Nukleinsyrer basal innføring

Like dokumenter
Flervalgsoppgaver: proteinsyntese

Medisin stadium 1A Geir Slupphaug, IKM. Den eukaryote cellen I

Den eukaryote cellen I. Prokaryote celler

Flervalgsoppgaver: Arvestoffet

Introduksjon til Biokjemi. Ingar Leiros, Institutt for Kjemi, UiT

Kapittel 14: Det eukaryote genom og dets uttrykksregulering

Ulike former for DNA-replikasjon. DNA er selv templat for replikasjon. Meselson og Stahls eksperiment (1958) I løpet av cellens

FYS3710 Molekylærbiologi

ML-208, generell informasjon

Grunnleggende cellebiologi

Hovedområde: Bioteknologi Eksamensoppgaver fra skriftlig eksamen Naturfag (NAT1002).

Bioteknologi i dag muligheter for fremtiden

DNA replikasjon. Hovedvekt på prosesser i eukaryote celler. Dannelse av primere og Okazaki-fragment

GENTEKNOLOGISK ARBEID MED NAKENT DNA

DNA-replikasjon. DNA-replikasjon. Viktige punkt (repetisjon) Replikasjon foregår i replikasjonsfabrikker. Vil bli gjennomgått: I løpet av cellens

LEKSJON 4: BIOTEKNOLOGI HVORDAN VI BRUKER NATURENS EGNE MEKANISMER TIL VÅR FORDEL, OG UTFORDRINGENE SOM FØLGER MED

Oppgave 2b V1979 Hvor i cellen foregår proteinsyntesen, og hvordan virker DNA og RNA i cellen under proteinsyntesen?

Foreleser: Eivind Coward, kontor 5. etg. Datablokken. Gruppeleder: Harald Barsnes

Naturfag for ungdomstrinnet

DNA - kroppens byggestener

DNA-replikasjon. DNA-replikasjon. Viktige punkt (repetisjon) Replikasjon foregår i replikasjonsfabrikker. Vil bli gjennomgått: I løpet av cellens

ML-208, generell informasjon

Figurer kapittel 8: Bioteknologi Figur s

Kap 12. Det eukaryote kromosom. En organelle for pakking og styring av DNA

I løpet av cellens. fordobles. Dette skjer i S- (syntese-)fasen i cellesyklus. Selve prosessen kalles. DNA-replikasjon

1. En ikke-naturlig forekommende eller konstruert sammensetning omfattende:

Kapittel 12: FRA DNA TIL PROTEIN:

FYS 3710 Biofysikk og Medisinsk Fysikk, DNA, RNA, Translasjon, Transkripsjon Proteinsyntese, Cellesyklus

Epigenetikk; arvesynden i ny innpakning? Dag O. Hessen University of Oslo, Dept. Biology Center of Ecological and Evolutionary Synthesis (CEES)

Institutt for biologi Faglig kontaktperson under eksamen: Berit Johansen ( ) EKSAMEN I: BI1001 Celle- og molekylærbiologi BOKMÅL

Kosmos SF. Figurer kapittel 8: Den bioteknologiske tidsalderen Figur s. 234 BIOTEKNOLOGI. Næringsmiddelindustri. Landbruk.

Hvordan standardisere en metode for isolering av plasmid til syntese av diabetes antigener?

Examination paper for Bi2014 Molecular Biology

4260 Mikrobiologi. Midtprøveoppgaver. 02. oktober 2013

Kosmos SF. Figurer kapittel 8 Den biologiske tidsalderen Figur s. 214 BIOTEKNOLOGI. Næringsmiddelindustri. Landbruk. Akvakultur

DNA-replikasjon. Dannelse av primere og Okazaki-fragment Koordinering av DNA-syntesen i leading og lagging strand

Amplifikasjonsteknikker - andre metoder

Genfeil i kreftsvulster nøkkelen til en mer persontilpasset behandling?

Sammenligningen mellom Arabidopsis thaliana genomet og de kjente genomene fra cyanobakterier, gjær, bananflue og nematode, viser bl. a.

Preanalyse. Kurs i Molekylærpatologi Oslo, juni 2017

Faglig kontaktperson under eksamen: Jens Rohloff (mob )

I lys av akkreditering Overgang fra Sanger sekvensering til dypsekvensering innen genetisk sykdomsdiagnostikk

FLERVALGSOPPGAVER - CELLEBIOLOGI

... Proteiner og enzymer. kofaktor. polypeptid

2. Fremgangsmåten ifølge krav 1, hvori dsrna-duplekset har en lengde fra 8 basepar (bp) ti 30 bp.

UNIVERSITETET I OSLO

EKSAMENSOPPGAVE I BI1001 CELLE- OG MOLEKYLÆRBIOLOGI

Kokeboka, oppskriften og kirsebærpaien

Født sånn eller blitt sånn: om gener, søppel-dna og epigenetikk

FLERVALGSOPPGAVER GENETIKK

Reproduksjon av dyrevirus. Adsorpsjon Penetrasjon og avkledning Replikasjon og transkripsjon Syntese og samling (assembly) av viruskapsid Frigjøring

Reproduksjon av dyrevirus. Adsorpsjon Penetrasjon og avkledning Replikasjon og transkripsjon Syntese og samling (assembly) av viruskapsid Frigjøring

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

Metode for å kartlegge DNA-et og båndmønsteret det har. Brukes for å kartlegge slektskap eller identifisere individer innenfor rettsmedisin.

BI Celle- og molekylærbiologi

Holder cytoplasmaet på plass. Regulerer transporten inn i og ut av cellen og har kontakt med naboceller.

FLERVALGSOPPGAVER BIOTEKNOLOGI

Fasit til oppgavene. K-skallet L-skallet M-skallet

Den komplette DNA sekvens fra en organisme.

Immunstimulanter for potensiering av torskens naturlige immunsystem

Forelesninger i BI Cellebiologi. Protein struktur og funksjon - Kap. 3

Luftveisinfeksjoner - PCR-basert diagnostikk. Anne-Marte Bakken Kran Overlege, førsteamanuensis Mikrobiologisk avd. UOS Ullevål

BIOS 2 Biologi

Basepar i DNA. TFY4215 Kjemisk fysikk og kvantemekanikk Våren 2006 Kjemisk fysikk Øving 3 Innleveringsfrist, gruppe 1: gruppe 2:

NORGES TEKNISK-NATURVITENSKAPELIG UNIVERSITET Side 1 av 5 INSTITUTT FOR FYSIKK. EKSAMEN I FAG CELLEBIOLOGI 1 august 1997 Tid: kl

Eksamensoppgave i BI1001 Celle og Molekylærbiologi

Forelesninger i BI Cellebiologi Proteinrensing - Væskekromatografi. Figure 3-43 b

GENER, genregulering, og genfamilier

Frå DNA til Protein. Medisin stadium IA, 9. september Astrid Lægreid

EKSAMENSOPPGAVE I BI1001 CELLE- OG MOLEKYLÆRBIOLOGI

for overlevelse, men med risiko for kreft Fagdagene 10. juni 2010, Bodil Kavli

Medisin stadium 1c Geir Slupphaug, IKM Regulering av genuttrykk

Institutt for biologi Faglig kontaktperson under eksamen: Berit Johansen, EKSAMEN I: BI1001 Celle- og molekylærbiologi BOKMÅL

FLERVALGSOPPGAVER I NATURFAG

Nye genetiske metoder for en mer effektiv overvåkning av giftproduserende cyanobakterier

EKSAMENSOPPGAVE I BI1001 CELLE- OG MOLEKYLÆRBIOLOGI

1. Medfødt og ervervet immunitet. Karl Schenck, V2015

Bare et fåtall av genene uttrykkes i hver celle

PBM 233 Mikrobiologi for farmasøyter

Utvikling av molekylære metoder

Klipp og lim: Genredigering med CRISPR teknologi

GRUNNLEGGENDE GENETISKE BEGREPER Del I - en serie om kattegenetikk

Cellebiologiske prosesser som respons på virusinfeksjon

Oncogenic Mutations Affecting Cell Proliferation

Basepar i DNA. TFY4215 Innføring i kvantefysikk Øving 13 Molekylfysikk

Repetisjonsoppgaver samling 1 Cellen

Naturfag for ungdomstrinnet Celler

Kapittel 16 Utvikling: differensielt genuttrykk

Hvordan klarer organismer å vedlikeholde arvematerialet?

Molekylær patologi Amplifikasjonsmetoder

Universitetet i Oslo

RNA interferens et nyoppdaget immunforsvar og et nytt genteknologisk verktøy

Oppgave: MED1100-3_OPPGAVE4_H17_ORD

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITETET

TBT4170 Bioteknologi Eksamensnotater. Audun F. Buene

Avl for auka produktivitet. QTL som nytt hjelpemiddel i avlsarbeidet.

Transkript:

Nukleinsyrer basal innføring (+ Noen sentrale teknikker og analysemetoder) Geir Slupphaug, Institutt for kreftforskning og molekylærmedisin

Litt historikk DNA ble først isolert av Johannes F. Miescher ca 1870, som fant en svak syre kalt «nuklein» i kjerner fra hvite blodceller. Kjemisk analyse av nukleinet viste at det inneholdt betydelige mengder fosfor, og derfor ikke passet inn i noen av de hittil kjente stoffgruppene Noen år greide Meischer å skille nuklein i en protein- og en nukleinsyredel

Litt historikk I 1866 postulerte Ernst Haeckel postulert at cellekjernen inneholdt arvematerialet. Meischer foreslo at nukleinsyrene kunne være involvert i arv. Han gikk senere bort fra denne teorien I 1879 observerte Walther Fleming filamenter i cellekjerner som lot seg farge med basofile farger. Han kalte disse strukturene kromatin, senere kjent som kromosomer Rundt 1900 var det kjent at DNA inneholdt sukker, fosfat og fire heterosykliske baser (A,T,C og G). Phoebus Levene viste ca 1910 at disse komponentene var ordnet som rekker av nukleotider. Han oppdaget også ribose og deoksyribose Han trodde imidlertid at maksimal lengde av et DNAmolekyl var 4 nukleotider, og postulerte derfor at DNA ikke kunne være bærer av genetisk informasjon

Litt historikk I 1928 publiserte Frederick Griffith sitt eksperiment som viste at bakterier (Streptococcus pneumoniae) kunne transformeres Griffith konkluderte at et «transforming principle» fra de drepte bakteriene transformerte nonvirulente bakterene.

Litt historikk I 1944 klarte Oswald Avery, Colin MacLeod og Maclyn McCarty å renfremstille DNA fra virulent S. pneumoliae, og viste at dette kunne transformere nonvirulente bakterier I 1950 viste Edwin Chargaff at mengden adenin i DNA tilsvarte mengden tymin. Det samme gjaldt guanin og cytosin (Chargaff s lov). Dette fikk stor betydning for løsningen av DNAets struktur 1950-53: Rosalind Franklin greide å oppta røntgenkrystallografiske data av rent DNA og kalkulerte at fosfat måtte ligge på utsiden av molekylet, samt fant mengden vann i strukturen -begge deler vital informasjon for bygging av en DNA-modell.

Litt historikk I april 1953 publiserte Watson Crick sin DNA-modell i Nature

Litt historikk 1975: Frederick sanger publiserer sin metode for sekvensering av DNA 1975: Forskere ved Genentech lager genmodifiserte mikroorganismer for produksjon av humant somatostatin, insulin og veksthormon 1985: Kary Mullis publiserer første paper som beskriver polymerase-kjedereaksjon, PCR, for amplifisering av DNA, og patenterte metoden Men prinsippene for PCR hadde blitt beskrevet av Kjell Kleppe og Har Gobind Khorana allerede i 1971

Litt historikk 1990: NIH utfører første godkjente genterapieksperiment på en 4-årig jente med SCID 1993: Calgene produserer den første rekombinante matvare, tomat (Flavr Savr), godkjent av FDA 1996: Sauen Dolly klonet fra somatiske celler fusjonert med ubefruktet egg 2003: Human Genome Project publiserer den humane genomsekvensen til en nøyaktighet på 99.99%

Prokaryote vs eukaryote genom Prokaryote celler: Genomet (DNAet) er lite, sirkulært og ligger åpent organisert i form av et nukleoid. Det inneholder 1000-4000 gener. I tillegg finnes ofte plasmider med noen få gener Eukaryote celler: DNAet er organisert som kromatin i cellekjernen, i en komplisert og tett pakket struktur som består av blant annet basiske histonproteiner. I tillegg inneholder cellene DNA i mitokondriene (og i planter, kloroplastene). Eschericia coli

Celler har ulik genomstørrelse Prokaryoter og enkle eukaryoter har ofte et lite DNA-innhold (små genom), mens høyere eukaryoter har genom som kan være flere tusen ganger større Det er likevel ikke en direkte sammenheng mellom genomstørrelse og hvor «avansert» organismen er Høyere vertebrater har en mer avansert regulering av sitt genom Prok. Euk.

Kromatin Størrelsen på eukaryote genom krever at de er tettere «pakket» for å få plass inne i en cellekjerne Eukaryote kromatin er et nettverk av DNA og protein som er pakket sammen i lange fibre. Med TEM kan en se tett pakkede områder (heterokromatin) og løst pakkede områder (eukromatin) TEM-bilde av cellekjerne EM-forstørrelse av kromatinfragment viser at det har en perler på en snor - struktur

Perler-på en snor -utseendet skyldes at DNAet ligger krøllet rundt store proteinkompleks som kalles histoner. Under celledeling (mitose) blir denne pakkingen så tett at kromosomene blir synlige i mikroskopet. Dette gjør også at en kopi av hvert kromosompar lett kan trekkes ut til hver av dattercellene i forbindelse med celledelingen Eubacteria har ikke histoner, mens Archaebacteria har en enklere form for histoner enn eukaryoter

Genorganisering Mens eukaryote gener ligger spredt i store områder ikkekodende DNA, er prokaryote gener ofte mye tettere pakket («gene clustering») Ofte ligger gener som koder for proteiner involvert i en og samme reaksjonsvei, ordnet «på rekke», og er styrt av én felles promoter. Slike rekker av funksjonelt relaterte gener kalles operons

Strukturen av standard B-DNA

Andre DNA- strukturer A-DNA er sannsynligvis ikke viktig in vivo for dsdna, men dannes in vitro ved høye saltkonsentrasjoner eller i nærvær av etanol. A-formen er vanlig i RNA og i RNA-DNA-duplexer. Den er bredere og mer sammentrykt enn B-formen. Z-DNA ble første gang beskrevet i 1979. Denne er en venstredreid helix, med sikksakk-form. Denne konformasjonen danner spesifikke bindingsregioner for flere proteiner, blant annet et RNAediteringsenzym, ADAR1. Enkelte virale protein (ex. poxvirus E3L) binder også til Z-DNA, og øker ekspresjon av antiapoptotiske proteiner H-DNA H-DNA er trippel-helix strukturer som kan dannes ved inverterte homopurin/homopyrimidinrepeats. Det er nylig vist at slike sekvender er hotspots for mutasjoner

De to komplementære DNAtrådene holdes sammen av hydrogenbindinger Disse kan brytes ved oppvarming, og DNAet denaturerer. Ved avkjøling vil det to trådene renaturere Trådene kan også anneale til andre komplementære DNAfragment, eller til RNA. dette kalles hybridisering DNA hybridisering DNA/DNA- og RNA/DNA hybridisering danner grunnlaget for en rekke sentrale teknikker innen molekylærbiologien G:G sterkere enn A:T (A:U)

DNA-syntese Meselsohn og Stahl viste i 1958 at DNA replikeres semikonservativt De to trådene i DNA-heliksen går i motsatt retning av hverandre (de er antiparallelle). Den enden av DNA-tråden som mangler en nukleotid i 5 -pososjon på sukkerringen, kalles 5 -enden, og tilsvarende kalles den enden som mangler en nukleotide i 3 -posisjon, 3 -enden. Den DNA-tråden som tjener som templat, leses alltid i 3-5 -retning, og dattertråden syntetiseres i 5-3 -retning 5 3

Nytt DNA dannes av DNA polymeraser På 1950-tallet begynte en å lete etter enzymer som kunne syntetisere DNA. Det første av disse ble renset fra E. coli, og ble kalt DNA polymerase I. 5 P P A T T A OH P 3 Dette er fremdeles den best karakteriserte DNA polymerasen, og det har vist seg at virknings-mekanismen til dette enzymet har mange likhetstrekk med alle kjente DNA polymeraser. O O P O O O P O O O P O P 3 HO O HO G C C G A P P P Enzymet katalyserer et nukleofilt angrep av oksygen på 3 -OH enden av en voksende DNA tråd mot 5 -P i en innkommende nukleotid DNA polymerase I C G P P P

Replikasjonsmaskineriet er komplisert

«Unormale» baser i DNA I tillegg til A, T, C og G, vil både prokaryot og eukaryot DNA inneholde varierende mengder av «unormale» baser. Mange av disse basene kan oppstå som følge av genotoksiske agens, men mange kan også dannes spontant, eller inkorporeres under DNA replikasjon. Enkelte baseendringer kan også induseres enzymatisk i cellene. De to viktigste av disse er metylering og deaminering DNA metylering. I 1898 oppdaget man en ny nukleotide i DNA i tuberkelbakterien, og kalte denne tuberkulin. Dette viste seg senere (1925) å være 5-metylcytosin (5-meC). I 1948 ble 5-meC også påvist i DNA hos pattedyr. C Metyltransferaser 5-meC

DNA metylering i bakterier C og A i bakterie-dna kan metyleres av metyltransferaser 5-meC, 4meC, 6-meA: Fungerer bla som forsvarssystem, da bakteriene motvirker virusangrep ved å «kutte» viralt DNA med enzymer kalt restriksjonsendonukleaser. Mange av disse er metyleringssensitive, og vil derfor ikke angripe bakterienes eget DNA. Metylering kan også modulere virulens, DNAreplikasjon, DNAreparasjon og genekspresjon.

DNA metylering hos pattedyr 60-90% av alle CpG-sekvenser hos pattedyr er metylert, og dette utgjør er en viktig del av den epigenetiske reguleringen av genuttrykket Det epigenetiske metyleringsmønsteret er delvis arvelig, men også dynamisk, da det bla. reprogrammeres etter fertilisering. Kjente metyltransferaser metylerer C, men det har inntil nylig vært et mysterium hvordan 5-meC kan demetyleres. I 2009 ble enzymatisk dannelse av 5- hydroksymetylcytosin (5- hmc) oppdaget i humant DNA, og at denne basen også har en viktig regulatorisk rolle (>600 artikler publ siden 2009)

DNA deaminering A, C og G har aminogrupper som kan tapes spontant, og derved endre basenes baseparingsegenskaper. Den vanligste av disse er når cytosin deaminerer og danner uracil (10 2-10 3 /celle/døgn). Uracil vil basepare mot adenin i stedet for guanin, og er derfor mutagen. 5-meC deaminerer også lett, og fører også til C T mutasjoner mc T Dette har gjennom evolusjonen ført til tap av CpG sekvenser fra vertebrate genom.

DNA deaminering I 1999 ble enzymet Activation induced cytidine deaminase (AID) oppdaget. En trodde først dette enzymet deaminerte C i RNA, men det viste seg da at C i DNA er målet. AID uttrykkes i antigen-stimulerte B-celler, transporteres inn i cellekjernen, og angriper målrettet immunglobulingenene ved å deaminere C til U i Ig-genenes v- og s-regioner. Dette fører til mutasjoner og en kraftig økning i Ig-variabiliteten. Pasienter med AID-mangel får derved defekt adaptivt immunforsvar En har senere funnet at andre humane enzymer i samme familie (APOBEC) kan deaminere C til U. Disse enzymene aktiveres ved virusinfeksjon, og ser ut til å være en viktig del av det innate immunforsvaret ved å initiere uracilering og degradering av viralt DNA Ny forskning tyder imidlertid på at både AID og APOBEC-enzymer kan foreta «untargeted» deaminering også i det humane genomet.

Hva er et gen? Genene er de fysiske og funksjonelle enhetene forbundet med arv Gjennom det humane genomprosjektet har en funnet at mennesket har ca 22 000 proteinkodende gener og at de proteinkodende sekvensene utgjør bare ca 1-2% av genomet. Proteinkodende gen RNA Protein

Hva med resten av DNAet? En kalte lenge DNAet mellom genene «junk DNA», og mente dette hovedsakelig var evolusjonsmessig «skrap» I dag vet vi at store deler av dette DNAet uttrykker RNAmolekyler som aldri omsettes til protein, men som har flere viktige regulatoriske funksjoner Nyere funn tyder faktisk på at RNA-molekyl kan være bærere av arvelig informasjon også hos eukaryoter! En har f. eks funnet at Arabidopsisplanter (vårskrinneblom) kan «overkjøre» bestemte gensekvenser arvet fra sine foreldre, og revertere til sekvenser funnet hos besteforeldregenerasjonen (i ca 10% av avkommet) En tror dette har skjedd via gamle RNAfragment overført fra tidligere generasjoner

Ulike typer RNA RNA (RiboNucleic Acid) har nesten samme grunnstruktur som DNA, bortsett fra at sukkergruppen er ribose, i stedet for deoksyribose og at Tymin (T) er erstattet med Uracil (U). Selv om ikke RNA danner den klassiske dobbelhelixstrukturen, kan basene danne basepar. Ulike RNA-molekyl kan derfor opptre i svært komplekse strukturer. Hovedtyper RNA i cellen er: mrna: Budbringer RNA (koder for proteiner) rrna: Ribosomalt RNA (byggesteiner for ribosomer) trna: Transfer-RNA ( bærere av aminosyrer) mirna: mikro-rna (viktig i genregulering) ncrna: non-coding RNA (Funksjonelt viktig, diagnoseverktøy?) RNA-molekyler kan danne komplekse strukturer, som i dette trna-molekylet

RNA-interferens og mirna Nobelprisen i medisin i 2006 gikk til Andrew Fire (Stanford) og Craig Mellon (Univ. of Massachusetts) for sin banebrytende oppdagelse av RNA interferens. De fant i 1993 at korte, dobbelttrådete RNA molekyler sprøytet inn i celler (kalte disse small inhibitory RNA, sirna) kunne redusere eller skru av uttrykket av gener. Senere er det funnet at tilsvarende RNA lages i cellene selv (kalles micro RNA, mirna). Hele 3% av våre gener koder for mirna! Disse er viktige både for organismens utvikling, og de fysiologiske funksjonene til både celler og vev.

Mekanisme DROSHA kutter ved foten av dsrna hairpins laget i kjernen, og transporterer disse til cytoplasma. Her er proteinet DICER, som kutter dette videre til korte sirna/dsdna fragment. En del av DICER blir sittende på fragmentene, og flere proteiner rekrutteres og danner et RISCkompleks, som fjerner den ene RNA-tråden RISC-miRNA komplekset rekrutterer inn Argonautproteiner, og sammen vil komplekset gjenkjenne komplementære mrna, og kutte disse ved aktivering av SLICER-aktiviteten i et av Argonaut-proteinene. Det er beregnet at 10-30% av alle gener reguleres ved mirna-enten ved å regulere mengden mrna, eller ved å regulere translasjonen. Det har også vist seg at serum/plasma inneholder store mengder stabile mirna, og at profilering av disse kan være nyttige diagnoseverktøy, blant annet for infeksjoner. RISC ( )

Isolering av DNA fra celler/vev Klassisk metode: Tidligere ble de fleste trinnene gjort manuelt, og besto av mest mulig skånsomt å åpne cellene og løse DNAet. Deretter ble det foretatt ulike trinn for å fjerne proteiner, RNA og andre makromolekyler I dag utføres DNA-ekstraksjon med kits eller er robotisert. Disse finnes i ulike varianter alt etter type startmateriale (bakterier, gjær, planter, humane celler etc), mengde DNA som skal isoleres, type DNA (kromosomalt, plasmid) og hvor høy grad av renhet som trengs. I de fleste av disse kitene brukes ionebytterkromatografi dvs. en matrix som selektivt binder DNA, mens andre typer molekyler vaskes ut.

Måten DNAet er ekstrahert på kan ha stor betydning for hvordan det skal analyseres i neste trinn. Endel vaske- og elueringsbuffere som benyttes i ionebytter-basert DNA-isolering kan for eksempel hemme enzymatiske reaksjoner. Eks: PCR av aktin-genet fra humant placentalt DNA, 50 ul reaksjon spiket med ulike volum av vaskeløsninger brukt i forkjellige kit

Ny ultra-rask DNAekstraksjon snart på markedet (60 sek)?

Kontaminering i DNA isoleringskit er også påvist

Isolering av RNA fra celler/vev De grunnleggende prinsippene er som for isolering av DNA. I tillegg må en imidlertid ta hensyn til følgende: Hvilken type RNA skal isoleres? total-rna, mrna, mirna etc. Hvor rent skal RNAet være? Fjerning av DNA nødvendig? Inneholder materialet mye RNAser? Hvor kritisk er det å inhibere disse? For å unngå RNAser er det viktig at disse blir inhibert straks cellene åpnes. Dette kan være vanskelig for celler som har en hard cellevegg, f. eks gjær og gram-positive bakterier Anbefalte metoder (Ambion)

Det fins flere måter å unngå nedbrytning av RNA ved RNAser Prøven homogeniseres straks etter høsting i en buffer som inneholder kaotrope forbindelser (f. eks. guanidin hydroklorid). Disse okkuperer hydrogenbindingene på proteiner og forårsaker denaturering av RNAser Prøvene fryses og knuses i flytende nitrogen (prøvene må være små nok til at de fryser umiddelbart) RNAse-frie buffere etc (f. eks ved DEPC-behandling), utstyr (RNAZap), -spesifikke RNAseinhibitorer (Placental RNAse inhibitor RNAsin, SUPERase-IN, RNAse-Out, Ribolock etc) Placental RNAse inhibitor og SUPERase

RNAlater (Ambion) Lagringsløsning som muliggjør lagring av celler/vevsprøver ved 4 o C over lengre tid før selve RNA-ekstraksjonen starter I de fleste tilfeller kan det samme materialet også brukes f. eks for immunohistokjemiske analyser

Enzymatisk behandling av DNA/RNA De aller fleste protokoller for analyse av rensede nukleinsyrer omfatter enzymatisk behandling. Noen av de vanligste enzymene som benyttes er: DNA restriksjonsendonukleaser DNA/RNA ligaser DNA-avhengige DNA polymeraser (også termostabile) Templat-uavhegige DNA polymeraser (terminal transferase) RNA-avhengige DNA polymeraser (revers transkriptase) Fosfataser og kinaser (CIP,SAP, T4 polynukleotid kinase etc) Eksonukleaser (S1, mung bean, DNAse I etc) I dag er det et stort kommersielt marked og en lang rekke leverandører av disse enzymene, og gode protokoller, samt egnede reaksjonsbuffere følger som regel med enzymene. Grunnleggende protokoller med rekasjonsmekanismer finnes også i f. eks. Current Protocols in Molecular Biology (Wiley)

Sekvensering av DNA For å kunne gjøre funksjonelle studier av DNA, er det nødvendig å kjenne DNA-sekvensen. Inntil for ca 10 år siden vas Sanger-sekvensering dominerende. Enzymatisk sekvensering (Sanger 1977, 1980) Rask, men sensitiv for vanskelige DNA strukturer. Benytter DNA polymerase for å syntetisere DNA, og dideoxy-dntp for å stoppe forlengelsen. Bruk av alternative polymeraser har gjort strukturproblematikken mindre viktig Metoden har blitt kraftig automatisert Automatisert Manuell

Next generation sequencing Etter ferdigstillingen av det humane genom i år 2000 har nye teknologier blitt utviklet som har revolusjonert effektiviteten i DNA sekvensering

Next generation sequencing Noe som har redusert kostnadene kraftig

Next generation sequencing Det finnes nå en rekke teknologier på markedet, med ulike egenskaper, leselengder, hurtighet og kostnader involvert

What s next? Nanoteknologi kan gi det neste store spranget i sekvenseringshastighet. Her har Oxford Nanopores utviklet nanopore-sekvensering. Hvis selskapet lykkes med kommersialiseringen av denne teknologien, vil det teoretisk kunne øke dagens sekvenseringshastighet nærmest ubegrenset I tillegg vil den ha teoretisk potensiale til å detektere ulike basemodifikasjoner direkte Teknologien har også potensiale for å kunne sekvensere proteiner!

Sekvenserte genom Siden 1995 er ca 10 000 genom sekvensert De fleste av disse er fra prokaryoter, og svært mange er humane patogener Mer informasjon om- og linker til sekvenserte genom kan finnes på http://www.ncbi.nlm.nih.gov/genome

En rekke firma har spesialisert seg på å lage array for å detektere ulike grupper av patogener Eks: Luminex: ulike virus i luftveiene Autogenomics: luftveisvirus, HPV, mykobakterier etc Akonni, TessAree, Veredus: Influensavirus De fleste av disse arrayene inneholder opptil 100 prober, og er altså ikke egnet for mer dyptpløyende analyser Andre har utviklet array med mye høyere antall prober, som ViroChip, GreeneChip og LLMDA (Lawrence Livermore Microbial Detection Array)

Et omfattende metoderepertoar

Konklusjon? Dypsekvensering ser ut til å vinne terreng over andre teknologier når det gjelder mikrobiologisk identifikasjon og kvantitering Men: Den teknologiske utviklingen skjer så raskt at det er vanskelig å spå hva som blir fremtidens dominerende metoder Nyhetsoppdatering kan blant annet finnes her http://rapidmicromethods.com/