ECON2200: Oppgaver til plenumsregninger



Like dokumenter
ECON2200: Oppgaver til for plenumsregninger

ECON2200 Obligatorisk Oppgave

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Oppsummering matematikkdel

Oppsummering matematikkdel

Oppsummering matematikkdel ECON 2200

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Oppsummering matematikkdel

Oppsummering matematikkdel

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

Løsningsforslag. 3 x e. g(x) = 1 + x4 x 2

MA forelesning

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi.

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

TMA4100 Matematikk 1, høst 2013

ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout

, alternativt kan vi skrive det uten å innføre q0

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Obligatorisk øvelsesoppgave - Løsning

dg = ( g P0 u)ds = ( ) = 0

Repetisjon i Matematikk 1: Derivasjon 2,

Mikroøkonomien med matematikk

S1 Eksamen våren 2009 Løsning

EKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk)

Notater nr 9: oppsummering for uke 45-46

Fasit - Oppgaveseminar 1

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Forelesning 9 mandag den 15. september

EKSAMEN I EMNET Mat Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

Handout 12. forelesning ECON Monopol og Arbeidsmarked

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

Faktor. Eksamen høst 2005 SØK Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Forord. Molde, august Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Løsning IM

(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil!

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

MAT feb feb feb MAT Våren 2010

Uendelige rekker. Konvergens og konvergenskriterier

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Høgskolen i Bodø Matematikk for økonomer 16. desember 2000 Løsninger

Oppgave 1. Oppgave 2

Løsningsforslag til eksamen i ECON 2200 vår løsningen på problemet må oppfylle:

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Løsningsforslag til eksamen ECON3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk, høst 2008

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 15. mars 2010

Matematikk R1 Oversikt

Eksamen REA3022 R1, Våren 2013

S høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2.

Faktor. Eksamen høst 2004 SØK 1002 Besvarelse nr 1: Innføring i mikro. -en eksamensavis utgitt av Pareto

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Høgskoleni østfold EKSAMEN. Metode 1 (Deleksamen i matematikk)

Faktor. Eksamen vår 2002 SV SØ 107: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Mer om likninger og ulikheter

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Konsumentteori. Kjell Arne Brekke. Mars 2017

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

Eksamen 1T høsten 2015, løsningsforslag

Emnenavn: Metode 1 matematikk. Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3

EKSAMEN Løsningsforslag

UNIVERSITETET I OSLO

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.

b) Gjør rede for hvilke forutsetninger modellen bygger på og gi en økonomisk tolkning av ligningene.

Oppsummering: Innføring i samfunnsøkonomi for realister

Tyngdekraft og luftmotstand

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 2. mars 2010

1 Mandag 8. februar 2010

Optimering av funksjoner av flere variable

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Funksjoner med og uten hjelpemidler

Utkast til løsningsforslag til eksamen i emnet MAT Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl

Matematikk for økonomer Del 2

MA0002 Brukerkurs i matematikk B Vår 2013

MAT feb feb feb MAT Våren 2010

Kostnadsminimering; to variable innsatsfaktorer

Eksamen ECON mai 2010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål.

Løsningsforslag til eksamen i MAT111 Vår 2013

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

MAT Grublegruppen Uke 36

3x + 2y 8, 2x + 4y 8.

Transkript:

University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen f(x) er gitt som (a) For en vilkårlig x 0 og h hva blir (b) Hva blir den deriverte av f? f(x) = A f(x 0 + h) f(x 0 ) h? Oppgave 1.2 La f(x) = x 2 + 2x (a) Beregn f(x 0 + h) f(x 0 ) h når x 0 = 1 og med h hhv 1 10, 1 og 2. (b) Beregn f(x 0 + h) f(x 0 ) h for samme x 0 = 1 men med en generell h, og finn grensen når h 0. (c) Hva blir f (1)? (d) Bruk fremgangsmåten i (b) til å finne f (x 0 ) for en generell x 0 (altså ikke bare for x 0 = 1). (e) Når er funksjonen voksende og når er den avtagende? Oppgave 1.3 En aluminiumsprodusent produserer x kg aluminium. Produksjonskostnadene til bedriften er en funksjon C(x) av hvor mye bedriften produserer. (a) Fortell med ord hva den deriverte C (x) uttrykker. Prisen på aluminium er bestemt på verdensmarkedet og er gitt som p. Profitten til bedriften er da px C(x) (b) Finn et uttrykk som forteller når profitten er voksende i produsert mengde. (c) Prøv å beskrive uttrykket i (b) med ord på en måte som er forståelig også for dem som aldri har hørt om derivasjon. 1

Oppgave 1.4 Bruk derivasjonsreglene til å derivere følgende funksjoner f(x) = 2x 2 + 1 g(x) = x 3 1 x h(x) = x 1 (x 2 1) = x2 1 x k(x) = x + 3 x 2 + 1 Oppgave 1.5 En monopolist produserer en mengde x av en vare, men må sette prisen slik at han får solgt alt sammen. Prisen er da en funksjon p(x) av x. (a) Hva synest du det er rimelig å anta om fortegnet på p (x)? Total inntekt for monopolisten blir f(x) = xp(x) (b) Finn f (x) (c) Forklar med ord hva f (x) uttrykker. 2

2. plenumsregning 8. feb.: kjerneregelen, annenderiverte og elastisiteter. Oppgave 2.1 (a) (d) Bruk kjerneregelen til følgende derivasjoner : (a) y = (3x + 1) 2 (b) y = (1 x) 3 (c) y = 3x 2 + 1 (d) y = x, der x < 0 (e) (h) Uttrykk g ved hjelp av f for følgende funksjoner: (e) g(x) = (f(x)) 2 (f) g(x) = f(3x) (g) g(x) = f(x 2 x) (h) g(x) = f(f(x)) Oppgave 2.2 Anta at total kjørelengde med bil reduseres med 0,6 % når bensinprisen øker 10 øre per liter. Anta videre at CO 2 -utslippene fra bilkjøring er proporsjonale med total kjørelengde, og at bilkjøring står for 17 % av de nasjonale utslippene. Hvor mange % endres de nasjonale CO 2 -utslippene om bensinprisen øker 50 øre per liter? Oppgave 2.3 En aluminiumsprodusent produserer x kg aluminium. Produksjonskostnadene til bedriften er en funksjon C(x) av hvor mye bedriften produserer. (a) Prøv å si med med ord hva påstanden C (x) > 0 innebærer. Prisen på aluminium er bestemt på verdensmarkedet og er gitt som p per kg. Profitten til bedriften er da π(x) = px C(x) (b) Finn et uttrykk for π (x) (c) Hvilke forutsetninger om kostnadsfunksjonen C(x) må vi gjøre for at profitten skal være konkav? Oppgave 2.4 (a) Avgjør om følgende funksjoner er konkave eller konvekse f(x) = 2x 2 + 1 g(x) = x 3 + 1 x h(x) = 3x for x > 0 (b) For hvilke(t) intervall(er) er følgende funksjon konkav og for hvilke(t) intervall(er) er den konveks? k(x) = x 2 1 x 3

Oppgave 2.5 Beregn elastisiteten til følgende funksjoner (a) f(x) = x for x 0 (b) f(x) = 30 3x for 0 x 10 (c) f(x) = 1 x for x 0 (d) f(x) = 3x + 30 for x 0 Oppgave 2.6 (a) Dersom f (x) = 4 for alle verdier av x, hvor mye øker funksjonsverdien om vi øker x med 100 enheter? La etterspørselen etter en vare være (b) Vis at elastisiteten til D er konstant. D(p) = p a der a > 0 (c) Anta at a = 1. Hvor mye faller etterspørselen om prisen øker med 100 %? 4

3. plenumsregning 15. feb.: optimalisering. Oppgave 3.1 Maksimer følgende funksjoner f(x) = x x for x 0 g(x) = 10 3x for x 0 h(x) = 18x x 2 Oppgave 3.2 Et sykehus fordeler et budsjett M på to aktiviteter. De rangerer ventelisten innen hver aktivitet etter hvilken helsegevinst behandlingen har for pasientene, og de behandler de pasientene først som har størst helsegevinst. La f(x) være helsegevinsten om x pasienter behandles med metode 1 og g(x) være total helsegevinst om x behandles med metode 2. (a) Hva kan du si om f (x) og g (x)? (b) Er det rimelig her å betrakte x som kontinuerlig (dvs. at x kan være et vilkårlig reelt tall)? Prisen per pasient med metode 1 er p og for metode 2 er den q. (c) Hva blir helsegevinsten av 1 krone ekstra til hhv. metode 1 og metode 2? Sykehuset ønsker å fordele ressursene for å få størst mulig helsegevinst av budsjettet M. (d) Sett dette opp som et maksimeringsproblem og finn førsteordensbetingelsen. Kan du tolke denne betingelsen? (e) Kan vi være sikre på at førsteordensbetingelsen gir oss et maksimum? Oppgave 3.3 (a) Finn stasjonærpunktene til funksjonen f(x) = x 3 3x (b) Er disse punktene lokale maksimum eller minimum? (c) Er de globale optima? Oppgave 3.4 En bedrift produserer en vare med konstante enhetskostnader, dvs. hver enhet koster c kroner. Prisen på produktet er p, så profittfunksjonen er π(x) = px cx for x 0 (a) Hva er profittmaksimerende kvantum x? (b) Er profittfunksjonen konkav? (c) Er profittfunksjonen strengt konkav? 5

Oppgave 3.5 I denne oppgaven skal vi maksimere funksjonen f(x) = u(x) + m px for x 0 og px m der nyttefunksjonen u er konkav og ikke-avtagende, og m og p er positive parametre. (a) Anta først at løsningen er en indre løsning (dvs. x > 0 og px < m). Finn førsteordensbetingelsen. (b) Er andreordensbetingelsen oppfylt? Til slutt skal du sjekke om vi har en hjørneløsning. (c) Under hvilke betingelser vil x = 0 løse problemet? (d) Under hvilke betingerlser vil px = m løse problemet? Oppgave 3.6 (a) (d) Finn de partiellderiverte (av første orden) til følgende funksjoner: (a) f(x, y) = 3xy (b) f(x, y) = x + 3y (c) f(x, y) = x xy + y (d) f(x, y) = y (e) (h) Uttrykk de partiellderiverte (av første orden) av F (x, y) ved hjelp av f (x) og g (y) for følgende funksjoner: (e) F (x, y) = f(x)g(y) (f) F (x, y) = f(x) g(y) (g) F (x, y) = f(x) g(y) (h) F (x, y) = f(x) 6

4. plenumsregning 22. feb.: flervariabelanalyse. Jeg ligger etter, så jeg gir ikke mange oppgaver. Oppgave 4.1 Bruk kjerneregelen til å derivere z med hensyn på t når: (a) z = xy der x = t og y = t 2 1 (b) z = x + y der x = t og y = t 2 1 (c) z = x 2 y + 3y der x = t og y = t 2 1 Bruk kjerneregelen til å derivere z med hensyn på t og s når: (d) z = xy der x = t s og y = t + s (e) z = x + y der x = t s og y = t + s (f) z = x 2 y der x = t og y = t 2 s Oppgave 4.2 Tegn nivåkurver til følgende funksjoner: (a) f(x, y) = xy + 5 (b) g(x, y) = Ax a y b der A, a, b > 0 (c) h(x, y) = x 2 + 3y (d) k(x, y) = x 2 + y 2 Oppgave 4.3 (a) La a være en parameter. Finn stasjonærpunktene til funksjonen f(x, y) = x 2 + y 2 + axy (b) For hvilke verdier av a er stasjonærpunktet et minimum, et maksimum eller ingen av delene? (c) Gjør tilsvarende (dvs., (a) og (b)) for funksjonen g(x, y) = x 4 + y 4 + axy Oppgave 4.4 En bedrift produktfunksjonen h(x, y) er gitt ved h(x, y) = x 1/2 y 1/3 (for x 0, y 0) (dette er et tilfelle av en såkalt Cobb Douglas-produktfunksjon). Produktet kan selges til enhetspris 12, mens innsatsfaktorene koster 3 per enhet av x og 4 per enhet av y. (a) Sett opp profittfunksjonen og førsteordensbetingelsene for maksimum. (b) Vis at faktorbruken (x, y) = (16, 8) løser profittmaksimeringsproblemet. (Obs: Tilstrekkelige betingelser innebærer mye regning!) 7

5. plenumsregning 7. mars: maksimering med og uten bibetingelser, samt omhylling. Onsdagsforelesningen tar pause i uke 9, så dere har god tid selv om dette er mer stoff enn jeg vil rekke å gjennomgå. Oppgave 5.1 La F (y, a) = ay y 2 (a) Løs maksimeringsproblemet og la y (a) være den optimale løsningen. max F (y, a) y (b) Finn et eksplisitt uttrykk for funksjonen y (a) La nå funksjonen f(a) være gitt som f(a) = max F (y, a) y (c) Bruk omhylningssetningen til å finne den deriverte f (a) uten å regne ut funksjonen f(a) selv. (d) Finn så et eksplisitt uttrykk for f(a), deriver funksjonen og vis at du får det samme som i (c). Oppgave 5.2 La nå H(x, a) være en generell funksjon av to variable, og la h(a) = H(g(a), a) der g(a) er en gitt funksjon av a. (a) Finn et uttrykk for h (a). Vi lar x (a) betegne løsningen på maksimeringsproblemet max H(x, a) x og antar at problemet har en entydig indre løsning for alle a. (b) Hva kan du da si om H x(x (a), a)? (c) Bruk resultatet i (b) til å forenkle uttrykket i (a) for det tilfellet at g(a) = x (a). 8

Oppgave 5.3 (a) Finn følgende funksjoner: f(c) = max x ( px cx 2 ) g(c) = max x ( x cx ) (b) Deriver funksjonene du fant i (a). (c) Bruk omhylningssetningen til å finne de samme deriverte. Oppgave 5.4 En bedriften har to produksjonsanlegg med produktfunksjoner f 1 (x 1 ) = 2 x 1 f 2 (x 2 ) = 8 x 2 der total bruk av faktoren blir x 1 + x 2 og prisen på innsatsfaktoren er µ. Prisen på produktet som produseres er p. Bedriften eier i utgangspunktet 300 enheter av innsatsfaktoren. (a) Hva blir bedriftens profitt? (b) Anta at p = 1, finn et uttrykk for den optimale faktorbruken i hvert produksjonsanlegg. (c) Beskriv total faktorbruk som en funksjon av prisen på innsatsfaktoren µ. (d) For hvilken pris µ vil bedriften bruke akkurat 300 enheter av innsatsfaktoren? (e) Bruk Lagranges metode til å løse bedriftens profittmaksimeringsproblem når den ikke kan handle med innsatsfaktorer, men bare har de 300 enhetene til disposisjon. Oppgave 5.5 (Obs: Denne oppgaven involverer uttrykk som kan bli for stygge hvis du forsøker å «regne til bunns». Les hva oppgaven spør om, så sparer du tid!) Se på funksjonen h(x, y) = 2x 2 + y 2 123456789x 4 616y 4 xy. (a) Beregn de partielle deriverte av første og annen orden. (b) Vis at origo (det vil si, punktet (x, y) = (0, 0)) er et lokalt minimumspunkt. (c) Prøv å forklare hvorfor origo ikke kan være et globalt minimumspunkt. (d) La k være en konstant. Sett opp Lagrange-betingelsene for problemet minimer h(x, y) under bibetingelsen kx + y = 0 og verifiser at de er oppfylt i origo. Kan vi vite at betingelsene er oppfylt i origo uten å regne ut? 9

Oppgave 5.6 Betrakt problemet: Minimer 2x + y under bibetingelsen y (x 5) 2 = 0 (a) Løs problemet først ved innsettingsmetoden. (b) Løs deretter problemet med Lagranges metode. Beregn også Lagrangemultiplikatoren. (c) Finn verdien av 2x + y i minimum. Uten å løse problemet på nytt, omtrent hva tror du denne verdien hadde blitt om bibetingelsen var y (x 5) 2 = 0.1? (Oppgaven over ble ikke gjennomgått på den plenumsregningen jeg i forrige versjon feildaterte til Kvinnedagen (uten at noen protesterte på akkurat den feilen). Jeg fortsetter uten sideskift, så dere kan klare dere med å ta med ett nytt ark.) 6. plenumsregning 14. mars: implisitt derivasjon, differensial,... Det er et par temaer å rekapitulere teoretisk, så det følgende er mer enn nok å gjøre. Oppgave 6.1: Deriver y med hensyn på x når sammenhenger er gitt ved identiteten 1 Finn også den andrederiverte. x 2 + y 2 9 Oppgave 6.2 La (a) Finn et uttrykk for dz dt. z = f(x, y) x = t og y = g(t) La nå funksjonen g(t) være valgt slik at z tar verdien z for alle valg av t. (b) Uttrykk dette som en identitet. (c) Dersom g(t) er valgt på denne måten, kan du da si noe mer om dz dt? (d) Dersom f er voksende i begge variablene, hva kan du da si om nivåkurvene til funksjonen f? 1 Det viser seg at dette går greit selv om ligningen ikke definerer en funksjonsgraf. Forklaring følger på forelesning. 10

Oppgave 6.3 Oppgave 3.5 løste problemet å maksimere f(x) = u(x) + m px for x 0 og px m der nyttefunksjonen u er konkav og ikke-avtagende, og m og p er positive parametre. Problemet ble løst både for tilfellet med indre løsning og tilfellet med hjørneløsning. Du kan gjerne lete opp løsningen fra da. I denne oppgaven skal vi bare se på tilfellet med indre løsning. Betrakt førsteordensbetingelsen som en identitet som implisitt bestemmer x som en funksjon av p. (a) Finn et uttrykk for x (p) ut fra førsteordensbetingelsen. (b) Kan du si noe om fortegnet på x (p)? Oppgave 6.4 Betrakt problemet: maksimer f(x, y) = xy under bibetingelsen g(x, y) = x 2 + y 2 = 32 (a) Sett opp Lagrangefunksjonen og finn de 4 stasjonærpunktene. (b) Beregn verdien av f(x, y) i stasjonærpunktene. Hvilke punkter er kandidater til å være maksimumspunkter? Selv om ligningen x 2 + y 2 = 32 definerer en sirkel (ikke en funksjonsgraf!), vil den definere y implisitt som en funksjon av x lokalt, hvis vi først bestemmer oss for fortegnet til y. (c) Finn y og beregn spesielt verdien i de fire stasjonærpunktene. Nivåkurvene for funksjonen xy (dvs. ligningen xy = c) gir tilsvarende y som en funksjon av x. (d) Finn et eksplisitt uttrykk for denne funksjonen og deriver den. Beregn igjen spesielt den deriverte i de fire stasjonærpunktene. (e) Illustrer løsningen grafisk. Bruk resultatene fra (c) og (d). Oppgave 6.5 Beregn differensialene til (a) z = 3x 2 + y 3, (b) z = x ln y, (c) z = xu der u = u(x, y) der funksjonen ln y har derivert 1/y (dette har dere ikke lært ennå, men bruk resultatet). Approksimer deretter endringene i z når x øker fra 2 til 2.01, og y avtar fra 1 til 0.98. 11