Laboratorieøvelse 2 N

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25"

Transkript

1 Laboratorieøvelse Fys Ioniserende stråling Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp av en Geiger Müller(GM) detektor. Du skal studere strålingens statistiske natur, måle absorbsjon av stråling i bly, måle doserate og bestemme halveringstiden til et radioaktivt stoff. GMdetektorer er et forholdsvis enkelt apparat og er spesielt mye brukt i strålevern. Du kan lese mer om GM detektorer i slutten av oppgaven. Forhåndsoppgave. Les om GM detektorer og svar på spørsmålene: a. Vi har tre typer radioaktiv stråling, α, β og stråling. Hva består denne strålingen av? b. Hvorfor er det tykke vegger i et noen GM rør, og tynne vegger i andre? c. Hvorfor må strålekilden plasseres tett inntil vinduet når vi skal registrere α og β partikler? d. Hvor stor andel av kvantene blir registrert i et GM rør?. En GM detektor registrer først bakgrunnsstrålingen i et laboratorium. Den står på i 4 minutter og registrerer i løpet av denne tida 3 partikler i bakgrunnsstrålingen. Hvor stor er bakgrunnsstrålingen målt i Bq? 3. Nå lar vi GM detektoren registrere aktiviteten fra et radioaktivt stoff. Vi leser av aktiviteten hvert itende sekund og får: Tid/s N Lag en ny tabell der du korrigerer målingene for bakgrunnsstrålingen og regner om til enheten Bq for aktiviteten. Tegn aktiviteten som funksjon av tida i et A t diagram og trekk en utjevningskurve. Drøft plasseringen av punktene på t aksen. (Det er jo ikke rimelig å plassere den første verdien på sekundersmerket det er en middelverdi for de ti første sekundene). 4. Bestem halveringstida for stoffet ved å foreta avlesninger på kurven. (Oppgave 4 er hentet fra Rom Stoff Tid forkurs studiebok da studieboka til vårt læreverk ikke ble klar fra trykkeriet i tide).

2 Oppgave. Absorbsjon av stråler i bly Vi er til enhver tid omgitt av stråling. Inne kommer strålingen hovedsakelig fra vegger og tak, men også noe fra kosmisk stråling. Dette kaller vi bakgrunnstråling. Dersom vi ikke kan skjerme laboratorietutstyret for bakgrunnstrålingen, må vi korrigere for den. Figur Blykammer til venstre, med blyplater foran GM røret. I denne oppgaven skal du starte med å måle bakgrunnstrålingen. Apparatoppstilingen skal være så lik selve måleoppstillingen som mulig. Selve kilden som benyttes er plassert inne i et blykammer. Start forsøket med blykammeret lukket og med alle blyplatene plassert mellom blykammeret og GM røret. Spenningen på røret skal være ca. 6 V. Den strålingen du nå måler er bakgrunnstrålingen. Mål den i minutter, og bestem telleraten, n b (antall treff per sekund) for bakgrunnstrålingen. I selve forsøket måler du strålingen fra kilden med blykammeret åpent. Se figur. Avstanden mellom GM røret og kilden må ikke forandres, og det må være plass til alle blyplatene mellom dem. Mål telleraten ved å måle telletiden for tellinger. Gjør dette for forskjellig antall blyplater, først uten, så med, deretter med etc. Finn telleraten n fratrukket bakgrunnstrålingens tellerate n b for forskjellig antall blyplater. Legg de målte verdiene inn i en tabell. Tilpass en eksponentialfunksjon og bestem svekkingskoeffisienten µ i uttrykket z n' nn n e b der z er lik tykkelsen av antall blyplater (dvs. antall plater ganger tykkelsen av en plate) og n b n er bakgrunnstelleraten. Beregn den verdien av z som gir n '. Hva har du funnet ut nå? Legg verdiene for n og z inn i et koordinatsystem der du velger z langs førsteaksen og lnn langs andreaksen. Tilpass en rett linje og bruk denne til å bestemme svekkingskoeffisienten µ. Trenger du hjelp med matematikken, så finner du litt tilleggsstoff mot slutten av laboratorieoppgavene.

3 Oppgave. Halveringstid Vi skal bestemme halveringstiden til Pa 34. Selve forsøket skal utføres av en veileder av sikkerhetsmessige grunner. Du skal bruke dataene som fremkommer.. Mål bakgrunnsstrålingen.. Plasser GM røret over stålkaret som innholder en væske med Pa Avles telleraten hvert. sekund i ca. 5 minutter. 4. Lag en tabell med alle målingene: totaltelling, bakgrunnsstrålingen og korrigert telling. 5. Tegn en graf som viser aktiviteten (korrigert telling) som funksjon av tida, og bruk grafen til å bestemme halveringstiden til Pa 34. Tips: Når du skal lese av halveringstid bør du sammenlikne med tabellverdien. Husk at du ikke nødvendigvis har den første målingen din ved tiden t. Hvis du måler aktiviteten n ved tiden t og så finner at aktiviteten er halvert ved tiden t, blir halveringstiden t/ t t Oppgave 3. Vurdering av stråledose Mål doseraten i et punkt som ligger,5 m fra en 37 Cs kilde med en aktivitet på (ca.) MBq (vi bruker egentlig to kilder som til sammen gir denne aktiviteten). Gi et overslag over den stråledose du ville motta hvis du befant deg i dette punktet i time. Sammenlign denne dosen med ICRPs anbefalte grenser for årsdose. Forklar forskjellen mellom begrepen dose og doserate. Litt hjelp med matematikken Logaritmereglene ln( ab ) ln aln b a ln ln a ln b b x ln a x ln a I tillegg kan det være greit å huske at ln ln e 3

4 Eksempel med halveringstid: Vi har likningen n' n e t. n Når antall radioaktive atomer er halvert, er n ' n t n e Vi deler med n på begge sider og forkorter og får e t Ta den naturlige logaritmen på begge sider t ln ln( e ) lnln t ln e ln t (husk at ln og ln e) t ln Eksempel med plot av eksponentialfunksjon Du har en eksponentialfunksjon på formen y a e. Ta logaritmen på begge sider: ln y ln( ae ) ln aln e ln a Hvis du legger inn lny langs andreaksen ser du at du får en rett linje som skjærer y aksen i lna og har b som stigningstall. Litt om GM detektorer En GM detektor består av et GM rør tilkoblet en spenningskilde og en pulsteller. GMdetektorer er vanligvis laget slik at rør, spenningskilde og pulsteller (med display") er laget som en kompakt enhet. I vårt tilfelle er røret en enhet for seg, og alle elektroniske funksjoner er samlet i en boks". Det finnes flere typer detektorer for måling av ioniserende stråling. Disse har forskjellige egenskaper, og har forskjellige formål. GM røret er en enkel variant av typen ionisasjonskammer. Figur på neste side viser et skjematisk snitt. Røret består av et sylinderformet ledende materiale med en lineær anode langs sylinderaksen. Anoden er ført inn i røret gjennom en elektrisk isolert endevegg, og har positiv spenning (gjerne noen hundre volt) i forhold til rørveggen. Røret inneholder en gass med lavt trykk. En ioniserende partikkel som går gjennom gassen vil, når den kolliderer med gassmolekyler, produsere elektroner og positive ioner. Elektronene trekkes inn mot anoden, men støter stadig mot gassmolekyler. Et eneste elektron er ikke nok til å lage en registrerbar puls, men i GM røret er feltet ved anoden så 4

5 sterkt at hvert elektron utløser et skred av nye elektroner ved støtene. For hver enkelt ioniserende partikkel som er kommet inn i kammeret får vi derfor en kort ladningspuls som er stor nok til å kunne registreres elektronisk med en tilkoblet pulsteller. Pulsens størrelse er uavhengig av den opprinnelige strålepartikkels energi. En GMdetektor forteller oss derfor bare at det har kommet et ioniserende kvant, og ikke hva kvantets energi er. For måling av kvantenes energi bruker vi andre typer detektorer. Figur Skjematisk snitt gjennom to GM rør. Det øverste har et tynt endevindu der ladde partikler (α og β partikler) kan trenge igjennom. Det nederste har bare tykke vegger, og brukes derfor utelukkende for måling av stråling. All stråling som lager ioner i gassen i røret vil bli registrert. α og β partikler må trenge inn i GM røret med tilstrekkelig energi til å ionisere gassmolekyler. Siden α og β partikler har kort rekkevidde i materie, må GM røret ha en tynn vegg (vindu). Samtidig må strålekilden plasseres tett inntil vinduet. Alle ladde partikler som kommer inn blir registrert. GM røret er altså meget følsomt for partikkelstråling. kvanter derimot har lang midlere fri veilengde i gassen, og vil lage langt færre ioner i gassen. For å bli registrert må et kvant først slå løs et elektron, noen ganger også i rørveggen, så nær den indre veggflaten at elektronet kommer inn i røret og ioniserer gassen. De fleste kvanter går derfor gjennom røret uten å bli registrert. Sannsynligheten for at et kvant som passerer gjennom telleren skal bli registrert (effektiviteten) er av størrelsesorden %. I stedet for å registrere pulsene med en pulsteller kan vi la ladningspulsene lade opp en kondensator som hele tiden utlades igjen gjennom en stor motstand. Strømmen gjennom motstanden blir da proporsjonal med pulsraten (antall ladningspulser pr. sekund), vi sier at kondensatoren og motstanden virker som en differensiator. Et slikt instrument kalles et dosimeter. Instrumentet som benyttes i denne oppgaven kan opereres enten som pulsteller eller som dosimeter. Kommersielle GM detektor har også ofte en liten høyttaler som gir et knepp" for hver puls (og som gjerne brukes i audiovisuelle skrekk og advarsel" reportasjer om stråling). 5

Laboratorieøvelse 2 - Ioniserende stråling

Laboratorieøvelse 2 - Ioniserende stråling Laboratorieøvelse 2 - Ioniserende stråling FYS1000, Fysisk institutt, UiO Våren 2014 (revidert 21. april 2016) Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp

Detaljer

Gammastråling. Nicolai Kristen Solheim

Gammastråling. Nicolai Kristen Solheim Gammastråling Nicolai Kristen Solheim Abstract Med denne praktiske øvelsen ønsker vi å gjøre oss kjent med Geiger-Müller-telleren og gammaspektroskopi. Formålet for GM-telleren er å se på statistisk spredning,

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

Elektriske kretser. Innledning

Elektriske kretser. Innledning Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig

Detaljer

Sensorveiledning BRE 103 del 3, Strålefysikk, strålevern og apparatlære. 3. juni 2010.

Sensorveiledning BRE 103 del 3, Strålefysikk, strålevern og apparatlære. 3. juni 2010. Sensorveiledning BRE 103 del 3, Strålefysikk, strålevern og apparatlære. 3. juni 2010. Til sammen 100 poeng, 26 spørsmål. Oppgave 1 2 Figur 1 a) Figur 1 viser en prinsippskisse av en røntgengenerator.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

5:2 Tre strålingstyper

5:2 Tre strålingstyper 58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

D i e l e ktri ku m (i s o l a s j o n s s to ff) L a d n i n g i e t e l e ktri s k fe l t. E l e ktri s ke fe l tl i n j e r

D i e l e ktri ku m (i s o l a s j o n s s to ff) L a d n i n g i e t e l e ktri s k fe l t. E l e ktri s ke fe l tl i n j e r 1 4.1 FELTVIRKNINGER I ET ELEKTRISK FELT Mellom to ledere eller to plater med forskjellig potensial vil det virke krefter. Når ladningen i platene eller lederne er forskjellige vil platene tiltrekke hverandre

Detaljer

1 Leksjon 8: Kosmisk stråling og radioaktiv datering

1 Leksjon 8: Kosmisk stråling og radioaktiv datering Innhold 1 LEKSJON 8: KOSMISK STRÅLING OG RADIOAKTIV DATERING... 1 1.1 EKSEMPEL PÅ RADIOAKTIV DATERING... 2 1.2 RADIOAKTIVITET OG HALVERINGSTID... 3 1.3 ENERGISKJEMAET FOR CS-137... 4 1.4 RADIOAKTIV DATERING...

Detaljer

Kan man stole på skolesensorer på Byåsen VGS?

Kan man stole på skolesensorer på Byåsen VGS? Kan man stole på skolesensorer på Byåsen VGS? Introduksjon: Radioaktivitet er et fenomen som ofte kan skape mutasjoner i cellene i menneskekroppen. Det fører igjen videre til diverse sykdommer som forskjellige

Detaljer

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner

Detaljer

Løsningsforslag til prøve i fysikk

Løsningsforslag til prøve i fysikk Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

Fysikkonkurranse 1. runde 6. - 17. november 2000

Fysikkonkurranse 1. runde 6. - 17. november 2000 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100

Detaljer

INNHOLD. Radiobølger..3 Omvandlere..7 Oscillator...12 Modulasjon. 14 Sender og mottaker..17 Elektronrør...20 Oscilloskop..25 TV..

INNHOLD. Radiobølger..3 Omvandlere..7 Oscillator...12 Modulasjon. 14 Sender og mottaker..17 Elektronrør...20 Oscilloskop..25 TV.. 1 INNHOLD Radiobølger..3 Omvandlere..7 Oscillator.....12 Modulasjon. 14 Sender og mottaker..17 Elektronrør....20 Oscilloskop..25 TV..26 Oppgaver 28 2 Radio Antenne-ledning Radiobølger Sendinger produseres

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 3. mai 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar / Privatister Oppgåva ligg føre

Detaljer

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234.

KOSMOS. 10: Energirik stråling naturlig og menneske skapt Figur side 304. Uran er et radioaktivt stoff. Figuren viser nedbryting av isotopen uran-234. 10: Energirik stråling naturlig og menneske skapt Figur side 304 -partikkel (heliumkjerne) Uran-234 Thorium-230 Radium-226 Radon-222 Polonium-218 Bly-214 Nukleontall (antall protoner og nøytroner) Uran

Detaljer

Kan du se meg blinke? 6. 9. trinn 90 minutter

Kan du se meg blinke? 6. 9. trinn 90 minutter Lærerveiledning Passer for: Varighet: Kan du se meg blinke? 6. 9. trinn 90 minutter Kan du se meg blinke? er et skoleprogram der elevene får lage hver sin blinkende dioderefleks som de skal designe selv.

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Del Oppgave a) Deriver funksjonene ) ln ) g x f x x x 3e x b) Bestem følgende grenseverdi, dersom den eksisterer:

Detaljer

FYS 2150.ØVELSE 18 GAMMASTRÅLING

FYS 2150.ØVELSE 18 GAMMASTRÅLING FYS 2150.ØVELSE 18 GAMMASTRÅLING Fysisk institutt, UiO 18.1 Geiger-Müller-telleren 18.1.1 Geiger-Müller-tellerens oppbygning og virkemåte En GM-detektor består av et sylindrisk rør av et ledende materiale

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk /kjemi stråling del 2

FYS 3710 Biofysikk og Medisinsk Fysikk, Strålingsfysikk /kjemi stråling del 2 FYS 3710 Biofysikk og Medisinsk Fysikk, 2017 9 Strålingsfysikk /kjemi stråling del 2 Einar Sagstuen, Fysisk institutt, UiO 25.09.2017 1 IONISERENDE STRÅLING Elektromagnetisk Partikkel Direkte ioniserende

Detaljer

Fasiter til diverse regneoppgaver:

Fasiter til diverse regneoppgaver: Fasiter til diverse regneoppgaver: Ukeoppgavesett 5 Forelesning 9 Ukeoppgavesett 8 Co-59+n Co-60 Halveringstida til Co-60 er 5,3 år Det bestråles med nøytroner til Co-60 aktiviteten er 1 Ci. Hvor mange

Detaljer

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON

FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON FYS 2150.ØVELSE 17 BRAGGDIFFRAKSJON Fysisk institutt, UiO 17.1 Røntgenstråling 17.1.1 Bremsestråling og karakteristisk stråling Røntgenstråling er elektromagnetisk stråling med bølgelengde i området 10

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (16 poeng) a) Vi har to punkter A ( 2, 5) og ( 4,3) B i et koordinatsystem. 1) Finn AB. 2) Regn ut avstanden fra A til B. b) Ovenfor har vi tegnet a og b. La 1 c= a b.

Detaljer

FYS 2150.ØVELSE 18 GAMMASTRÅLING

FYS 2150.ØVELSE 18 GAMMASTRÅLING FYS 2150.ØVELSE 18 GAMMASTRÅLING Fysisk institutt, UiO 18.1 Geiger-Müller-telleren 18.1.1 Geiger-Müller-tellerens oppbygning og virkemåte En GM-detektor består av et sylindrisk rør av et ledende materiale

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2013) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

FYSnett Grunnleggende fysikk 17 Elektrisitet LØST OPPGAVE

FYSnett Grunnleggende fysikk 17 Elektrisitet LØST OPPGAVE LØST OPPGAVE 17.151 17.151 En lett ball med et ytre belegg av metall henger i en lett tråd. Vi nærmer oss ballen med en ladd glasstav. Hva vil vi observere? Forklar det vi ser. Hva ser vi hvis vi lar den

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt Kondensator - apacitor Lindem 3. feb.. 007 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i arad. Som en teknisk definisjon kan vi

Detaljer

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131 Stråling og radioaktivitet Nordlys Figur side 131 Antallet solflekker varierer med en periode på ca. elleve år. Vi hadde et maksimum i 2001, og vi venter et nytt rundt 2011 2012. Stråling og radioaktivitet

Detaljer

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger.

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger. ON Lommeregnerstoff Texas 4.1 Rette linjer Her viser vi hvordan vi går fram for å få tegnet linja med likningen y = 2x 3 Vi trykker på Y= og legger inn likningen som vist nedenfor. Nå må vi velge vindu.

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Laboratorieøvelse 3 - Elektriske kretser

Laboratorieøvelse 3 - Elektriske kretser Laboratorieøvelse 3 - Elektriske kretser FYS1000, Fysisk institutt, UiO Våren 2014 (revidert 15. april 2016) Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans.

Detaljer

Elektrodesveising. Lysbuen oppstår i luftgapet mellom elektroden og arbeidsstykket. Det mest vanlige er å bruke likestrøm ved elektrodesveising.

Elektrodesveising. Lysbuen oppstår i luftgapet mellom elektroden og arbeidsstykket. Det mest vanlige er å bruke likestrøm ved elektrodesveising. Elektrodesveising Elektrodesveising blir kalt: 1. MMA-sveising = Manual Metal Arc (norsk: manuell metallbuesveising) 2. Pinnesveising. 3. Elektrisk lysbuesveising. Lysbuen oppstår i luftgapet mellom elektroden

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

A = dn(t) dt. N(t) = N 0 e γt

A = dn(t) dt. N(t) = N 0 e γt 1 Radioaktivitet I generell kjemi er det vanlig å tenke på grunnstoffene som separate former for materie, men det er viktig å huske at et grunnstoff kan bli til et annet grunnstoff gjennom kjernekjemiske

Detaljer

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker.

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. Bestem sannsynligheten for at én gutt og én jente møter

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

12 Halvlederteknologi

12 Halvlederteknologi 12 Halvlederteknologi Innhold 101 Innledende klasseaktivitet 102 Størrelsen på et bildepunkt E 103 Lysdioder EF 104 Temperatursensorer EF 105 Solpanel EF 201 i undersøker et solcellepanel 202 i kalibrerer

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen

Ionometri. Dosimetriske prinsipper illustrert ved ionometri. Forelesning i FYSKJM4710. Eirik Malinen Dosimetriske prinsipper illustrert ved ionometri Forelesning i FYSKJM4710 Eirik Malinen Ionometri Ionometri: kunsten å måle antall ionisasjoner i f.eks. en gass Antall ionisasjoner brukes som et mål på

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1 FYS 1010 Miljøfysikk Oppgavesett 6 Oppgave 1 a) Massen til 1 mol Po-210 er 210 g. Antall atomer i 1 mol er N A = 6.023 10 23. Antall atomer: N = N A (5 10-6 g) / (210 g/mol) = 1.43 10 16 1.4 10 16 Den

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6 Delprøve 1 OPPGAVE 1 a) Deriver funksjonen ( ) = + 3 f x 3x x 7 b) Bestem den gjennomsnittlige veksthastigheten til funksjonen f( x ) = 3 x fra x = 0 til x = 3. c) Skriv så enkelt som mulig x 3 + x 9 3x

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Kilde: www.clipart.com 1 Funksjoner. Lærerens ark Hva sier læreplanen? Funksjoner Mål for opplæringen er at eleven skal kunne

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

Ioniserende stråling. 10. November 2006

Ioniserende stråling. 10. November 2006 Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Strålenes verden! Navn: Klasse:

Strålenes verden! Navn: Klasse: Strålenes verden! Navn: Klasse: 1 Kompetansemål etter Vg1 studieforberedende utdanningsprogram Forskerspiren Mål for opplæringen er at eleven skal kunne planlegge og gjennomføre ulike typer undersøkelser

Detaljer

BINGO - Kapittel 6. Når et stoff går fra. Når et stoff går fra fast stoff til væske (smelte) To eller flere atomer som henger sammen (molekyl)

BINGO - Kapittel 6. Når et stoff går fra. Når et stoff går fra fast stoff til væske (smelte) To eller flere atomer som henger sammen (molekyl) BINGO - Kapittel 6 Bingo-oppgaven anbefales som repetisjon etter at kapittel 6 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

2P kapittel 2 Modellering Utvalgte løsninger oppgavesamlingen

2P kapittel 2 Modellering Utvalgte løsninger oppgavesamlingen P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Av tabellen ser vi at y minker like mye hver gang x øker med 1. Tallene passer derfor med en lineær funksjon. b Hver gang x øker med 1, minker

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Kort norsk manual Hvordan komme i gang:

Kort norsk manual Hvordan komme i gang: Kort norsk manual Hvordan komme i gang: Det første du må gjøre er å laste inn et skip i programmet. Det gjør du ved å velge Open under File -menyen. Fra underkatalogen Ships Database velger du et skip,

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Gamma (radioaktiv) basert tetthetsmåling Av Rolf Skatvedt, Intertek West Lab AS

Gamma (radioaktiv) basert tetthetsmåling Av Rolf Skatvedt, Intertek West Lab AS Fra Styret: Styret hadde sitt første møte i denne perioden den 4. juni i Bergen. Lise Sletta Pettersen og Rolf Skatvedt ønskes velkommen som nye styremedlemmer. Styret vil også takke alle bidragsytere

Detaljer

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt.

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt. Del1 Oppgave 1 a) Deriver funksjonen f ( ) 5e b) Deriver funksjonen g ( ) ln(2 ) 2 c) Likningen 2 10 2 10 0 hartreløsninger.visat1 1erenløsningogfinn detoandre. d) Skrivsåenkeltsommulig lg ab 2 lg 1 ab

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et skoleår. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1

Detaljer

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999 E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 (ny læreplan) Elever og privatister 28. mai 1999 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

12 Areal. Vekst under grafer

12 Areal. Vekst under grafer 12 Areal. Vekst under grafer 1 a) Framstill denne funksjonen grafisk: f(x) = 3x + 2 b) Regn ut f(4) og f(3). f (4) f (3) Regn deretter ut. Forklar hva du finner ut. 4 3 f (5) f (2) c) Regn ut. Kommenter

Detaljer

Lysdetektorer. Kvantedetektor. Termisk detektor. Absorbsjon av fotoner: Kvanterespons Termisk respons. UV MIR Fotoeffekt (Einstein, Nobelpris 1921)

Lysdetektorer. Kvantedetektor. Termisk detektor. Absorbsjon av fotoner: Kvanterespons Termisk respons. UV MIR Fotoeffekt (Einstein, Nobelpris 1921) Lysdetektorer Rekombinerer varme Absorbsjon av fotoner: Kvanterespons Termisk respons Kvantedetektor UV MIR Fotoeffekt (Einstein, Nobelpris 1921) Termisk detektor MIR FIR 1 Fotoeffekt (kvantedetektorer)

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Del 1 - Uten hjelpemidler

Del 1 - Uten hjelpemidler Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x

Detaljer

OHMS LOV og grunnopplæring i bruk av datalogging.

OHMS LOV og grunnopplæring i bruk av datalogging. Laboratorieøvelse 1 i FY1003 - Elektrisitet og magnetisme Vår 010 Fysisk Institutt, NTNU OHMS LOV og grunnopplæring i bruk av datalogging. Hensikten med oppgaven er å bli fortrolig med bruken av ett datalogging-

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

Terminprøve i matematikk for 10. trinn

Terminprøve i matematikk for 10. trinn Terminprøve i matematikk for 10. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Den franske fysikeren Charles de Columb er opphavet til Colombs lov.

Den franske fysikeren Charles de Columb er opphavet til Colombs lov. 4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes

Detaljer

Brukermanual for RadioLink base

Brukermanual for RadioLink base Brukermanual for RadioLink base For din sikkerhet, vennligst ta vare på denne manualen RadioLink-base for trådløs kommunikasjon- 230V MODELL: PXB-BASEwAC El nummer 6230202 RadioLINK basen sender radiosignal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

EKSAMENSOPPGAVE I FYS-1002

EKSAMENSOPPGAVE I FYS-1002 Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:

Detaljer

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Dette er en tese som handler om egenskaper ved rommet og hvilken betydning disse har for at naturkreftene er slik vi kjenner dem. Et

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Fys 1010 Miljøfysikk FASIT Oppgavesett 10

Fys 1010 Miljøfysikk FASIT Oppgavesett 10 Fys 1010 Miljøfysikk FASIT Oppgavesett 10 FASIT oppgave 8 Den 7. april 1989 sank den sovjetiske u-båten Komsomolets i nærheten av Bjørnøya. Da u-båten sank inneholdt den 3,1 10 15 Bq av Cs-137 og 2,8 10

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av skoleåret. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1 1

Detaljer

Eksempelsett 2P, Høsten 2010

Eksempelsett 2P, Høsten 2010 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.

Detaljer