til å klikke seg rundt og bli kjent med systemet på egen hånd. Det er allikevel laget en

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 20.mai 2005 Varighet: Fagnummer: Fagnavn: Klasse(r): Studiepoeng: 6 3 timer LO116D Programmering i Visual

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

med canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS

med canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS Grafikk med canvas Gløer Olav Langslet Sandvika VGS Høsten 2011 Informasjonsteknologi 2 Canvas Læreplansmål Eleven skal kunne bruke programmeringsspråk i multimedieapplikasjoner Med CSS3, HTML og JavaScript

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Tirsdag 12. juni 2012 Tid for eksamen: 9:00 15:00 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Fredag 4. desember 2015 Tid for eksamen: 14.30 (4 timer)

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00 Oppgave (1 poeng) Prisen for en vare er satt opp med 5 %. Nå koster varen 50 kroner. Hva kostet

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Bruk av vannmerke ved reproduksjon av gråtonebilder

Bruk av vannmerke ved reproduksjon av gråtonebilder Bruk av vannmerke ved reproduksjon av gråtonebilder EGIL BERNTSEN Examensarbete Stockholm, Sverige 2004 TRITA-NA-E04112 Numerisk analys och datalogi Department of Numerical Analysis KTH and Computer Science

Detaljer

Uheldig bildeutsnitt: Vesentlige deler av motivet blir dekket av tekstfeltet i bunnen av slideshowet

Uheldig bildeutsnitt: Vesentlige deler av motivet blir dekket av tekstfeltet i bunnen av slideshowet Motiver og uttrykk Motiver kan være alt fra hus og bygninger, eksteriører, interiører og objekter, til portretter og mennesker i aktivitet. Uheldig bildeutsnitt: Vesentlige deler av motivet blir dekket

Detaljer

TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering

TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering 1 TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering Anders Christensen anders@idi.ntnu.no Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Læringsmål Skal kunne forstå og

Detaljer

King Kong Erfaren Scratch PDF

King Kong Erfaren Scratch PDF King Kong Erfaren Scratch PDF Introduksjon I dette spillet inspirert av historien om King Kong, skal vi se hvor lett det er å bruke grafikk som ikke allerede ligger i Scratchbiblioteket. I spillet styrer

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

Norsk informatikkolympiade 2013 2014 1. runde

Norsk informatikkolympiade 2013 2014 1. runde Norsk informatikkolympiade 2013 2014 1. runde Sponset av Uke 46, 2013 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Søyle, drager og balkongrekke... 3

Søyle, drager og balkongrekke... 3 DDS-CAD Arkitekt 10 Søyle, drager og balkongrekke Kapittel 5 1 Innhold Side Kapittel 5 Søyle, drager og balkongrekke... 3 Søyle... 3 Drager... 5 Balkongrekke... 9 Flytt rekkverk/vegg... 11 Gulv i balkong...

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

Ajourhold av DMK i NGIS med FYSAK F2.6 Kokebok Norsk institutt for skog og landskap, Steinkjer

Ajourhold av DMK i NGIS med FYSAK F2.6 Kokebok Norsk institutt for skog og landskap, Steinkjer Ajourhold av DMK i NGIS med FYSAK F2.6 Kokebok Norsk institutt for skog og landskap, Steinkjer Innhold Forberedelser... 2 Innstillinger... 2 Uttrekk av DMK fra NGIS... 4 Åpning av ortofoto... 7 Redigering...

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer