Sensorveiledning: MET 11803
|
|
|
- Ragnvald Bø
- 10 år siden
- Visninger:
Transkript
1 Sensorveiledning: MET Matematikk Eksamensdato: kl Totalt antall sider: 8 Se oppgavesettet for tillatte hjelpemidler Se oppgavesettet for vekting av oppgavene Ansvarlig institutt: Institutt for samfunnsøkonomi 1
2 Oppgave 1 a. [(r}+lnjùd" : [(r3+5r3 d* : \ra+strï+k : Trn + 2rZ + K b. Substitusjon z : 12 11, det gir du:2rdr. ï ffi, : I +* : E I ldu :!lnlzl t K : tn(r2 + 1) + K ". ïir3ln(3r)d,r: Il""h(3) + rslnr)d,r:1r Vitar disse to integralene separat: rr: Il #tn(3)ar: ln3 [l #ar:tnsl]f,r4:+(2n - 14) : 1Þ14-3 r, : Il # rn rdr :l1 "n rn r - Ii i*^. ja" :l]j"a tn r - fl jr' ar : l]l"at""-li1,." : i2nrn2 - #(zn - L) : Aln2 - ln d. Siden graden i nevner er høyere enn i teller må vi starte med polynomdivisjon: Poly inn I X - \ xþ +S<t+\.r) - Sxt+ \x - L-Sxt - -zo ) 4 X +Sx+ v : X-5 20:A(r+1) + B(r+4). n: -1 gir -I:3E. P:-l.r:-4 gir -84 l-20 : -ga. A: T. Integralet blir derfor: [ æ#+ a, : I r-5++,*-*-i.#a" : T*' - 5r *ff tnlr + 4l - {tnlr + rl + K e. Området ser slik ut: 2
3 Skjæringspunktene finner vi ved å løse: 2-12 : r. Med andre ord 12 + r -2-0, eller (r +2)(r - 1):0 Det gir r: -2 og r:1. Areal : [!"çz - tr2 - r)d,r :lt-r2* - lrt - Tt' : 2(1 - (-2)) - å(r'-(-2')) -Tí'-(-2')) -6-å(gl -å(-3) :3 Oppgave 2 a. Grensekostnad: K'(r): h, Altså må vi løse ffi: 1. Det gir 12 * 1 :2r, eller 12-2r f 1 :0. Med andre ord (r - 1)':0. Vi får r :1. b. r(r) : r - K(r). Det gir r'(r) : I - K'(r) h : -æ : %# Dette er utrykket er null for r:1, men det bytter ikke fortegn. Profitten stiger med z. Det betyr at profittmaks er for endepunktet r: 100: zr(100) : 100-1((100) : In Oppgave 3 a. L : t/r +3Jy - À(2r + a - 3) Det gir L L',: + - À.2 :0. Det vil si À : &. IL L'y: # - À - 0. Det vil si 7fu -- ^: ù8. Altså er \/A:61/r, som gir y-:36r Vi setter inn i bibetingelsen 2nl36r:3. Det gir at,:88å, som igjen gir g: Trt:,# Simen ønsker å kjøpe S t<ito loff og ff titer rødbrus. (Altså forsvinnende lite loff og nesten alt på rødbrus. Ä.rsaken er lave preferanser for loff, samtidig som Ioff er dyrt.).)
4 b. L : 3t/* + t/a - ÀQr + a - 3) Det gir I. L : + - ),.2 :0. Det vil si À : &. L L;:ù -t-0. Detvilsi fr:^:-lm. Altså "t +: l: ff, eller A: êr.vi 2r+tr:3. Vi fär r:h"sa:l-#:# Simen Ønsker å kjøpe 2] Urlo loff og fi setter inn i bibetingelsen titer rødbrus. Svaret blir ikke det "samme" som i a.,å.rsaken er at kiloprisen på loff er ikke lik liter prisen på rødbrus, og da hjelper det ikke at nyttefunksjonen i b. er lik nyttefunksjonen i a. med r og y byttet om. (Etter lynnedslaget er Simen mindre heldig i den forstand at han har preferanser for loff som er relativt dyrere. I den grad en kan sammenlikne kilopris med literpris.) Oppgave 4 a. ^9(n) : ao# : S,t't L!î1,) Merk 3r2: ] når ø: ]. s(å) : åry : î(t- #) : å(%#) : ï# b. Summen eksisterer for 0 ( 3r2 < l. (r' blir aldri negativ) Det betyr at summen eksisterer for - { < r < fi. Vi må løse ffi:ro Det gir 3r2 :10-30u2. M.a.o :10 som gir r : +Vg. Siden,ø* = 0, 550, som er mindre enn ft = 0,577, et x) : +rtø* innenfor konvergensradien. 4
5 Altså er svaret Í: :!. Oppgave 5 a. A har en invers hvis og bare hvis det(a)) I 0. Vi regner ut determinanten ved å utvikle langs første søyle: l:? t,l lz rl ^lz 1l- o ^ 1- ^ lö i t'l--11 1l Vi får invers for a 10. Inversmatrise for a: L 2 t l 11oo1l 11 Vi erstatter linje2 med linjel-linje2 Ir2t1 lo L 2 I þ110 0 Vi erstatter linjel med linjel minus 2linje3 og linje3 med linje3-linje2 t: t r il * " Vi erstatter linjel med linjel-linje3 og linje2 med linje2*2linje3 og ganger linje3 med -1. A
6 b B - l:,?] *" kof (B) : [_t, ]l * ad:i(b) : Determinanten til B er (-1). 2 : 4. Det betyr at B-,-r11-2 -ulr 2 [r -4 c. XB-21 : B2 gir at XB: 82i2I. Vifär X : B+28-1 (ved å gange med B-1 frahøyrepå begge sider). Siden U-t : å [1 -:], får vi: ":ll,?].a[1 -:l tl Oppgave 6 a. Siden l',@,a) :2r * A og fi@,u) : r + y2) f.är vi: I.2rIA:0somgirU:-2r II. r-fa2 :0, vi setter inny - -2r ogffu rt4r2 : r(1+ 4r):g Altså r:0 som gir U:0 ogr: -] som gir y:l b. Figur ( 'l,t) *l U, l.) Gr,-r) (,,-t ) c. Vi har funnet to kandidater på det indre allerede: (*,A) : (0,0), som gir /(0, O) : 9. (*,a) : eï,+), som gir f ei,å) : (-å)" +?Ð å + å(å)' : I _1rIl-ll(1_Ðr2\-_t 16 8l 38-\16\' otbl Vi må undersøke kanter og hjørner
7 Hjørner: (1,1) gir /(1,1) : 12 1-l. 1 + ått : Í (1, -1) gir /(1,1) : (-1) + å(-1)' : -å (-1,1) gir /(1,1) : (-1)'z + (-1). 1+ å13 : å (-1, -1) gir /(1,1) : (-1)2 + (-1) (-1) + å(-1)' : å Sidekanter: n :!gir /(1, u) : L2 -f t' u + ïat : 1 * a + lat. Den deriverte lik null: /'(1, U): LIA' :0. Siden I+A2 ) 0, får vi ingen kandidater. r : -Igir /(1, y) : (-I)r+ (-1). a + ïat a + ïat. Den deriverte lik null: /'(1, U) : -I I A' :0. Det vil si g : t1. Dette svarer til hjørner vi allerede har med. u : r gt f(r,7) : r' I r' r+ å1t : 12 I " + tr. Den deriverte lik null: /'(2, l) :2r -l 1 : 0. Det vil si r : -t. (-+,1) ei, rel,1) :(-å),+(-å).1+å13:-1++:+ u : -l gir f(r,r) : r"+ø. (-1) + å(-1)t : 12 - r - l. Den deriverte lik null: /'(r, -1) : 2r - l:0. Det vil si r: å. (;, -1) gir /(1,1) : (;)'+ (+). (-1) + å(-1)' Altså blir: Globalt maks: J Globalt min: -,!, d. Funksjonen har ikke noe globalt maks siden limr--,f (r,0) : lim"-- 12 : læ. Funksjonen har ikke noe globalt min siden lims*-oo f Q,ù: lims--oo * : -oo. 7
8 Oppgave 7 Forsikringsselskap: Nåverdi 1500 kroner hver tredje måned resten av livet. Vi regner første utbetaling med en gang: S : î : # : kr. Ola Kåre: Siden han vil ha utbetalinger hvert år, må vi ha årsrenten. Å.rsrente r : (L+ 0,01) , Fra formelen S:A(1 +")LG#tl får vi Á : S6ç fr4" =; : l5ooooffi x ,62 kr. (Regning med avrundet verdi r : 0, 0406, gir A æ ,40) 8
9
Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00
SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,
Oppgave P. = 2/x + C 6 P. + C 6 P. d) 12(1 x) 5 dx = 12u 5 1/( 1) du = 2u 6 + C = 2(1 x) 6 + C 6 P. Oppgave P.
Løsning MET 86 Matematikk for siviløkonomer Innleveringsfrist 5. mars 9 kl Vi benytter maksimal score 6p på hver deloppgave og 44p totalt, og grensen for å bestå er ca 86p. Du kan selv fylle ut tabellen
Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7
s Ss H= ul ss i ges su Es $ ieig *isx E i i i * r $ t s$ F I U E,EsilF'Ea g g EE $ HT E s $ Eg i i d :; il N SR S 8'i R H g i,he$r'qg5e 3
"t q) )t 9q ) nf;'=i \0.l.j >, @ N c\, l'1 { rrl r) cg K X (), T t'1 s Ss q r' s S i i * r $ t s$ iig *isx i i gs su s $ Ss N SR S f, S = ul ss i? X $ $ g $ T s i :; il \ei V,t. =R U {N ' r 5 >. ct U,sil'
A ft tt * 1 ^ an T ii ft. *< X IP * ft ii l> ff ffl *> (2 # * X fa c, * M L 7 ft tf ;U -h h T T* L /< ft * ft 7 g $ /i & 1 II tz ft ft ip ft M.
Pal 77»_ a< IP ft A 6 * *' -5 m y, m *J 7 7 t< m X D $ ^ 7 6 X b 7 X X * d 1 X 1 v_ y 1 ** 12 7* y SU % II 7 li % IP X M X * W 7 ft 7r SI & # & A #; * 6 ft ft ft < ft *< m II E & ft 5 t * $ * ft ft 6 T
LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
Oppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
Handelshøyskolen BI Eksamen i Met Matematikk for økonomer kl til Løsninger
Handelshøyskolen BI Eksamen i Met 91001 Matematikk for økonomer..1 00 kl 09.00 til 1.00 Løsninger OPPGAVE 0.1 Vi skal derivere disse funksjonene a) b) f( x) 3x 8 + 3x f ( x) x 8 1 + 3 x x 9 + 6x fx ( )
Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen
Høyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1)
Høyskolen i Buskerud Eksamen i matematikk. års grunnutdanning Mandag den. desember 00 OPPGVE. Deriver funksjonene a) f ( ) 5 + -- f ( ) 5 + -- 5 + -- b) f ( ) f ( ) ---------- ----------------------------------------
EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00
EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:
Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g
O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g H v a k a n e n m in d re k o m m u n e ta m e d s e g? Iv a r S o lv i B enc hm a rk ing Wa ter S olutions E t s p ø rs m å l s o m m a
Flervalgseksamen: MET 11802
Flervalgseksamen: MET 11802 Matematikk Eksamensdato: 20.11.2015 kl. 09.00-12.00 Totalt antall sider: 6 inkl. vedlegg Antall vedlegg: 1 (1 side) Tillatte hjelpemidler: Alle hjelpemidler + BI-godkjent eksamenskalkulator
slrrd s/ t-l Fi ia Fi fl:r ged <^'(n fi Ft'H s ks F;A= HX3 I(: 2 * d;gb ri EF g 3 = t?$ lh 3[ X +i ?$i Es xe 0i i,r s E O X > t-
#l l :ll.ll! i = l = :9X {n\j d,s.w{ 4. ld / l i i i fl: D LCJ Wi] fi ' ;= X h
EKSAME SOPPGAVE MAT-0001 (BOKMÅL)
EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.
MET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 804 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 28.02.209 Kl. 09:00 Innlevering: 07.03.209 Kl. 2:00 For mer informasjon om formalia, se eksamensoppgaven.
S2 eksamen våren 2018 løsningsforslag
S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =
Sosialantropologisk institutt
Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høst 2005 Skoleeksamen 18. januar kl. 9-15, Lesesal A Eilert Sundts
a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.
Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave
Oppgaveløsninger for "Matematikk for økonomer - kort og godt".
Oppgaveløsninger for "Matematikk for økonomer - kort og godt". Kapittel 1 Oppgave 1.1 a) (x 2 9x 12)(3 3x) =3x 2 27x 36 3x 3 +27x 2 +36x = 3x 3 +30x 2 +9x 36. b) (2x y) 2 +2(x+y)(x y)+(x+4y) 2 =4x 2 4xy+y
EKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
K v in n e r p å tv e rs 2 3.0 9.0 7
S itu a s jo n e n i p e n s jo n s k a m p e n K v in n e r p å tv e rs 2 3.0 9.0 7 H o v e d p u n k te r N y tt fo rs la g til A F P b y g d p å p e n s jo n s re fo rm e n B e g ru n n e ls e n fo
Eksamen S2 høsten 2014 løsning
Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1
Løsningsforslag til underveiseksamen i MAT 1100
Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første
Eksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer
Matematikk for økonomer Del 2
Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
Dato. Alle skrevne og trykte. kalkulator som ikke kan kommunisere med andre.
A vdeling fr ingeniørutdanning Fag: Statistikk Gruppe(r): Alle 2 klasser ksarnensppgaven består av Tillatte hjelpemidler: Antall sider med frside 6 Fagnr: LO 070A Dat 23 mai 2001 Antall ppgaver: 3 Faglig
MA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g
Protokoll'fra'' Ringerike'Arbeiderpartis'årsmøte' lørdag'8'februar'2014'klokken'10:00' '17.30' på'follum'klubbhus'
1. Åpning'' ' Protokoll'fra'' Ringerike'Arbeiderpartis'årsmøte' lørdag'8'februar'2014'klokken'10:00' '17.30' på'follum'klubbhus' VelkommenvedlokallagslederSteinRoarEriksen(Ringerikeogomegnfagligelag).
Prøve i R2 Integrasjonsmetoder
Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1
9 560 tt. i --I, ---inr-- !r--1. stue. 27.7 ril, Tiltakshaver 136.1 kvrn avrundes trl: 136 kvm. Hellandsjøen del av grunnpakken
nr. E-11 tt --, ---nr--!r--1 - stue j v 3 rhal 27.7 rl, ED re - f ED h-- sov 2 overbyggcluteplass LL. () c> 3 460,11, 4 120 1. Etasje 2. etasje Takplan BRA boenhet 2.1A ETASJE ROM P-ROM 1 etasje v.f sov
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus
Institutt for samfunnsøkonomi. Eksamensdato: , kl Tillatte hjelpemidler:
Institutt for samfunnsøkonomi Flervalgseksamen i: MET 2403 Matematikk Eksamensdato: 20.2.07, kl 09.00-2.00 Tillatte hjelpemidler: Innføringsark: Alle Svarark Totalt antall sider: 7 Antall vedlegg: (eksempel
Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
Velkommen til eksamenskurs i matematikk 1
Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB10711 Dato: 2. mars 2018 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metodekurs 1, deleksamen i matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard
Eksamen S2, Va ren 2013
Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x
Eksamensoppgave i SØK1010 Matematikk og mikroøkonomi
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1010 Matematikk og mikroøkonomi Faglig kontakt under eksamen: Hildegunn E. Stokke Tlf.: 73 59 16 65 Eksamensdato: 16.12.2013 Eksamenstid (fra-til): 5
Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside
Løsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
MA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
Løsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles
være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A
MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t
Ge i r Berge 47. En d a t a s t r u k t u r f o r o rd b ø k e r f o r n a t u r lig e sp råk. 1. In n le d n in g
Ge i r Berge 47 En d a t a s t r u k t u r f o r o rd b ø k e r f o r n a t u r lig e sp råk 1. In n le d n in g Det a r b e id e t som s k a l r e f e r e r e s h e r hadde som m ål å k o n s tru e re
Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
_..:,-_ ,..1. I. ""j. kkletten. Page 1of 1. GIS/LINE WebInnsyn- Kartutskrift. Tolga konunune
GIS/LINE WebInns3m- Kartutskrift Page 1 of 1. Nessu :Kpn nekhr.1 1- ra. 1/ 74.r TODujoita fl h Tolgo kommune. Ci. n r- Toan Onmnkart Målastakk: 1:13 000 Dete 10.04.2013 400 m Med 1orbehold em fell i kertwurmleget
(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed
Oppgave a) f (x) = (3x 2)x og f (x) = 6x 2 b) g (y) = e 3y2 y og g (y) = e 3y2 (6y 2 + ) c) F x(x, y) = (x+y)y ln(x+y) xy (x+y)(ln(x+y)) 2 Det gir, etter en del regning: og F y(x, y) = (x+y)x ln(x+y) xy
UNIVERSITETET I AGDER
UNIVERSITETET I AGDER INSTITUTT FOR MATEMATISKE FAG EKSAMEN MA-100 Kalkulus 1. Fredag. desember 011, kl. 09-14 Tillatte hjelpemidler: Kalkulator uten grafisk vindu og uten minne for tekst. Inntil fire
2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =
Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
Eksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
f =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
Eksamen REA3022 R1, Våren 2011
Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen
Sammendrag R2. www.kalkulus.no. 31. mai 2009
Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være
Oppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er
Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007
Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1
Høring - Fv 422 Etablering av særskilt fartsgrense, fartshumper og forkjørsregulering på Nordlandet i Kristiansund
helse midt norge Behandlende enhet: Saksbehandler/telefon: Vår referanse: Deres referanse: Vår dato: Region midt Jøran Fjærvoll / 90515094 18/92758-1 30.04.2018 Høring - Fv 422 Etablering av særskilt fartsgrense,
Notasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil
UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR PETROLEUMSTEKNOLOGI 00 ANVENDT GEOFYSIKK
UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR PETROLEUMSTEKNOLOGI 00 ANVENDT GEOFYSIKK RAPPORTNUMMER 86.M.08 TI LOJENGELIGHET 7034 TRONDHEIM NTH 11 E: (07) 59 49 2 RAPPORTENS TITTEL
DEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (
Sosialantropologisk institutt
Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høsten 2004 Skoleeksamen 16. desember kl. 9-15, Lesesal B, Eilert
(12) Translation of european patent specification
(12) Translation of european patent specification (11) NO/EP 2334984 B1 (19) NO NORWAY (51) Int Cl. F21V 33/00 (2006.01) Norwegian Industrial Property Office (21) Translation Published 2015.10.05 (80)
FAUSKE KOMMUNE SULITJELMA NÆRMILJØUTVALG - SØKNAD OM LÅN KR. 60.000, REGULERINGSPLAN NY BOLIGBYGGING I SULITJELMA
SAKSPAPIR FAUSKE KOMMUNE I JouralpostID: 11/7465 I Arkiv sakid.: 1111073 Sluttbehandlede vedtaksinstans: Formanskap Sak nr.: 067/11 I FORMANNSKAP II I I Saksbehandler: Gudr Hagalinsdottir I Dato: 29.08.2011
Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org
Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2200 Matematikk 1/Mikro 1 Dato for utlevering: 27.3.2017 Dato for innlevering: 7.4.2017 innen kl. 15.00 Innleveringssted: Fronter Øvrig informasjon:
TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.
IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
EKSAMEN Løsningsforslag
7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator
Stiftelsen norsk Okkupasjonshistore, ;j'1.}~0['l.:mrwn for ei 'lnne1 Flen,tV :!'J.~ o SNO. - l/~ 4... ,!j.';;'; - 45.
l..;j'1.}~0['l.:mrwn for ei 'lnne1 Flen,tV :!'J.~ o, :J 6. 7. - l/~ 4...,!j.';;'; - 45. .~~- ~,,: fc:c'.,.f., ~,.,;:.,,' ;,,' c, '.-. \'... -...,; 'y:~:,'... ~... -. '.,,,,\, ~ :.' ~'I' l ~'.. _. ~ '...,
Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017
Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )
Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.
Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling
Oppgave 1. Oppgave 2
Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 11. desember 2015 Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Svarark,
9. mai 2019 MAT Oblig 2 - Løsningsforslag
9. mai 219 MAT 24 Oblig 2 - Løsningsforslag Oppgave 1. La X være vektorrommet X = C([ 1, 1], R utstyrt med sup-norm, og la G : X X være definert ved G(f(x = f(s m ds, for en m N. Vis at G er deriverbar
Formelsamling Kalkulus
Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til [email protected]. Dette dokumentet er publisert
