UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Like dokumenter
betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

HØGSKOLEN I STAVANGER

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

TMA4240 Statistikk 2014

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i TMA4240 Statistikk

TMA4245 Statistikk Eksamen desember 2016

Eksamensoppgave i TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk

Løsningskisse seminaroppgaver uke 11 ( mars)

Eksamen i. MAT110 Statistikk 1

Eksamensoppgave i TMA4240 Statistikk

TMA4240 Statistikk Høst 2016

i x i

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

TMA4240 Statistikk Eksamen desember 2015

HØGSKOLEN I STAVANGER

Eksamensoppgave i ST0103 Brukerkurs i statistikk

HØGSKOLEN I STAVANGER

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i TMA4295 Statistisk inferens

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

HØGSKOLEN I STAVANGER

Eksamensoppgave i TMA4245 Statistikk

TMA4240 Statistikk Høst 2015

+ S2 Y ) 2. = (avrundet nedover til nærmeste heltall) n Y 1

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

TMA4240 Statistikk Høst 2009

Kort overblikk over kurset sålangt

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK

Econ 2130 uke 16 (HG)

Eksamensoppgåve i ST0103 Brukarkurs i statistikk

TMA4240 Statistikk Høst 2018

Fasit for tilleggsoppgaver

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Faktor - en eksamensavis utgitt av ECONnect

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

ÅMA110 Sannsynlighetsregning med statistikk, våren

EKSAMENSOPPGAVE. Eksamen i: STA Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9

TMA4240 Statistikk Høst 2009

vekt. vol bruk

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Eksamensoppgave i TMA4240 Statistikk

TMA4245 Statistikk Eksamen august 2014

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

år i alder x i tid y i i=1 (x i x) 2 = 60, 9

UNIVERSITETET I OSLO

Løsningsforslag, eksamen statistikk, juni 2015

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 =

TMA4240 Statistikk Høst 2016

Eksamen i. MAT110 Statistikk 1

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind

ST0202 Statistikk for samfunnsvitere

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Eksamensoppgave i TMA4245 Statistikk

ST0202 Statistikk for samfunnsvitere

TMA4240 Statistikk H2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k

EKSAMEN I TMA4245 Statistikk

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

i=1 t i +80t 0 i=1 t i = 9816.

UNIVERSITETET I OSLO Matematisk Institutt

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER

SKOLEEKSAMEN 29. september 2006 (4 timer)

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Regneøvelse 22/5, 2017

EKSAMEN I FAG TMA4240 STATISTIKK

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

Transkript:

Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler er tillatt. I tillegg kan du ta med lommekalkulator som ikke kan brukes til å kommunisere med andre. Eksamen blir vurdert etter ECTS-skalaen. A-F, der A er beste karakter og E er dårligste ståkarakter. F er ikke bestått.

ECON30: EKSAMEN 06v Oppgave I en urne er det 0 kuler hvorav 5 er røde, 4 er blå og er hvit. Kulene er ellers like store og tunge. Det trekkes ut et rent tilfeldig utvalg på kuler fra urnen som betyr at alle mulige (ikke-ordnete) utvalg på kuler er like sannsynlige. Det kan vises (som du ikke trenger å gjøre) at utvalget blir rent tilfeldig hvis kulene trekkes en og en slik at alle de 0 kulene i urnen har samme sjanse for å bli trukket i første trekning, mens alle de 9 gjenværende kulene har samme sjanse for å bli trukket i annen trekning. A. La, R, B, H betegne begivenhetene at den første kulen som blir trukket er henholdsvis rød, blå eller hvit. La R, B, H betegne de tilsvarende begivenhetene for den andre kulen som blir trukket ut. For eksempel, R H betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B B betyr at både første og andre kule som blir trukket ut er blå. B betyr at den første kulen som blir trukket ut ikke er blå. Finn de 5 sannsynlighetene, P( B ), P( B ), P( B B ), P( B B ), P( B B ) B. La Y være antall blå kuler i et rent tilfeldig utvalg på kuler. i. Forklar hvorfor Y er hypergeometrisk fordelt og sett opp et uttrykk for sannsynlighetsfordelingen. ii. Beregn sannsynlighetene P( Y y), y 0,,. [Hint. Vis først at 0 45. ] iii. Beregn E( Y ), var( Y ) ved, for eksempel, å bruke formlene for forventning og varians i en hypergeometrisk fordeling. C. La X være antall røde kuler i utvalget. Det kan vises (som du ikke trenger å gjøre) at den simultane fordelingen for X og Y er gitt i tabell.

Tabell Den simultane fordelingen for X og Y gitt ved f ( x, y) P( X x Y y) x y 0 Sum 0 0 4 45 6 45 0 45 5 45 0 45 0 5 45 0 45 0 0 0 45 Sum 5 45 4 45 6 45 i. Er X og Y stokastisk uavhengige? Begrunn svaret ditt. ii. Vis at kovariansen mellom X og Y er cov( XY, ) 0.3556. iii. Finn sannsynlighetene P( Y X 0) og P( Y X ). D. Mot å betale en spilleavgift på 0 kr. blir Jens tilbudt et spill som består i å trekke kuler fra urnen som beskrevet i innledningen. For hver blå kule i utvalget får Jens 40 kr, men må betale 5 kr. for hver rød kule i utvalget. Hvis det dukker opp en hvit kule i utvalget, får ikke Jens noe for denne, men slipper også å betale noe. Fortjenesten til Jens, V, for et spill kan dermed uttrykkes som V 40Y 5X 0. De mulige fortjenestene som kan inntreffe i et enkelt spill er angitt i tabell. Tabell Mulige fortjenester for et spill med utfall ( xy, ) x y 0 0 --- 30 70 35 5 --- 60 --- --- i. Finn sannsynligheten for at Jens får positiv fortjeneste i et spill (dvs. finn PV ( 0) ). ii. Finn forventet fortjeneste i et spill, EV ( ). Forklar kort hvordan du ville tolke dette resultatet. iii. Vis at variansen til fortjenesten i et spill er, var( V ) 67.556. [Hint. Variansen til X, som du ikke trenger å beregne her, oppgis til 49 ] E. Jens spiller spillet i punkt D 30 ganger. La V i betegne fortjenesten i spill nr. i, i,,,30. Den totale fortjenesten er T V V V30, der V, V,, V 30 antas å være uavhengige og identisk fordelte (uid) med samme fordeling som V.

3 i. Finn sannsynligheten tilnærmet for at T blir positiv (dvs. finn PT ( 0) tilnærmet). [Hint. Du trenger bl.a. EV ( ). Hvis du ikke fant denne i punkt D, gjett på en verdi og bruk denne verdien i beregningen.] ii. Anta at sannsynligheten for at et enkelt spill gir positiv fortjeneste er 3. La U være antall ganger i løpet 30 spill V i blir positiv ( Vi 0). Finn sannsynligheten tilnærmet for at U blir minst 0 (dvs. finn PU ( 0) tilnærmet). Oppgave Tabell 3 viser antall trafikkulykker med personskade i Norge for to perioder, mai 05 (periode ) og juni-juli 05 (periode ). Tabell 3 Periode Mai 05 Juni juli 05 Sum Antall trafikkulykker med personskade 577 74 85 La X betegne antall trafikkulykker i mai og Y summen av antall ulykker i juni og juli der X og Y er sett på som stokastiske variable. Anta at X og Y er uavhengige og poissonfordelte med forventninger, henholdsvis (kort skrevet: X ~ Pois( ), Y ~ Pois( ) ), der tolkes som forventet ulykkesrate pr. måned som antas å være den samme i de tre månedene i perioden mai juli. For enkelthets skyld, bortsett fra i punkt D nedenfor, antar vi også at de tre månedene er like lange, for eksempel 30 dager hver. X og Y gir to uavhengige og forventningsrette estimatorer for, nemlig ˆ X og ˆ Y. * A. i. Hvis V ~ Pois( t ) for en periode på t måneder, forklar kort hvorfor Vt er en forventningsrett estimator for med varians, * var( ) t. ii. Det foreslås to estimatorer for basert på ˆ ˆ : ˆ ˆ ˆ ˆ ˆ og 3 Vis at både ˆ er forventningsrette og at ˆ har minst varians lik 3. iii. Beregn de to estimatene for basert på ˆ og velg det estimatet du mener er best. Angi hvorfor du mener valget ditt er best. Kilde SSB.

4 B. Det kan vises (som du ikke trenger å gjøre) at normalfordelt (N(0, )) uansett. ˆ er tilnærmet standard ˆ 3 i. Bruk dette til å utlede et konfidensintervall for med konfidensgrad tilnærmet 0.90, basert på ˆ. ii. Beregn det observerte konfidensintervallet basert på data i tabell 3. C. Vi ønsker å sjekke antakelsen om konstant ulykkesrate i hele tre-månedsperioden mai juli med en statistisk test. For å få til dette utvider vi modellen litt ved å anta at forventet ulykkesrate for mai er og for juni-juli, der ikke behøver å være like. Vi ønsker å teste nullhypotesen at er like, dvs. H0 : 0 mot H : 0. Innfører vi parameteren, kan vi skrive hypotesen vi ønsker å teste som H0: 0 mot H: 0 Forventningsrette estimatorer, ˆ og ˆ, er gitt i innledningen. La betegne variansen til ˆ ˆ ˆ som avhenger av de ukjente. Estimatoren ˆ er dannet ved å erstatte de ukjente med sine respektive estimatorer. i. Forklar kort hvorfor ˆ ˆ ˆ er tilnærmet normalfordelt. ˆ ii. Det kan vises (som du ikke trenger å gjøre) at Z er tilnærmet standard ˆ normalfordelt, N(0, ), dersom (dvs. 0 ). Bruk dette til å sette opp et forkastningskriterium for en test for H 0 med signifikansnivå tilnærmet 0.05. iii. Gjennomfør testen i ii. og formuler en konklusjon. D. Til tross for eventuell forkastning av H 0 i punkt C., går vi nå tilbake til den opprinnelige modellen med konstant forventet ulykkesrate pr. tidsenhet i hele tremånedsperioden, men ønsker å justere for at månedslengden varierer i perioden. I alt omfatter perioden 9 dager siden mai og juli har 3 dager hver. Istedenfor vil vi nå estimere definert som forventet ulykkesrate pr. 30 dager uansett måned. En måte å gjøre dette på er ved å forutsette at T X Y er poisson-fordelt med forventning 9, der 30 er forventet ulykkesrate pr. dag som antas å være konstant i perioden.

5 i. Sett opp en forventningsrett estimator, ˆ, for og finn et uttrykk for variansen til denne. ii. iii. Beregn estimatet basert på ˆ og standardfeilen, SE( ˆ ) (som betyr estimert standardavvik for ˆ ). ˆ Beregn også et tilnærmet 95% konfidensintervall basert på at er tilnærmet SE( ˆ ) standard normalfordelt (som du ikke trenger å begrunne her).