BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14
|
|
- Kurt Carlson
- 7 år siden
- Visninger:
Transkript
1 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y 2 1 y dy = ln y = x1/2 dx 1 1/2 + 1 x1/2+1 + C 1 = x 3/2 + C 1 y = ±e x3/2 +C 1 = Ce x3/2 (C = ±e C 1 ) Konstanten C bestemmer vi ved initialkravet: y(0) = 1 Ce 0 = C = 1, slik at y(x) = e x3/2 (q. e. d.). Plottet kan lagast slik i Octave: > x=0:1e-2:2; > y=exp(x.^(3/2)); > plot(x,y,'k','linewidth',2) > set(gca,'fontsize',15) > xlabel('x'); ylabel('y') Resultatet er vist i gur 1. 1
2 Figur 1: Svaret i deloppgåve 1a). Figuren viser eit plott av funksjonen y(x) = exp(x 3/2 ). b) Vi veit at P 1 (x) = y(a) + y (a)(x a). Dierensiallikninga fortel oss at y (a) = 3 2 a y(a), slik at P 1 (x) = y(a) a y(a) (x a). Om vi set inn a = x n og x = x n + h, får vi P 1 (x n +h) = y(x n )+ 3 xn y(x n ) (x n +h x n ) = y(x n )+ 3 xn y(x n ) h. 2 2 c) y 0 = 1 y n+1 = y n xn y n h, x n = nh. (1) Dersom y n = y(x n ), vil høgre side i uttrykket over vere ei lineær tilnærming til y(x n +h). Vi har tidlegare sett at dette er ei god tilnærming så lenge h er liten. Dermed har vi, sidan y 0 = y(x 0 ), at y 1 y(x 1 ), som igjen gir at y 2 y(x 2 ) og så vidare. Merk at vi for kvar slik iterasjon introduserer ein feil. Denne blir større og større for kvart ledd. d) Skriptet kan til dømes sjå slik ut: % Gir start og slutt for x x0=0; xslutt=2; 2
3 % Initialverdi for y: y0=1; % Gir talet på steg (blir lest inn frå skjerm) N=input('Gi talet paa steg: '); % Steglengda h=(xslutt-x0)/n; % Lagar vektor med x-verdiar xvektor=x0:h:xslutt; % Startar på vektor med y-verdiar yvektor(1)=y0; % Lagar resten med ei for-løkke for n=1:n % Tilorndar x- og y-verdiar xn=xvektor(n); yn=yvektor(n); % Finn neste y-verdi ved Eulers metode yvektor(n+1)=yn+3/2*sqrt(xn)*yn*h; end % Skriv x- og y-verktorane til skjerm xvektor yvektor Kommentarene i skriptet burde vere ganske forklarande. Vi har gitt skriptet namnet EulersMetode.m. Når vi køyrer det i Octave og gir N-verdien 10, får vi: > EulersMetode Gi talet paa steg: 10 xvektor = Columns 1 through 7: Columns 8 through 11: yvektor = Columns 1 through 8:
4 Figur 2: Svaret i deloppgåve 1e). Figuren viser den analytiske løysinga av initialverdiproblemet saman med ei numerisk løysing basert på N = 10 steg. Columns 9 through 11: Denne måten å presentere svaret på, er jo ikkje så informativ. Det er nok betre å gjere det grask. e) Om vi legg følgande til i skriptet over, får vi dei plotta vi skal ha: % Vi plottar resultatet saman med den analytiske løysinga % Eksakt, analytisk løsying: xeks=x0:1e-2:xslutt; yeks=exp(xeks.^(3/2)); % Plottar eksakt løysing plot(xeks,yeks,'k-','linewidth',2) hold on % Plottar numerisk løysing plot(xvektor,yvektor,'r-','linewidth',2) hold off Vi køyrer skriptet igjen og set N = 10. Figuren vi då får, er vist i gur 2. Som vi ser, er ikkje dei to grafane særleg like. Då er vel h for stor då eller N for liten. f) Når vi gjentar det vi gjorde i forige del-oppgåve med stadig høgare N, får vi grafane vist i gur 3. Vi ser at den numeriske løysinga vår ser ut til å begynne å nærme seg den eksakte. Vi ser også at den numeriske løysinga 4
5 Figur 3: Svaret i deloppgåve 1f). Vi ser numeriske løysingar for ulike steglengder. konsekvent ligg under den eksakte. Fyrst når N = 500 begynnar det å bli vanskeleg å sjå skilnad på den numeriske og den eksakte løysinga. g) Vi skal vise at den generelle formelen y n+1 = y n + F (x n+1, y n+1 )h i vårt tilfelle kan skrivast slik: y n+1 = y n n + 1 h 3/2. Vi set inn at F (x, y) = 3 2 x y og at xn = nh: y n+1 = y n + 3 xn+1 y n+1 h = y n n + 1h yn+1 h = ( y n ) n + 1 h 3/2 2 = y n y n n + 1 yn+1 h 3/2 y n+1 = y n n + 1 h 3/2 (q. e. d.) h) Vi endrar linje 23 i skriptet frå deloppgåve d) til: yvektor(n+1)=yn/(1-3/2*sqrt(n+1)*h^(3/2)); Med denne endringa gjentar vi det vi gjorde i deloppgåve f). Resultatet er vist i gur 4. Som vi ser, gir slett ikkje denne metoden noko betre resultat enn framover-metoden snarare tvert imot. Sjølv med 500 steg ser vi tydeleg skilnad på den eksakte og den numeriske løysinga. Til skilnad frå framover-metoden, gir bakover-metoden her ein graf som konsekvent ligg over den eksakte løysinga. 5
6 Figur 4: Svaret på deloppgåve 1h). Vi ser her numeriske løysingar basert på Eulers bakover-metode for ulike steglengder saman med den eksakte løysinga. i) Dei to eksempla oppgåva siktar til, er midpunktsformelen for numerisk derivasjon og midtpunktsseleksjonar, til skilnad frå høgre- og venstreseleksjonar, for Riemann-summar basert på regulære partisjonar. Når vi skal implementere denne metoden, er det berre det som står i for-løkka som treng endrast i høve til framover-skriptet. Denne kan implementerast slik: for n=1:n % Tilorndar x- og y-verdiar xn=xvektor(n); yn=yvektor(n); xnhatt=xn+h/2; ynhatt=yn+3/2*sqrt(xn)*yn*h/2; % Finn neste y-verdi ved Eulers midtpunk-metode yvektor(n+1)=yn+3/2*sqrt(xnhatt)*ynhatt*h; end Når vi lagar tilsvarande plott som i gur 3 og -4, får vi gur 5 som resultat. Vi ser her at konvergensen er langt raskare enn for dei andre to metodane. Oppgave 2 Utan fasit I desse oppgåvene har vi vald å gjere skriptet som implementerar Eulers metode litt meir generiske i den forstand at vi lagar ei eiga funksjonsl for F (x, y). På den måten er det går det ganske smidig å bruke det same skriptet for å løyse 6
7 Figur 5: Svaret på deloppgåve 1j). Figuren viser tydeleg at Eulers midtpunktsmetode har heilt andre konvergenseigenskaper enn framover- og bakover-metodane. forskjellige dierensiallikningar. Skriptet vi brukar for framover-metoden ser slik ut (det er svært likt det vi brukte oppgåve 1): % Tar bort gamle variable clear all % Gir start og slutt for x x0=0; xslutt=5; % Initialverdi for y: y0=0; % Gir talet på steg N=input('Gi talet paa steg: '); % Steglengda (blir skrive til skjerm) h=(xslutt-x0)/n % Initierar vektor med x-verdiar xvektor=x0:h:xslutt; yvektor(1)=y0; for n=1:n % Tilorndar x- og y-verdiar xn=xvektor(n); yn=yvektor(n); % y' er gitt ved differensiallikninga yderiv=derivfunk(xn,yn); 7
8 % Finn neste y-verdi ved Eulers metode yvektor(n+1)=yn+yderiv*h; end % Plottar løysinga hold on plot(xvektor,yvektor,'b-','linewidth',2) hold off Skriptet heiter EulerFramoverFunk.m. Merk at initialkravet og maksimal x- verdi framleis er hard-koda; dette må endrast når vi skal løyse ulike dierensiallikngar. Funksjonsla som gir F (x, y) heiter DerivFunk.m. For deloppgåve 2a) ser ho slik ut: function F=DerivFunk(x,y) % Funksjon som blir bruka av skripta EulersMetode.m og % og EulerMidpunkt.m. Funksjonen er høgresida i diff.- % likninga y'=f(x,y) F=sin(x+y^2); Midpunkts-metoden er implementert akkurat likt; det er berre for-løkka som er ulik. Den ser slik ut: for n=1:n % Tilorndar x- og y-verdiar xn=xvektor(n); yn=yvektor(n); % Tilordnar x-hatt og y'hatt xnhatt=xn+h/2; ynhatt=yn+derivfunk(xn,yn)*h/2; % Finn neste y-verdi ved Eulers midtpunk-metode yvektor(n+1)=yn+derivfunk(xnhatt,ynhatt)*h; end a) y = sin(x + y 2 ), y(0) = 0, x [0, 5]. Vi køyrer skriptet eire gonger med stadig høgare N (lågare h): > EulerFramoverFunk Gi talet paa steg: 10 h = > EulerFramoverFunk Gi talet paa steg: 20 8
9 Figur 6: Svaret på deloppgåve 2a). Figuren viser korleis svaret konvergerar med Eulers framover-metode. h = > EulerFramoverFunk Gi talet paa steg: 50 h = > EulerFramoverFunk Gi talet paa steg: 100 h = Plottet vi då får er vist i gur 6. Vi gjer tilsvarande med midpunktsformelen. Dette resultatet er vist i gur 7. For framover-metoden ser vi ut til å få eit rimeleg konvergert med resultat med h = 0.05, medan h = (5 0)/50 = 0.1 ser ut til å vere lite nok for midtpunktsmetoden. b) y + x 2 cos(x/2) = y, y(0) = 1, x [0, 4]. Likninga er ekvivalent med y = y x 2 cos(x/s). Vi endrar dei fyrste radene i skripta til følgande: % Tar bort gamle variable clear all % Gir start og slutt for x x0=0; xslutt=4; % Initialverdi for y: y0=1; 9
10 Figur 7: Svaret på deloppgåve 2a). Figuren viser det same som gur 6 bortsett frå at vi her har brukt midtpunktsmetoden Vidare endrar vi siste linje i funksjonsla til F=sqrt(y)-x^2*cos(x/2); Konvergesplotta er vist i gur 8 og -9. Framover-resultatet er nokonlunde konvergert med h = 0.01 (N = 400), medan h = 0.08 (N = 50) ser ut til å vere rikeleg lite nok med midpunktsmetoden. Ekstra: Oppgave 3 konvergensbevis a) Vi løyser dierensiallikninga: dy dx = y dy y = dx dx 1 y dy = ln y = x + C 1 y = e x+c 1 y = ±e x+c 1 = ±e C 1 e x = Ce x (C = ±e C 1 ) Vi bestemmer C ved initialkravet: y(0) = 1 Ce 0 = C = y 0. Altså: y(x) = y 0 e x, slik at y(1) = y 0 e. 10
11 Figur 8: Svaret på deloppgåve 2b). Som i gur 6 viser guren viser korleis svaret konvergerar med Eulers framover-metode. Figur 9: Svaret på deloppgåve 2b). Figuren viser det same som gur 8 bortsett frå at vi her har brukt midtpunktsmetoden 11
12 b) I følge Eulers metode får vi at y 1 = y 0 + y 0 h = y 0 (1 + h) y 2 = y 1 + y 1 h = y 1 (1 + y) = y 0 (1 + h) (1 + h) = y 0 (1 + h) 2 y 3 = y 2 + y 2 h = y 2 (1 + h) = y 0 (1 + h) 2 (1 + h) = y 0 (1 + h) 3 Og så vidare. Etterkvart blir det ganske tydeleg at vi for kvar iterasjon multipliserar forige ledd med (1 + h) slik at y n = y 0 (1 + h) n. c) lim y N = lim y 0(1 + h) N = y 0 N N lim N ( N ) N = y 0 e (q. e. d.) d) Eulers bakover-metode gir her følgande formel: y n+1 = y n + y n+1 h y n+1 (1 h) = y n y n+1 = y n /(1 h). Det gir at y 1 = y 2 =. y n = y 0 1 h y0 y 1 1 h = 1 h y 0 (1 h) n 1 h = y 0 (1 h) 2 Grenseverdien blir: lim y N = lim N N y 0 (1 h) N = y 0 lim N ( 1 1 N ) N = y 0 lim u 0 (1+u)1/u = y 0 e (q. e. d.) Vi har her innført variabelbytet u = 1/N. 12
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer
DetaljerMatematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver
Matematikk 1, 1/13 Eksamensaktuelle numerikk-oppgåver Oppgåve 1 Skript-jeopardy a) Vi ser at skriptet inneheld ei for-løkke der variabelen n tar verdiane 1,,..., 1. For kvar gong blir n 3 lagt til variabelen
DetaljerMatematikk 1000. Eksamensaktuelle numerikk-oppgåver
Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve
DetaljerLøsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) I hver forgrening må summen av det som renner inn og det som renner
DetaljerHøgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
DetaljerLøysingsforslag for oppgåvene veke 17.
Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Retningsfelt for differensiallikningar gitt i oppg. 12.6.3 med numeriske løysingar for gitt initalkrav (og eit par til). a) b) c) d) Oppgåve 2 a) c) b)
DetaljerHøgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +
DetaljerLøsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3
DetaljerLøsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver.
Innlevering i BYFE Oppgavesett 4 Innleveringsfrist:??? klokka 4: Antall oppgaver: 5, deloppgaver Løsningsforslag Oppgave a) ln π e x cos e x ) dx Variabelbytte: u e x, du dx ex, dx e du. x Nye grenser:
DetaljerHøgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar
DetaljerBYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 37 og 38
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 37 og 38 Oppgave 1 Funksjoner og tangenter 2.1: 15 a) f(x) = x 2 f(2) = 2 2 = 4 f (x) = 2x f (2) = 2 2 = 4 Likninga for tangenten kan vi nne ved formelen
DetaljerBYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter a) Vi plotter grafen med et rutenett: >> x=-3:.1:3; >> y=x.^2; >> plot(x,y) >> grid on >> axis([-2
DetaljerLøysingsforslag for oppgåvene veke 17.
Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Reningsfel for differensiallikningar gi i oppg. 12.6.3 med numeriske løysingar for gi inialkrav (og ei par il). a) b) c) d) Oppgåve 2 a) c) b) Reningsfele
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerEksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:
Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Riemann-summer a) b) f(x) = 1/x P = {1, 6/5, 7/5, 8/5, 9/5, 2} S = {6/5, 7/5, 8/5, 9/5, 2} (x i = x i ) Her kan partisjon og
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Mange rektangler (og noen trapeser) n 1 V n = hf(x i ) med h = (b a)/n og x i = a + ih. i=0 a) Det grønne området i guren til
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerHøgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0
Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 7. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Numerisk derivasjon a) Vi kan for eksempel velge denne funksjonen: f(x) = sin x 2. Vi bruker kjerneregelen når vi deriverer:
Detaljer1 Algebra og likningar
Algebra og likningar Repetisjon av gamalt sto Løysingsforslag Oppgåve a) ln( + y) = ln + ln y F b) sin( + y) = sin + sin y F c) k ( + y) = k + ky R d) e +y = e e y R e) cos( + y) = cos cos y sin sin y
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag
Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +
DetaljerÅ løyse kvadratiske likningar
Å løyse kvadratiske likningar Me vil no sjå på korleis me kan løyse kvadratiske likningar, og me tek utgangspunkt i ei geometrisk tolking der det kvadrerte leddet i likninga blir tolka geometrisk som eit
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36
DetaljerBYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 40 Løsningsforlsag Oppgave 1 Lagring og innlesing av data a) Dersom vi skriver save Filnavn, blir alle variable vi har lagra til ei l som heter 'Filnavn'.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8
DetaljerHer skal du lære å programmere micro:biten slik at du kan spele stein, saks, papir med den eller mot den.
PXT: Stein, saks, papir Skrevet av: Bjørn Hamre Oversatt av: Stein Olav Romslo Kurs: Microbit Introduksjon Her skal du lære å programmere micro:biten slik at du kan spele stein, saks, papir med den eller
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se
DetaljerI denne oppgåva skal me lage eit enkelt spel der pingvinane har rømt frå akvariet i Bergen. Det er din (spelaren) sin jobb å hjelpe dei heim att.
Pingviner på tur Skrevet av: Geir Arne Hjelle Oversatt av: Stein Olav Romslo Kurs: Scratch Tema: Blokkbasert, Spill Fag: Programmering Klassetrinn: 1.-4. klasse, 5.-7. klasse, 8.-10. klasse Introduksjon
DetaljerFY1006/TFY Løysing øving 7 1 LØYSING ØVING 7
FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga
DetaljerLøsningsforslag. og B =
Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Å lage et plott a) Vi kan tilordne vektoren slik i kommandovinduet: ` x=0:.1:7*pi;' Legg merke til at det ikke er opplagt hvordan
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)
DetaljerNumerisk løsning av differensiallikninger Eulers metode,eulers m
Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning
DetaljerBYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 43
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 43 Oppgave 1 Riemann-summer med regulære partisjoner a) Vi velger oss f(x) = x 2 + e x, a = 1 og b = 1. Integralet blir b a f(x) dx = 1 1 ( x 2 + e x) dx
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:
DetaljerFor det aktuelle nullpunktet, som skal ligge mellom 0 og, kan vere eit greit utgongspunkt.
Innlevering nr. 3 Løysingsforslag Oppgåve 1 Vi plottar funksjonen først: x=-2:1e-2:3; y=x.*sin(x)-1; plot(x,y,'linewidth',2) hold on plot([0 pi/2],[0 0],'rx') grid on For det aktuelle nullpunktet, som
DetaljerInnlevering i matematikk Obligatorisk innlevering nr. 5 Innleveringsfrist: 18. februar 2011 kl Antall oppgåver: 5 Ein skal grunngi alle svar.
Innleering i matematikk Obligatorisk innleering nr. Innleeringsfrist: 18. februar 2011 kl. 14.00 Antall oppgåer: Ein skal grunngi alle sar. Oppgåe 1 f(x) = x2 +3 x+1. Skjæring med aksane Nullpunkt: f(x)
DetaljerLøysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016
Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som
DetaljerEKSAMEN I MATEMATIKK 1000
EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2
DetaljerHøgskolen i Oslo og Akershus. i=1
Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon
DetaljerOppgaver om fart, strekning og akselerasjon. Løsningsforslag. Oppgave 1
1 Oppgaver om fart, strekning og akselerasjon Løsningsforslag Oppgave 1 s(t) = t + sin(πt) v(t) = s (t) = + cos(πt) (πt) = + π cos(πt) a(t) = v (t) = π( sin(πt)) π = π 2 sin(πt) Dette kan kanskje fungere
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet
DetaljerViktig informasjon. Taylorrekker
Viktig informasjon Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I dette oppgavesettet har du mulighet til å svare med digital
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerDifflikninger med løsningsforslag.
Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette
DetaljerUNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
DetaljerS1 eksamen våren 2016 løysingsforslag
S1 eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (4 poeng) Løys likningane a) x x 0 4 1 x 1 9 8 x 1 x x 1
DetaljerLøsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1
Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6 Løsningsforslag Oppgave 1 x 1 +6x +x 3 = 8 x 1 +3x = 3x 1 +9x +x 3 = 10. a) Totalmatrise: 6 1 8 1 3
DetaljerEksamen 2P MAT1015 Hausten 2012 Løysing
Eksamen P MAT1015 Hausten 01 Del 1 Utan hjelpemiddel Oppgåve 1 (4 poeng) Alle som går tur til Pollfjell, skriv namnet sitt i boka som ligg i postkassen på toppen av fjellet. Nedanfor ser du kor mange som
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x) er en elementær
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
Detaljerx 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3
Obligatorisk om funksjonar og deriverte Oppgåve f 3 f = ±, =R Funksjonen f er ein parabel med botnpunkt på (,y) = (0,3) og definisjonsmengda er difor heile tallinja. Sidan f = f er funksjonen symmeterisk
Detaljera) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.
Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.
DetaljerOppsummering TMA4100. Kristian Seip. 26./28. november 2013
Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerMatematikk Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Intervallhalveringsmetoden med mer Løsningsforslag Oppgave 1 Fakultetfunksjonen a) I forrige leksjon så vi hvordan vi kan bruke for-løkker til å utføre
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.
DetaljerPrøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
DetaljerLYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1
LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,
DetaljerLØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av
DetaljerTEORI FOR OPTISKE FIBRAR MED BRAGGITTER
TEORI FOR OPTISKE FIBRAR MED BRAGGITTER Vi ser på ein optisk ber (lysbølgjeleiar) som går i z-retninga og har ein relativ permittivitet " f (x; y) = " f () som varierer over tverrsnittet. = (x; y) er ein
DetaljerPrøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...
Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + + 36 + 49 + 64 + 81 + 100 = 38. c) I
DetaljerEksamensoppgave i MA1102/6102 Grunnkurs i analyse II
Institutt for matematiske fag Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Faglig kontakt under eksamen: Magnus Landstad Tlf: Eksamensdato: 6. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Detaljer1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
DetaljerBYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 34
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 34 I denne øvinga skal vi først og fremst lære oss å lage plott i Octave. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring i ulike kataloger.
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerViktig informasjon. Taylorrekker
Viktig informasjon MAT-IN1105 - Programmering, modellering og beregninger Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I
DetaljerHøgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
DetaljerS1-eksamen hausten 2017
S1-eksamen hausten 017 Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (6 poeng) Løys likningane a) x x 80, a 1, b, c 8 b b 4ac 4 1 ( 8) 4 6
Detaljer9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5
DetaljerLøsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
DetaljerLøsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
Detaljera) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør
DetaljerEksamen MAT1015 Matematikk 2P Våren 2013
Eksamen MAT1015 Matematikk 2P Våren 2013 DEL 1 Utan hjelpemiddel Oppgåve 1 (5 poeng) Ein kveld køyrde ein taxisjåfør 10 turar. Nedanfor ser du kor mange passasjerar han hadde med på kvar av turane. 1 5
DetaljerLøysingsforslag for øving 13
Institutt for fysikk 014 TFY4108 Fysikk Løysingsforslag for øving 13 Ogåve 1. (a) de Broglie foreslo at ein artikkel med bevegelsesmengd = mv har bølgjelengd E = /(m)+u blir = m(e U) så = h/ m(e U). Dermed:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en
DetaljerOppsummering TMA4100. Kristian Seip. 17./18. november 2014
Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis
DetaljerLøsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.
Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller
DetaljerTDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital
DetaljerTest, 4 Differensiallikninger
Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens
DetaljerEksamen 2P MAT1015 Vår 2012 Løysing
Eksamen 2P MAT1015 Vår 2012 Oppgåve 1 (14 poeng) a) 20 elevar blir spurde om kor mange datamaskiner dei har heime. Sjå tabellen ovanfor. Finn variasjonsbreidda, typetalet, medianen og gjennomsnittet. Variasjonsbreidda
DetaljerMatematikk Øvingsoppgaver i numerikk leksjon 4 m-ler
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
DetaljerLøsningsskisser - Kapittel 6 - Differensialligninger
Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken
DetaljerLøsningsskisser til oppgaver i Kapittel Integrerende faktor
Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.
Detaljer