Massespektrometri. Generell oppbygging Et massespektrometer er bygget opp av følgende hoveddeler:

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Massespektrometri. Generell oppbygging Et massespektrometer er bygget opp av følgende hoveddeler:"

Transkript

1 Massespektrometri I massespektrometri separeres ioner i en masseanalysator (massefilter) på grunnlag av forholdet mellom ionenes masse og ladning. Dette forholdet kalles ionenes massetall. Massetallet skrives som m/z, hvor m er ionets molekylmasse og z er ionets formelle ladning. Vanligvis genereres ioner med ladning 1. Andre ladninger kan imidlertid også forekomme. Siden de fleste ioner likevel har den samme formelle ladningen (z = 1), vil massespektrometri i praksis gi atskillelse av ioner direkte ut fra molekylmassene. Generell oppbygging Et massespektrometer er bygget opp av følgende hoveddeler: Injektor Ionekilde Massefilter Detektor Datamaskin Pumpe Siden vi skal kunne generere, separere og detektere ioner i gassefase, må systemet hele tiden operere ved svært lave trykk (P < 10-5 Pa). Evakuering av systemet skjer ved hjelp av høyeffektive pumpesystemer. Etter at molekylene har blitt introdusert i massespektrometeret, blir de ionisert i en ionekilde. Ionene akselereres deretter ut av ionekilden ved hjelp av et elektrisk potensial og spareres i et massefilter. Etter å ha passert gjennom massefilteret registreres ionene ved hjelp av en detektorenhet. Ionisasjonsprosessen I et massespektrometer blir molekylene først ionisert. Den vanligste måten å ionisere molekyler på er å bombardere dem med elektroner med høy energi, vanligvis 70 ev. Et elektron blir da slått ut av molekylet (M), og vi får dannet et radikalion avgitt to elektroner med lav energi såkalte termiske elektroner: M e M 2e HE LE M. Samtidig får vi Radikalionet som dannes i denne ionisasjonsprosessen kalles molekylionet. I ioniseringsprosessen vil molekylet normalt bli tilført mye mer energi enn det som trengs for å få til en ionisering. Molekylionet vil derfor være ustabilt, og det vil brytes ned til mindre ioner (datterioner), radikaler og nøytrale molekyler. De ulike ionene som dannes ved nedbrytingen kan registreres i en detektor, og dette fragmenteringsmønsteret gir opphav til et massespekter som er karakteristisk for den forbindelsen som undersøkes. Ionisasjonsprosessen vist over kalles for elektronionisasjon EI. Det finnes også andre måter å ionisere stoffer på. Noen av disse teknikkene bygger på bruk av reaktantgasser som tilsettes i ionekilden, såkalt kjemisk ionisasjon CI. 1

2 Elektronionisasjon - EI I elektronionisasjon bombarderes molekylene med en elektronstråle. Elektronstrålen genereres ved at elektroner emitteres fra et oppvarmet filament. Ionene som dannes i elektronstrålen akselereres ut av ionisasjonskammeret ved hjelp av et påsatt akselerasjonspotensial (4-8 kv). Den kinetiske energien, E k, molekylene har når de forlater ionisasjonskammeret, vil være lik den potensielle energien, E p, som ionene opprinnelig hadde i akselerasjonsfeltet: E k = E p Innsatt i uttrykkene for kinetiske energi og for potensiell energi i elektriske felt får vi følgende sammenheng: 1 2 mv zeu 2 = v er ionets fart, m er ionets masse, z er den formelle ladningen, e er elementærladningen (1, C) og U er det påsatte akselerasjonspotensialet (i volt). Siden den potesielle energien er den samme for alle ioner med lik ladning, betyr det også at alle ioner med samme ladning får samme kinetiske energi. Ionenes kinetiske energi er igjen av betydning for hvordan de separeres i mange typer massefilter. Vi løser for farten: v = 2zeU m Fra uttrykker over ser vi at ioner med liten masse får høyere hastighet ut fra ionekilden enn ioner med stor masse. Kjemisk ionisasjon Elektronionisasjon er en metode som gir stor grad av fragmentering av molekylionet. I molekylvektsstudier ønsker vi imidlertid at molekylionet skal være mest mulig er intakt. En mykere ionisasjonsmetode er å bruke kjemisk ionisasjon. Positiv kjemisk ionisasjon PCI I positiv kjemisk ionisasjon benyttes en reaktantgass, vanligvis metan, i ioniseringsprosessen. Denne gassen er til stede i ionekilden i mye høyere konsentrasjon enn analyttene. På samme måte som i elektronionisasjon (ionekilden i PCI er egentlig identisk med ionekilden for EI) utsettes reaktantgassen for et elektronbombardement med påfølgende ionisering av gassen. Den ioniserte reaktantgassen undergår deretter flere reaksjoner som ender med at analytten blir ionisert. Ionisering av reaktantgassen: CH e CH 2e 4 4 Reaktantgassens molekylion vil deretter fragmentere: CH CH H 4 3 2

3 Molekylionet og fragmentionet vil kunne reagere med et nytt metanmolekyl: CH CH CH CH CH CH C H H De dannede spesiene vil kunne reagere med analytten og gi ionisering. Ioniseringen skjer ved protonoverføring, slik at de resulterende molekylionene får økt sin masse med en masseenhet (M1): M CH /C H M H CH /C H Noen unntak fra dette ioniseringsmønsteret finnes. 3 4 Negativ kjemisk ionisasjon - NCI En reaktantgass, enten metan, ammoniakk eller isobutan, bombarderes med høyenergetiske elektroner i ionekilden, slik at elektroner med lav energi slås ut av reaktantgassmolekylene. Disse termiske elektronene kan igjen fanges opp av analyttmolekylene, som nå danner et negativt ladet molekylion: Ioner Reaktantgass e Radikaler 2e - - HE LE Nøytraler M e M - LE _ Reaksjonen krever at analyttmolekylene har en betydelig elektronaffinitet, dvs. evne til å fange opp elektroner Massefilter Flere ulike typer massefiltere benyttes i massespektrometri. Mange av dem bygger på hvordan ionene oppfører seg når de kommer inn i et elektromagnetisk felt. I dette kurset skal vi konsentrere oss om massefiltre som er vanlige i såkalte bench-top instrumenter, dvs. instrumenter som er i utstrakt bruk i kjemiske laboratorier fordi de relativt rimelige, har relativt god oppløsning og er brukervennlige. Dette gjør dem til populære instrumenter med mange bruksområder. Magnetsektorinstrument Magnetsektorinstrumentene faller ikke naturlig inn i kategorien bench-top apparater. Til det er de for plasskrevende, dyre og relativt krevende i drift. De har imidlertid høy ytelse, og historisk sett er de den type instrumenter som mye av utviklingsarbeidet i massespektrometri bygger på. Separasjonsprinsippet i magnetsektorinstrumenter bygger på at alle ioner vil avbøyes i et magnetfelt. Ved å utforme magneten som en sirkelsektor, vil ionene måtte følge en helt bestemt krum bane gjennom magneten for å nå frem til detektoren. For en gitt styrke på magnetfeltet vil kun ioner med et bestemt massetall slippe gjennom magnetsektoren. Ioner 3

4 med feil massetall vil filtreres bort. Ved å scanne magnetfeltet, kan vi justere fortløpende hvilke ioner som får passere gjennom magnetsektoren. Sammenhengen mellom magnetfeltstyrken, ionenes massetall og radius på den krumme banen ionene må følge gjennom magnetsektoren er: 2 2 m B rme = z 2U B er den magnetiske feltstyrken (i Tesla), r m er radius på den sirkelbanen ionene må følge gjennom magnetsektoren for å transmitteres, e er elementærladningen (1, C) og U er akselerasjonspotensialet (V) i ionekilden. Magnetsektor Ionekilde Detektor Figur 1: Prinsippskisse av magnetsektorinstrument. Ionene må følge en krum bane gjennom magnetsektoren for å nå frem til detektoren. Oppløsningsevnen til et massespektrometer Oppløsningsevnen, R S, til et massespektrometer er definert som: R S m = m hvor m er ionets masse og m er den forskjellen i masse som ionene må ha for å kunne separeres. Eksempelvis vil en oppløsningsevne på R S = 1000 bety at et ion med et massetall på 100 vil kunne spareres fra et ion som har en forskjell i masse på m = 0,1 masseenheter. For et enkelt magnetsektorinstrument er oppløsningsevnen av størrelsesorden Båndspredning i et magnetsektorinstrument Alle ioner med lik ladning som forlater ionekilden, skal i utgangspunktet ha lik kinetisk energi. I praksis er dette ikke tilfellet. Vi ser at ionene får en liten spredning i den kinetiske energien når de forlater ionekilden. Spredningen i kinetisk energi medfører at for ioner med identiske masser vil avbøyingen i magnetsektoren kunne bli litt forskjellig. Dette medfører igjen at identiske ioner, som i utgangspunktet skulle ha blitt registrert med identiske massetall, i stedet får en liten spredning i massetallene de registreres ved. Denne energispredningen nedsetter betydelig oppløsningsevnen i et magnetsektorinstrument. 4

5 Løsningen er å montere en elektrostatisk analysator (ESA) i massespektrometeret som filtrerer bort den verste spredningen i kinetisk energi. Et slikt filter er i likhet med magnetsektoren formet som en sirkelsektor, der kun ioner med en bestemt kinetisk energi slipper igjennom. Ioner med for store avvik i den kinetiske energien blir filtrert bort. Instrumenter av denne typen kalles for dobbeltfokuserende, og prinsippet er vist i figur 2. ESA Magnetsektor Spalte Ionekilde Detektor Figur 2: Et dobbeltfokuserende instrument, der den elektrostatiske analysatoren (ESA) filtrerer bort spredningen i kinetisk energi, noe som gir bedre fokusering av ionene i magnetsektoren. Andre massefiltre: Av bench-top instrumenter finnes flere viktige typer: o Kvadrupol-instrumentet er en meget viktig type, der ioner separeres i et elektromagnetisk felt satt opp mellom fire stavformede poler. Stavene har parvis likt påsatte elektriske potensialer. Ioner som får stabile oscillasjoner når de kommer inn i kvadrupolen vil transmitteres til detektoren og registreres. Ioner som får ustabile oscillasjoner vil ikke kunne detekteres. Feltet i kvadrupolen justeres slik at man skanner over det massetallområdet hvor de ulike ionene får stabile oscillasjoner. o I ionefellen settes det opp et elektromagnetisk felt, der ionene inne i ionefellen enten får stabile eller utstabile oscillasjoner - alt avhengig av hvilke massetall ionene har. Ioner med ustabile oscillasjoner vil kastes ut av ionefellen og detekteres. Feltet i ionefellen justeres på en slik måte at det skannes over det området hvor ioner med ulike massetall får utstabile oscillasjoner. o Time of Flight : TOF-instrumentene skiller seg fra de øvrige massespektrometerene ved at separasjonen skjer i et feltfritt rør. I denne instrumenttypen utnyttes det faktum at ioner med ulik masse vil ha ulik hastighet når de forlater ionekilden. Ved å la ionene sveve gjennom et rør, vil de små ionene, som beveger seg raskest, først komme frem til detektoren. De større ionene vil bruke lengre tid. Vandringstiden gjennom røret er derfor en funksjon av ionenes massetall. Ved å måle vadringstidene kan man således få kjennskap til ionenes masse. 5

6 Fragmentering av ioner Molekylionet er et radikalion med odde antall elektroner, dvs. at ett elektron er uparet. Det enslige elektronet vil i stor grad påvirke fragmenteringen av molekylionet. Drivkraften i den påfølgende fragmenteringen er dannelsen av mer stabile ioner med likt antall elektroner (dvs. at alle elektronene er paret). De generelle fragmenteringsveiene er som følger: Molekylionet spalter av et radikal R og gir opphav til et datterion med likt antall elektroner: M m R Datterionet kan fragmentere videre under avspalting av et nøytralt molekyl n: m1 m2 n I noen tilfeller kan fragmenteringen av molekylionet resultere i et nytt radikalion: 1 M m 1 I prosessen over blir det avspaltet et nøytral molekyl, ikke et radikal. Radikalionet som dannes vil fragmentere videre: n m m R 1 2 Even electron rule : Siden drivkraften i fragmenteringen er å få dannet stabile ioner med likt antall elektroner, ser vi omtrent aldri (kun noen få unntak finnes) at ioner med likt antall elektroner fragmenterer på en slik måte at ioner med et odde antall elektroner dannes: m 1 2 m R Homolytisk og heterolytisk kløyving Vi skiller mellom to hovedmåter bindingsbrudd i molekyler/ioner kan skje på. Homolytisk bindingsbrudd: De to elektronene i en kovalent binding vil ved brudd gå til hvert sitt atom. Heterolytisk bindingsbrudd: De to elektronene i en kovalent binding vil ved brudd gå til ett av atomene. X Y X Y Eksempel på homolytisk bindingsbrudd i et radikalion: De to elektronene i bindingen fordeles på hver sitt atom. X Y X Y Eksempel på heterolytisk bindingsbrudd i et radikalion: De to elektronene i bindingen går til det ene atomet. I dette kurset vil det imidlertid bli lagt liten vekt på om bindingsbrudd skjer på homolytisk eller heterolytisk måte. Vi skal i hovedsak konsentrere oss om selve fragmenteringsmønsteret. 6

7 GENERELLE FRAGMENTERINGSMØNSTRE I MS ALKANER Rettkjedede alkaner: Svakt eller manglende molekylionsignal Fragmentering av molekylionet skjer ved kløyving av C-C bindingene på ulike steder i molekylene med tap av alkylradikaler. Datterionene fragmenterer videre med tap av nøytrale molekyler (alkener, metan, H 2 ). Merk! Gjentatte avspaltinger av et CH 2 -biradikal (massetap M-14) skjer ikke. I spekteret observeres økende forekomst av ioner mot lavere massetall. Omfattende isomerisering i datterionene gjør at det ikke er sammenheng mellom datterionenes struktur og strukturen i det opprinnelige molekylet. Forgrenede alkaner Svakt molekylionsignal, mangler helt hvis tertiære karbokationer kan dannes ved fragmentering (sekundære og tertiære datterkarbokationer er mer stabile enn det opprinnelige molekylionet) Kløyving skjer primært ved forgreningspunktene i molekylet. Stevensons regel sier at største alkylradikal fortrinnsvis avspaltes. Forgreningspunktene i karbonkjeden kan derfor lokaliseres ved massespektrometri. ALKENER Molekylionsignalet er generelt kraftigere enn i alkaner. Kløyving skjer ved brudd i bindingen β til dobbeltbindingen med tap av et alkylradikal. Dobbeltbindingen kan migrere før fragmenteringen (med mindre den er låst fast med alkylsubstituenter på karbonkjeden). Vi får McLafferty-omleiring i molekylionet hvis γ-karbonet har et hydrogen. McLaffertyomleiring resulterer i et nytt radikalion med partallig masse og eliminasjon av et alken. McLafferty (vist for 2-hepten): 7

8 KARBONYLFORBINDELSER (aldehyder, ketoner, karboksylsyrer, estere o.l.) Fragmentering involverer kløyving av bindingen i α-posisjon til karbonylgruppen. McLafferty-omleiring vil skje hvis atomet i γ-posisjon til karbonylgruppen har et hydrogenatom bundet til seg. Avspalting av karbonmonoksid observeres. Generelt fragmenteringsmønster for kabonylforbindelser: O C X - R.. O - X. R C O - CO R C R X = H, CH 3, R, OH, OR AROMATISKE FORBINDELSER X Usubstituerte aromater gir tap av hydrogenradikal og etyn (C 2 H 2 ) som viktigste fragmenteringsvei. I substituerte aromater skjer kløyving primært i substituenten. Aromatringen kan deretter fragmentere videre med tap av etyn. I alkylbenzener vil fragmenteringen av molekylionet føre til ringutvidelse og dannelse av tropyliumionet (C 7 H 7, m/z = 91). Dette ionet er stabilt og vil utgjøre basistoppen. Forekomst av en basistopp med m/z = 91 er derfor en god indikasjon på en alkylsubstituert aromatisk forbindelse. Tropyliumionet spalter videre av etyn og gir et karakteristisk ion med m/z = 65: CH 2 R. - R. - C 2 H 2 - C 2 H 2 C 3 H I alkylsubstituerte benzener vil McLafferty-omleiring finne sted hvis karbonatomet i γ- posisjon til en aromatisk dobbeltbinding har et hydrogenatom. McLafferty-omleiringen gir et radikalion med partallig masse under avspalting av et alken. 39 H CH 3. H. - C 3 H 6 H CH McLafferty-omleiring i butylbenzen. 8

9 ALKOHOLER OG ETERE 1. Fragmentering skjer generelt ved kløyving av binding i α-posisjon til C-O bindingen, fortrinnsvis med tap av største alkylsubstituent (som radikal). Fragmentering av etanol: CH 3 CH 2. - CH. 3 OH H 2 C OH 2. Hvis gjenværende alkylsubstituenter er større enn metyl (enten på α-karbonet eller på heteroatomet), så vil hele gruppen minus et hydrogenatom spaltes av (som nøytral). 3. I primære alkoholer gir molekylionet tap av vann (M 18). For primære alkoholer med mer enn fire karbonatomer er vanntapet ofte ledsaget av samtidig avspalting av alken - oftest eten (M-18-28). Dette gir opphav til et nytt radikalion med masse M I etere er C-O kløyving i molekylionet observert. Kløyvingen gir dannelse av et ROradikal og et karbokation. AMINER Nitrogenatomet har en sterkt dirigerende effekt, brudd i bindingen i α-posisjon til C-N bindingen er den dominerende reaksjon (avspalting av alkylradikal). Datterionet utgjør gjerne basistoppen. Et odde antall nitrogenatomer i molekylet gir molekylion med et odde massetall. Videre fragmentering skjer ved avspalting av nøytraler (alkener) fra datterionene Eksempel på fragmentering av amin: Kløyving av trietylamin. N CH 3. CH 2 CH 3 CH 2 - C 2 H H 4 N CH N 2 CH 3 CH 2 CH 3 CH C 2 H 4 H 2 N CH

I Emnekode SO 458 K. Dato: 14.12.05. (inkl. I Antall oppgaver: 5 I. Kalkulator som ikke kan kommunisere med andre Fonnelsamljng,

I Emnekode SO 458 K. Dato: 14.12.05. (inkl. I Antall oppgaver: 5 I. Kalkulator som ikke kan kommunisere med andre Fonnelsamljng, I I I I ~ høgskolen i oslo I Emne: INSTRUMENTET J, ANALYSE ra-ruppe( r) I.3KB EksamensoppgaveJL I Antall side! består av: forsiden): 9- Tillatte hjelpemidler: I Emnekode SO 458 K Dato: 14.12.05 (inkl.

Detaljer

~ høgskolen i oslo. I Emnek~e: I Faglig veileder: Per Ola Rønnin2!EkSamenstid: KB SD 458 K. SIdei-- (inkl," r Ant8II oppgaver:

~ høgskolen i oslo. I Emnek~e: I Faglig veileder: Per Ola Rønnin2!EkSamenstid: KB SD 458 K. SIdei-- (inkl, r Ant8II oppgaver: I høgskolen i oslo - --- - Ernne: I INSUft.'!EN AL Y_SE rgruppe(r): 3KB j Eksarnensoppgaven består av: I Emneke: SD 458 K I Dato: 010_3.05 SIdei-- (inkl," r Ant8II oppgaver: 9 Tillatte hjelpemidler: I

Detaljer

FLERVALGSOPPGAVER ORGANISK KJEMI

FLERVALGSOPPGAVER ORGANISK KJEMI FLERVALGSOPPGAVER ORGANISK KJEMI Hjelpemidler: Periodesystem Hvert spørsmål har et riktig svaralternativ. Når ikke noe annet er oppgitt kan du anta STP (standard trykk og temperatur). Organisk kjemi 1

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO

LØSNINGSFORSLAG UNIVERSITETET I OSLO LØSNINGSFORSLAG UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJM 1110 Organisk kjemi I Eksamensdag: 10. desember 2015 Tid for eksamen: 14:30-18:30 Oppgavesettet er på 4 sider

Detaljer

8. Ulike typer korrosjonsvern. Kapittel 10 Elektrokjemi. 1. Repetisjon av noen viktige begreper. 2. Elektrolytiske celler

8. Ulike typer korrosjonsvern. Kapittel 10 Elektrokjemi. 1. Repetisjon av noen viktige begreper. 2. Elektrolytiske celler 1 Kapittel 10 Elektrokjemi 1. Repetisjon av noen viktige begreper 2. Elektrolytiske celler 3. Galvaniske celler (i) Cellepotensial (ii) Reduksjonspotensialet (halvreaksjonspotensial) (iii) Standardhydrogen

Detaljer

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner

Detaljer

4.6 NMR og MS. H. Aschehoug & Co. side 1 av Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74

4.6 NMR og MS. H. Aschehoug & Co.  side 1 av Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74 4.6 NMR og MS 4.72 Figuren viser strukturen og 1 H-NMR-spekteret til etanal: 4.74 a Forklar hvorfor NMR-spekteret til etanal har akkurat to hovedtopper (to grupper). b Hvordan finner vi ut hvilke hydrogenatomer

Detaljer

Kjemi 2. Figur s Figurer kapittel 6: Separasjon og instrumentell analyse av organiske stoffer. Enkel destillasjonsoppsats. termometer.

Kjemi 2. Figur s Figurer kapittel 6: Separasjon og instrumentell analyse av organiske stoffer. Enkel destillasjonsoppsats. termometer. Figur s. 118 Enkel destillasjonsoppsats termometer vann ut vann inn kjøler 1 0 3 2 varmekilde oppsamling (destillat) Figur s. 119 110 Temperatur ( C) 100 enkel destillasjon 90 80 fraksjonert destillasjon

Detaljer

Kjemien stemmer KJEMI 2

Kjemien stemmer KJEMI 2 Figur s. 118 prøve kolonne pc gass ovn detektor Prinsippskisse av en gasskromatograf. Figur s. 119 % 100 90 80 CH(OH) OH OH relativ forekomst 70 60 50 40 OH OH 30 20 10 0:43 1:27 2:10 2:53 3:36 4:20 Tid

Detaljer

LEGEMIDLER OG ORGANISK KJEMI IDENTIFISERING AV AKTIVT STOFF I PARACET Elevoppgave for den videregående skolen Bruk av avansert instrumentering

LEGEMIDLER OG ORGANISK KJEMI IDENTIFISERING AV AKTIVT STOFF I PARACET Elevoppgave for den videregående skolen Bruk av avansert instrumentering LEGEMIDLER G RGANISK KJEMI IDENTIFISERING AV AKTIVT STFF I PARAET Elevoppgave for den videregående skolen Bruk av avansert instrumentering Kjemisk institutt, Universitetet i Bergen Bergen Januar 2003 (ny

Detaljer

:-Emnekode: I sa 458 K Dato: 16.02.04 (inkl.-fantall oppgaver: 5. Kalkulator som ikke kan kommunisere med andre Formelsamline

:-Emnekode: I sa 458 K Dato: 16.02.04 (inkl.-fantall oppgaver: 5. Kalkulator som ikke kan kommunisere med andre Formelsamline I høgskolen i oslo I Emne: I INSTRUMEELL ANAL y r Gruppe(r): i3ka,?kb I Eksamensoppgaven Antall sider i består av: forsiden): 6 :-Emnekode: I sa 458 K Dato: 16.02.04 (inkl.-fantall oppgaver: 5 Faglig veileder:

Detaljer

Organisk kjemi. Karbonforbindelsenes kjemi Unntak: Karbonsyre, blåsyre og saltene til disse syrene samt karbonoksidene

Organisk kjemi. Karbonforbindelsenes kjemi Unntak: Karbonsyre, blåsyre og saltene til disse syrene samt karbonoksidene Organisk kjemi Karbonforbindelsenes kjemi Unntak: Karbonsyre, blåsyre og saltene til disse syrene samt karbonoksidene Karbonets egenart Ingen andre grunnstoff har samme evne til å danne så mange stabile

Detaljer

KJM3000 vår 2014 Løsningsforslag

KJM3000 vår 2014 Løsningsforslag KJM3000 vår 2014 Løsningsforslag 1a O-H signalet forsvinner ved risting med D 2 O. Koblingskonstanten mellom de to vinylidene protonene er veldig liten og signalene fremstår som singletter. 1b 3523 cm

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

KJM3000 vår 2013 Løsningsforslag

KJM3000 vår 2013 Løsningsforslag KJM3000 vår 2013 Løsningsforslag 1a 1b De tre sp 3 -hybridiserte C-H bindingene i metylester-gruppen har strekk frekvenser i det ordinære området (under 3000 cm -1 ) for alifatisk C-H strekk. De to siste

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJM 1110 Organisk kjemi I Eksamensdag: 9. juni 2010 Tid for eksamen: 9:00-12:00 Oppgavesettet er på 4 sider + 2 sider

Detaljer

Undergrupper. Viser bindin gene mellom atomene H-atomene ved hvert C-atom skrives samlet. Den funksjonelle gruppen står for seg (oftest sist)

Undergrupper. Viser bindin gene mellom atomene H-atomene ved hvert C-atom skrives samlet. Den funksjonelle gruppen står for seg (oftest sist) Figur s. 90 Molekylformel 3 8 Antall atomer av hver type blir oppgitt Strukturformel Sammentrengt strukturformel Strekformel Systematisk navn eller Propan-1-ol 3 2 2 3 ( 2 ) 2 Viser bindin gene mellom

Detaljer

LEGEMIDLER OG ORGANISK KJEMI EKSTRAKSJON OG IDENTIFISERING AV AKTIVT STOFF I PARACET VHA GC-MS

LEGEMIDLER OG ORGANISK KJEMI EKSTRAKSJON OG IDENTIFISERING AV AKTIVT STOFF I PARACET VHA GC-MS LEGEMIDLER G RGANISK KJEMI EKSTRAKSJN G IDENTIFISERING AV AKTIVT STFF I PARAET VA G-MS Elevoppgave for den videregående skolen Bruk av avansert instrumentering Kjemisk institutt, Universitetet i Bergen

Detaljer

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er

F F. Intramolekylære bindinger Kovalent binding. Kjemiske bindinger. Hver H opplever nå å ha to valenselektroner og med det er Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

Angir sannsynligheten for å finne fordelingen av elektroner i rommet

Angir sannsynligheten for å finne fordelingen av elektroner i rommet Atom Orbitaler Angir sannsynligheten for å finne fordelingen av elektroner i rommet Matematisk beregning gir formen og orientering av s, p, d og f orbitaler Kun s og p orbitalene viktige i organisk kjemi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 19. august 2010 Tid for eksamen: 14:30-17:30 Oppgavesettet er på

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

Gjennomgang av mekanismer i organisk gk

Gjennomgang av mekanismer i organisk gk Gjennomgang av mekanismer i organisk gk Audun Formo Buene Institutt for kjemi 21. november 2013 2 Innhold Innledning Motivasjon Mekanismer Diels Alder S N 1 eller E1 eller S N 2 eller E2??? Addisjonsreaksjoner

Detaljer

Kjemien stemmer KJEMI 2

Kjemien stemmer KJEMI 2 Figur s. 90 Strukturformel Systematisk navn Begrunnelse for navn 3 2 3 3-metylbutansyre stoffet er en karboksylsyre og endelsen blir: -syre -atomet i den funksjonelle gruppen blir -atom nr. 1 og telles

Detaljer

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten Kapittel 12 Brannkjemi I forbrenningssonen til en brann må det være tilstede en riktig blanding av brensel, oksygen og energi. Videre har forskning vist at dersom det skal kunne skje en forbrenning, må

Detaljer

Kjemi 1 Årsprøve vår 2011

Kjemi 1 Årsprøve vår 2011 Kjemi 1 Årsprøve vår 2011 Tillatte hjelpemidler: Tabeller i kjemi og kalkulator. Flervalgsoppgaver Oppgave 1 omfatter flervalgsoppgavene a-y. Hver oppgave har fire svaralternativer med ett riktig svar.

Detaljer

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri 1 Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri Vandige løsninger; sterke og svake elektrolytter Sammensetning av løsninger Typer av kjemiske reaksjoner Fellingsreaksjoner (krystallisasjon)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

Kvadrupol massespektrometer

Kvadrupol massespektrometer Kvadrupol massespektrometer Ursula Gibson, Vegard Flovik, Jon Andreas Støvneng Trygve Sørgård, Grunde Wesenberg Februar 216 1 Innledning I en rekke anvendelser innen fysikk, kjemi og biologi er det avgjørende

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Løsningsforslag Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 17. august 2017 Tid for eksamen: 9:00-13:00 Oppgavesettet

Detaljer

Kosmos SF. Figur 3.2b. Figurer kapittel 5: Elektroner på vandring Figur s. 128 + + Modell av et heliumatom. Protoner

Kosmos SF. Figur 3.2b. Figurer kapittel 5: Elektroner på vandring Figur s. 128 + + Modell av et heliumatom. Protoner Figurer kapittel 5: Elektroner på vandring Figur s. 128 Elektron e p Nøytron n e Proton Modell av et heliumatom. Figur 3.2b Protoner Nøytroner Elektroner Nukleoner Elementærladning Elementærpartikler er

Detaljer

Ioniserende stråling. 10. November 2006

Ioniserende stråling. 10. November 2006 Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener

Detaljer

Løsningsforslag eksamen kjemi2 V13

Løsningsforslag eksamen kjemi2 V13 Side 1 for Vurdering Løsningsforslag eksamen kjemi2 V13 Eksamen kjemi2 våren 2013 Del 1 Oppgave 1 O har -2, K har +1, til sammen (-2)*3+1=-5, altså har Cl +5, alternativ C Fullstendig forbrenning: kun

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Løsningsforslag Eksamen i: KJM 1110 Organisk kjemi I Eksamensdag: 9. juni 2017 Tid for eksamen: 14:30-18:30 Oppgavesettet er på 4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kort løsningsforslag Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJM 1110 Organisk kjemi I Eksamensdag: 9. juni 2010 Tid for eksamen: 9:00-12:00 Oppgavesettet er

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Kvadrupol massespektrometer

Kvadrupol massespektrometer Kvadrupol massespektrometer Ursula Gibson, Vegard Flovik, Jon Andreas Støvneng Trygve Sørgård, Grunde Wesenberg Februar 2016 1 Innledning I en rekke anvendelser innen fysikk, kjemi og biologi er det avgjørende

Detaljer

Kapittel 21 Kjernekjemi

Kapittel 21 Kjernekjemi Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

Den 34. internasjonale Kjemiolympiade i Groningen, juli uttaksprøve. Fasit.

Den 34. internasjonale Kjemiolympiade i Groningen, juli uttaksprøve. Fasit. Den 34. internasjonale Kjemiolympiade i Groningen, juli 00. Oppgave 1 A) 3 B) C) 4 Oppgave 1. uttaksprøve. Fasit. D) 3 E) 4 F) 3 G) 3 H) 3 I) A) Reaksjonen er summen av de to reaksjonene lengre opp. Likevektskonstanten

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 18. august 2016 Tid for eksamen: 14:30-18:30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 18. august 2011 Tid for eksamen: 09:00-13:00 Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET.

KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET. KAPITEL 6. ALKENER: STRUKTUR OG REAKTIVITET. 1. INDUSTRIELL FREMSTILLING OG BRUK AV ALKENER. Eten og propen er de to viktigste organiske kjemikalier som produseres industrielt. Eten, propen og buten syntetiseres

Detaljer

Nano, mikro og makro. Frey Publishing

Nano, mikro og makro. Frey Publishing Nano, mikro og makro Frey Publishing 1 Nivåer og skalaer På ångstrømnivået studere vi hvordan atomer er bygd opp med protoner, nøytroner og elektroner, og ser på hvordan atomene er bundet samen i de forskjellige

Detaljer

FLERVALGSOPPGAVER KJEMISK BINDING

FLERVALGSOPPGAVER KJEMISK BINDING FLERVALGSOPPGAVER KJEMISK BINDING Hjelpemidler: periodesystem Hvert spørsmål har et riktig svaralternativ. Kjemisk binding 1 I hvilke(t) av disse stoffene er det hydrogenbindninger? I: HF II: H 2 S III:

Detaljer

3. Balansering av redoksreaksjoner (halvreaksjons metoden)

3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel 4 Oksidasjon og reduksjons reaksjoner (redoks reaksjoner) 1. Definisjon av oksidasjon og reduksjon 2. Oksidasjonstall og regler 3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel

Detaljer

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.

Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13. 1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

4. møte i økoteam Torød om transport.

4. møte i økoteam Torød om transport. 4. møte i økoteam Torød om transport. Og litt om pleieprodukter og vaskemidler Det skrives mye om CO2 som slippes ut når vi kjører bil og fly. En forenklet forklaring av karbonkratsløpet: Olje, gass og

Detaljer

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER 1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,

Detaljer

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM.

KAPITEL 2. POLARE BINDINGER OG KONSEKVENSEN AV DEM. KAPITEL 2. PLARE BIDIGER G KSEKVESE AV DEM. 1. PLARE KVALETE BIDIGER G ELEKTREGATIVITET T12 Elektronegativitet oen kjemiske bindinger er fullstendig ioniske og noen kovalente, men de fleste er polar kovalente.

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal? Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering

Detaljer

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt.

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt. Kjemisk likevekt Dersom vi lar mol H-atomer reager med 1 mol O-atomer så vil vi få 1 mol H O molekyler (som vi har diskutert tidligere). H + 1 O 1 H O Denne reaksjonen er irreversibel, dvs reaksjonen er

Detaljer

Figurer kapittel 4: Fotosyntesen: en grunnleggende oppbyggingsprosess Figur s.103

Figurer kapittel 4: Fotosyntesen: en grunnleggende oppbyggingsprosess Figur s.103 Figurer kapittel 4: Fotosyntesen: en grunnleggende oppbyggingsprosess Figur s.103 Sollys Reflektert lys Absorbert lys Transmittert lys Når sollys treffer et grønt blad, blir noen bølgelengder av lyset

Detaljer

Kromatografi (LC-MS/MS) Sandra Dahl Hormonlaboratoriet

Kromatografi (LC-MS/MS) Sandra Dahl Hormonlaboratoriet Kromatografi (LC-MS/MS) Sandra Dahl Hormonlaboratoriet Innhold Kromatografi (LC-MS) Analytter Separasjon Deteksjon Fordeler og ulemper Endokrinologiske målinger med LC-MS Utfordringer Eksempler på interferenser

Detaljer

1. UTTAKSPRØVE. til den 1. Nordiske kjemiolympiaden. i København

1. UTTAKSPRØVE. til den 1. Nordiske kjemiolympiaden. i København Kjemi OL 1. UTTAKSPRØVE til den 1. Nordiske kjemiolympiaden 2016 i København Dag: En dag i uke 40-42. Varighet: 90 minutter. Hjelpemidler: Lommeregner og Tabeller og formler i kjemi. Maksimal poengsum:

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler

FYS 3710 Biofysikk og Medisinsk Fysikk, Bindingsteori - hybridisering - molekylorbitaler FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 4 Bindingsteori - hybridisering - molekylorbitaler Einar Sagstuen, Fysisk institutt, UiO 05.09.2017 1 Biologiske makromolekyler 4 hovedtyper Kovalent Ionisk

Detaljer

Dette gir ingen informasjon om hvor en nukleofil vil angripe.

Dette gir ingen informasjon om hvor en nukleofil vil angripe. FY1006/TFY4215 Innføring i kvantefysikk Våren 2016 Molekylfysikk Løsningsforslag til Øving 13 S N 2-reaksjon. 2. a) Flate med konstant elektrontetthet for molekylet ClC3: Dette gir ingen informasjon om

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for naturvitenska og teknologi Institutt for materialteknologi TMT4112 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 13, HØST 2009 OPPGAVE 1 Ved bruk av

Detaljer

Viktige begreper fra fysikk og kjemi

Viktige begreper fra fysikk og kjemi Innhold: Viktige begreper fra fysikk og kjemi... 1 Atom... 1 Grunnstoff... 2 Periodesystemet... 2 Molekyl... 2 Kjemisk binding... 3 Kjemisk nomenklatur... 5 Aggregattilstander... 5 Fast stoff... 6 Væske

Detaljer

PlasmaMade og ren luft Hvordan selge ren luft for alle, overalt V2.0 000-11.1

PlasmaMade og ren luft Hvordan selge ren luft for alle, overalt V2.0 000-11.1 PlasmaMade og ren luft Hvordan selge ren luft for alle, overalt V2.0 000-11.1 PlasmaMade Luftfilter garanterer: Sunn luft Ren luft I rom hvor flere mennesker oppholder seg, som stuer, soverom, kontorer

Detaljer

Hvorfor studere kjemi?

Hvorfor studere kjemi? Hvorfor studere kjemi? Kjemi er vitenskapen om elektronenes gjøren og laden. For å forstå kjemi: Følg elektronene. Samtlige kjemiske reaksjoner kan deles i to hovedkategorier: 1) Redoksreaksjoner, reaksjoner

Detaljer

1. Oppgaver til atomteori.

1. Oppgaver til atomteori. 1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen

Detaljer

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25 Laboratorieøvelse Fys Ioniserende stråling Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp av en Geiger Müller(GM) detektor. Du skal studere strålingens statistiske

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen (utsatt prøve) i: KJM 1110 Organisk kjemi I Eksamensdag: 18. august 2011 Tid for eksamen: 09:00-13:00 Oppgavesettet er på

Detaljer

KAPITEL 1. STRUKTUR OG BINDINGER.

KAPITEL 1. STRUKTUR OG BINDINGER. KAPITEL 1. STRUKTUR OG BINDINGER. KAPITTEL 1. STRUKTUR OG BINDINGER. Året 1828 var, i følge lærebøker i organisk kjemi, en milepæl i utvikling av organisk kjemi. I det året fant Friedrich Wöhler (1800-1882)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Hva bør man tenke på ved valg av kromatografi som analysemetodikk. Ingeborg Amundsen 4. februar 2015

Hva bør man tenke på ved valg av kromatografi som analysemetodikk. Ingeborg Amundsen 4. februar 2015 Hva bør man tenke på ved valg av kromatografi som analysemetodikk Ingeborg Amundsen 4. februar 2015 Agenda Kromatografiske metoder Ny analysemetode- viktige spørsmål Screening/bekreftelse Ny analysemetode-hvor

Detaljer

Oppfinnelsens område. Bakgrunn for oppfinnelsen

Oppfinnelsens område. Bakgrunn for oppfinnelsen 1 Oppfinnelsens område Oppfinnelsen vedrører smelting av metall i en metallsmelteovn for støping. Oppfinnelsen er nyttig ved smelting av flere metaller og er særlig nyttig ved smelting av aluminium. Bakgrunn

Detaljer

Atomets oppbygging og periodesystemet

Atomets oppbygging og periodesystemet Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

94.1 Beskrivelse Bildet under viser hvordan modellen tar seg ut slik den står i utstillingen.

94.1 Beskrivelse Bildet under viser hvordan modellen tar seg ut slik den står i utstillingen. 94 MNETISK TV-ILDE (Rev 2.0, 08.04.99) 94.1 eskrivelse ildet under viser hvordan modellen tar seg ut slik den står i utstillingen. En gammel TV er koblet opp med antenne, slik at det mottar et program

Detaljer

FASIT til 2. UTTAKSPRØVE

FASIT til 2. UTTAKSPRØVE Kjemi OL FASIT til 2. UTTAKSPRØVE til den 41. Internasjonale Kjemiolympiaden 2009 i Cambridge, England Oppgave 1 (36 poeng, 2 poeng per deloppgave) 1) C 2) B 3) A 4) A 5) C 6) A 7) C 8) C 9) C 10) C 11)

Detaljer

BINGO - Kapittel 3. Molekylformel for metan (CH 4 ) Strukturformel for etan (Bilde side 46) Eksempel på sterk syre (Saltsyre)

BINGO - Kapittel 3. Molekylformel for metan (CH 4 ) Strukturformel for etan (Bilde side 46) Eksempel på sterk syre (Saltsyre) BINGO - Kapittel 3 Bingo-oppgaven anbefales som repetisjon etter at kapittel 3 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12. TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.

Detaljer

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler

Kjemiske bindinger. La oss demonstrere ved hjelp av eksempler Kjemiske bindinger Atomer kan bli knyttet sammen til molekyler for å oppnå lavest mulig energi. Dette skjer normalt ved at atomer danner kjemiske bindinger sammen for å få sitt ytterste skall fylt med

Detaljer

FLERVALGSOPPGAVER STØKIOMETRI

FLERVALGSOPPGAVER STØKIOMETRI FLERVALGSOPPGAVER STØKIOMETRI Hjelpemidler: Periodesystem og kalkulator Hvert spørsmål har et riktig svaralternativ. Støkiometri 1 Bestem masseprosenten av nitrogen i denne forbindelsen: (N 2 H 2 ) 2 SO

Detaljer

kvantitativ analyse ved bruk av istopfortynning eksempler på bruk av massespektrometri i rutinelaboratoriet

kvantitativ analyse ved bruk av istopfortynning eksempler på bruk av massespektrometri i rutinelaboratoriet Massespektrometri; et kraftfullt verktøy i medisinsk biokjemi i fremtiden Katja B Prestø Elgstøen Forsker II Seksjon for medfødte metabolske sykdommer Avd. medisinsk biokjemi OUS-Rikshospitalet kelgstoe@ous-hf.no

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET

FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET FLERVALGSOPPGAVER ATOMER og PERIODESYSTEMET Hjelpemidler: Periodesystem Atomer 1 Hvilket metall er mest reaktivt? A) sølv B) bly C) jern D) cesium Atomer 2 Hvilket grunnstoff høyest 1. ioniseringsenergi?

Detaljer

( ) Masse-energiekvivalens

( ) Masse-energiekvivalens Masse-energiekvivalens NAROM I klassisk mekanikk er det en forutsetning at massen ikke endrer seg i fysiske prosesser. Når vi varmer opp 1 kg vann i en lukket beholder så forutsetter vi at det er fortsatt

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU53005 Emnenavn: Naturfag 2 5-10, emne 2 Studiepoeng: 15 Eksamensdato: 20. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

ORDINÆR EKSAMEN 3. juni Sensur faller innen 27. juni 2011.

ORDINÆR EKSAMEN 3. juni Sensur faller innen 27. juni 2011. Individuell skriftlig eksamen i Naturfag 2, NA230-E ORDINÆR EKSAMEN 3. juni 2011. Sensur faller innen 27. juni 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb senest første virkedag etter sensurfrist,

Detaljer

H C H. Eksempler på organiske molekyler der C-atomene er bundet sammen i kjeder eller en ring. H H

H C H. Eksempler på organiske molekyler der C-atomene er bundet sammen i kjeder eller en ring. H H Figurer kapittel 9: rganisk kjemi Kjemi 1 Figur s. 182 l N N Eksempler på organiske molekyler der -atomene er bundet sammen i kjeder eller en ring. Eksempler på organiske molekyler der -atomene er bundet

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Hydrogen er det minste grunnstoffet. Ved vanlig trykk og temperatur er det en gass. Den finnes ikke naturlig på jorden, men må syntetiseres.

Hydrogen er det minste grunnstoffet. Ved vanlig trykk og temperatur er det en gass. Den finnes ikke naturlig på jorden, men må syntetiseres. Avsnitt 1. Brensellens virkning Hydrogen er det minste grunnstoffet. Ved vanlig trykk og temperatur er det en gass. Den finnes ikke naturlig på jorden, men må syntetiseres. Hydrogenmolekyler er sammensatt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

er små partikler i atomkjernen. Nøytronene er nøytrale, og vi bruker symbolet n for nøytronet. Nøytronet ble påvist i 1932.

er små partikler i atomkjernen. Nøytronene er nøytrale, og vi bruker symbolet n for nøytronet. Nøytronet ble påvist i 1932. Figurer kapittel 3 Elektroner på vandring Figur s. 62 Elektron e p Nøytron n e Proton Modell av et heliumatom. Protoner Nøytroner Elektroner Nukleoner er små partikler i sentrum av atomene, dvs. i atomkjernen.

Detaljer

elementpartikler protoner(+) nøytroner elektroner(-)

elementpartikler protoner(+) nøytroner elektroner(-) All materie, alt stoff er bygd opp av: atomer elementpartikler protoner(+) nøytroner elektroner(-) ATOMMODELL (Niels Bohr, 1913) - Atomnummer = antall protoner i kjernen - antall elektroner e- = antall

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

b. Gode utgående grupper, svake baser der den negative ladningen kan delokaliseres, øker hastigheten både av S N 1 og S N 2 reaksjoner.

b. Gode utgående grupper, svake baser der den negative ladningen kan delokaliseres, øker hastigheten både av S N 1 og S N 2 reaksjoner. 11.25 i 5. utgave og 11.25 i 6. utgave a. Hastigheten både av S N 1 og S N 2 reaksjoner påvirkes av bruk av polare løsningsmidler. Hastigheten S N 1 reaksjon øker fordi polare løsningsmidler stabiliserer

Detaljer

TKJ4111: Kap. 10 del 4: Reaksjoner med frie-radikaler som mellomprodukt

TKJ4111: Kap. 10 del 4: Reaksjoner med frie-radikaler som mellomprodukt TKJ4111: Kap. 10 del 4: eaksjoner med frie-radikaler som mellomprodukt C&SB kap. 10 del 4: Versjon: 11.09.2014 Forelesning: Bård elge off C&SB,Kap 10, del 4 1 O O O adikal kjemi: Kjemisk nytte: Polymerisering

Detaljer

Forelesninger i BI Cellebiologi Proteinrensing - Væskekromatografi. Figure 3-43 b

Forelesninger i BI Cellebiologi Proteinrensing - Væskekromatografi. Figure 3-43 b Proteinrensing - Væskekromatografi Figure 3-43 b Proteinrensing - Væskekromatografi Ved affinitets-kromatografi brukes en søyle med kuler som er dekket med ligander (f.eks. et enzym-substrat eller et annet

Detaljer