Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag
|
|
|
- Ruth Helland
- 9 år siden
- Visninger:
Transkript
1 Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x) er en elementær funksjon denert på hele R. Derfor er også f(x) kontinuerleg på hele R (inkludert intevallet [0, π/2]). Ved skjæringssetninga må f derfor ha minst ett nullpunkt på intevallet (se s. 97 i Kalkulus). c) Slik kan det se ut når vi leker oss i MATLAB: > a=0; > b=pi/2; > fa=a-cos(a) fa = -1 > fb=b-cos(b) fb = ans = ans = ans = ans = ans =
2 ans = ans = ans = ans = ans = ans = ans = ans = > fc fc = ans = ans = > NullPkt=(a+b)/2 NullPkt = Kanskje ikke så spennende lesning. Men forhåpentligvis blir systematikken synlig. Og: Forhåpentligvis ser vi verdien av at vi kan be maskina gjøre disse noe enerverende repetisjonene for oss. Hver slik repetsjon, alså sekvenser av typen > fc fc =
3 ans = kaller vi en iterasjon. Og vi itererer helt til dieransen mellom b og a er mindre enn den nøyaktigheten vi krever. I vårt tilfelle har vi komment fram til at nullpunktet x 0.742, og at det nøyaktige svaret ligger i et intervall sentrert om denne verdien med bredden Om vi ville hatt svaret mer nøyaktig enn dette, måtte vi ha fortsatt med iterasjonene våre. Skjemaet, eller algoritmen, vi har fulgt kan skrives slik: Bestem a og b slik at b>a og f(a) og f(b) har motsatt fortegn Gjenta følgende så lenge b-a er større enn en viss størrelse: Finn midpunktet c, c=(a+b)/2 Rekn ut f(c) Dersom f(a) og f(c) har samme fortegn: La c bli din nye a Dersom f(a) og f(c) ikke har samme fortegn: La c bli din nye b Når b-a er liten nok, finner vi ei tilnærma løsning som (a+b)/2 d) Vi kjører skriptet: > HalveringsEksempel NullPunkt = Gikk ikke dette raskt? Vi plotter grafen til f(x) sammen med nullpunktskandidaten vår (og x-aksen): > x=0:.1:pi/2; > plot(x,x-cos(x),'linewidth',2) > hold on > plot([0 pi/2],[0 0],'k-') > plot(nullpunkt,0,'ro','linewidth',2) > hold off Her har vi også tatt med x-aksen som ei tynn, svart linje. Resultatet er vist i gur 1. e) Svaret kan gjøres mer nøyaktig ved å la variabelen Pres, presisjonen, bli enda mindre. f) For å løse b)-oppgava i oppgave 9, delavsnitt 2.5, gjør vi noen små justeringer på skriptet (og lagrer det): 1 % Implementering av halveringsmetoden. 2 % Løser likninga x^5+3*x-2= % Fikserer endepunktene: 3
4 Figur 1: Grafen til f(x) = x cos x for x [0, π/2] sammen med numerisk utregnet nullpunkt (rød sirkel). 5 a=0; 6 b=1; 7 8 % Funksjonsverdiene i endepunktene: 9 fa=a^5+3*a-2; 10 fb=b^5+3*b-2; Pres=1e-4; % Angir ønsket presisjon % While-løkke som gjentar seg så lenge intervallet mellom a og b har 15 % lengde større enn Pres 16 while b-a>pres 17 c=(a+b)/2; % Regner midpunktet og tilordner dette til c 18 fc=c^5+3*c-2; % Funksjonsverdien i midpunktet 19 if fa*fc<0 % Undersøker om fortegnene er like for f(a) og f(c) 20 b=c; % Lar midpunktet bli den nye høgre enden 21 else 22 a=c; % Lar midpunktet bli den nye venstre enden 23 end % Avslutter if-sats 24 end % Avslutter while-løkke NullPunkt=(a+b)/2 % Skriver nullpunktet til skjerm Her har vi forandra funksjonsuttrykket i de relevante linjene (linje 2, 9, 10 og 18). Vi har også justert endepunktene (linje 6). Vi har her valgt en noe lavere verdi for Pres altså blir svaret noe mer nøyaktig enn i forige 4
5 deloppgave (linje 12). Når vi nå skriver HalveringsEksempel i MATLAB, får vi svaret x Vi kan nne ut hvor mange iterasjoner som har blitt gjort ved, for eksempel, å fjerne semikolonet i den første linja i whileløkka. Når vi da kjører skriptet, får vi: MATLAB exe:192> HalveringsEksempel c = c = c = c = c = c = c = c = c = c = c = c = c = c = NullPunkt = Ved å telle hvor mange ganger c har blitt tilordna, nner vi at det har blitt gjort 14 iterasjoner. Men dette kan gjøres litt mer sostikert: Vi kan legge inn en tellefunksjon: 1 % Implementering av halveringsmetoden. 2 % Løser likninga x-cos(x)= % Fikserer endepunktene: 5 a=0; 6 b=1; 7 8 % Funksjonsverdiene i endepunktene: 9 fa=a^5+3*a-2; 10 fb=b^5+3*b-2; Pres=1e-4; % Angir ønsket presisjon Iterasjoner=0; % Initierer teller % While-løkke som gjentar seg så lenge intervallet mellom a og b har 17 % lengde større enn Pres 18 while b-a>pres 19 c=(a+b)/2; % Regner midpunktet og tilordner dette til c 20 fc=c^5+3*c-2; % Funksjonsverdien i midpunktet 21 if fa*fc<0 % Undersøker om fortegnene er like for f(a) og f(c) 5
6 22 b=c; % Lar midpunktet bli den nye høgre enden 23 else 24 a=c; % Lar midpunktet bli den nye venstre enden 25 end % Avslutter if-sats 26 Iterasjoner=Iterasjoner+1; % Antall iterasjoner økes med én 27 end % Avslutter while-løkke NullPunkt=(a+b)/2 % Skriver nullpunktet til skjerm 30 Iterasjoner % Skriver antall iterasjoner til skjerm Dette skriptet er identisk med versjonen over bortsett fra linje 14, 26 og 30. Først er tellevariabelen, Iterasjoner, satt til 0. Inni while-løkka lar vi telleren øke med én for hver iterasjon, og til slutt blir dette tallet skrevet til skjerm. Når vi nå kjører skriptet, kan det se slik ut: > HalveringsMetoden NullPunkt = Iterasjoner = 14 g) Alle steder der det blir referert til et funksjonsuttrykk, erstatter vi uttrykket med et kall til funksjonsla NullpktFunk.m. (Selvsagt kan vi velge å kalle funksjonen noe annet.): 1 % Implementering av halveringsmetoden. 2 % Løser likninga f(x)=0, der funksjonen f(x) skal være 3 % gitt i funksjonfila NullpktFunk.m 4 5 % Fikserer endepunktene 6 a=0; 7 b=pi/2; 8 9 % Funksjonsverdiene i endepunktene 10 fa=nullpktfunk(a); 11 fb=nullpktfunk(b); % Angir ønsket presisjon 14 Pres=1e-4; % Initierer teller 17 Iterasjoner=0; % While-løkke som gjentar seg så lenge intervallet mellom a og b har lengde 20 % større enn Pres 21 while b-a>pres 22 c=(a+b)/2; % Regner midpunktet og tilordner dette til c 23 fc=nullpktfunk(c); % Funksjonsverdien i midpunktet 24 if fa*fc<0 % Undersøker om fortegnene er like for f(a) og f(c) 25 b=c; % Lar det gamle midpunktet bli den nye høgre enden 6
7 26 else 27 a=c; % Lar det gamle midpunktet bli den nye venstre enden 28 end % Avslutter if-sats 29 Iterasjoner=Iterasjoner+1; % Antall iterasjoner økes med én 30 end % Avslutter while-løkke 31 NullPunkt=(a+b)/2 % Skriver nullpunktet til skjerm 32 Iterasjoner % Skriver antall iterasjoner til skjerm Funksjonla NullpktFunk.m kan for eksempel se slik ut: function F=NullpktFunk(x) % Funksjonfil som brukes i skriptet HalveringsMetoden F=x-cos(x); Fordelen med å gjøre det på denne måten, er at når vi en annen gang skal nne nullpunktene til en annen funksjon, trenger vi ikke å endre noe funksjonsuttrykk i skriptet, vi kan ganske enkelt bare endre på den siste linja i funksjonsla over. Vi må retnok fremdeles angi a og b i skriptet. Men vi kan endre skriptet slik at a og b blir lest inn fra kommando-viduet for hver gang. Dette kan gjøres med input-funksjonen i MATLAB. Linje 6 og 7 kan erstattes med a=input('gi venstre grense: '); b=input('gi hoegre grense: '); 7
BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)
Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3
Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør
Matematikk Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Intervallhalveringsmetoden med mer Løsningsforslag Oppgave 1 Fakultetfunksjonen a) I forrige leksjon så vi hvordan vi kan bruke for-løkker til å utføre
Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36
Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1
Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + + 36 + 49 + 64 + 81 + 100 = 38. c) I
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:
Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2
Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for
Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere
Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.
Høgskolen i Oslo og Akershus. i=1
Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon
Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1
Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6 Løsningsforslag Oppgave 1 x 1 +6x +x 3 = 8 x 1 +3x = 3x 1 +9x +x 3 = 10. a) Totalmatrise: 6 1 8 1 3
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se
Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2
Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet
Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag
Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)
Matematikk 1000. Eksamensaktuelle numerikk-oppgåver
Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve
Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Riemann-summer a) b) f(x) = 1/x P = {1, 6/5, 7/5, 8/5, 9/5, 2} S = {6/5, 7/5, 8/5, 9/5, 2} (x i = x i ) Her kan partisjon og
MA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver
Matematikk 1, 1/13 Eksamensaktuelle numerikk-oppgåver Oppgåve 1 Skript-jeopardy a) Vi ser at skriptet inneheld ei for-løkke der variabelen n tar verdiane 1,,..., 1. For kvar gong blir n 3 lagt til variabelen
Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer
Løsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
Matematikk Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter a) Vi plotter grafen med et rutenett: >> x=-3:.1:3; >> y=x.^2; >> plot(x,y) >> grid on >> axis([-2
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Løsningsforslag. og B =
Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi
a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Matematikk Øvingsoppgaver i numerikk leksjon 7. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Numerisk derivasjon a) Vi kan for eksempel velge denne funksjonen: f(x) = sin x 2. Vi bruker kjerneregelen når vi deriverer:
Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk
Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Skript I denne øvinga skal vi lære oss å lage skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Dette er noe vi kommer
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
2 = 4 x = x = 3000 x 5 = = 3125 x = = 5
Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)
Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver.
Innlevering i BYFE Oppgavesett 4 Innleveringsfrist:??? klokka 4: Antall oppgaver: 5, deloppgaver Løsningsforslag Oppgave a) ln π e x cos e x ) dx Variabelbytte: u e x, du dx ex, dx e du. x Nye grenser:
Heldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet
Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2
Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner
Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator
Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen
Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Mange rektangler (og noen trapeser) n 1 V n = hf(x i ) med h = (b a)/n og x i = a + ih. i=0 a) Det grønne området i guren til
Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +
Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =
Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Fasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.
Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.
Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling
Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:
Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:
BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14
BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y
Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne
Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40
Innlevering i BYFE/EMFE 1000 Oppgavesett 4 Innleveringsfrist: 8. mars klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) Om vi tenker oss at vi spiser x 1 hg banan, drikker x hg lettmelk og spiser
Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer
h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like
For det aktuelle nullpunktet, som skal ligge mellom 0 og, kan vere eit greit utgongspunkt.
Innlevering nr. 3 Løysingsforslag Oppgåve 1 Vi plottar funksjonen først: x=-2:1e-2:3; y=x.*sin(x)-1; plot(x,y,'linewidth',2) hold on plot([0 pi/2],[0 0],'rx') grid on For det aktuelle nullpunktet, som
Numerisk løsning av ikke-lineære ligninger
Numerisk løsning av ikke-lineære ligninger Anne Kværnø February 26, 2018 1 Problemstilling Vi vil først se på numeriske teknikker for å løse skalare ligninger (en ligning, en ukjent), for eksempel eller
NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. Ellers minner vi om at der er mange MATLAB-ressurser tilgjengelig.
Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16
Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne
Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org
Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er
Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i
EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag
Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. > 2+2 4 > 3-2 1
Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3.
Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) I hver forgrening må summen av det som renner inn og det som renner
Deleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
MAT1110: Obligatorisk oppgave 2, V Løsningsforslag
MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1
LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,
Løsningsforslag til Obligatorisk innlevering 7
Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)
Utsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.
Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende
Løsningsforslag til utvalgte oppgaver i kapittel 5
Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln
Løsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross
Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent.
Innlevering i BYFE 000 Oppgavesett Innleveringsfrist: 0 oktober klokka :00 Antall oppgaver: 6 Noen av disse oppgavene løses ved hjelp av papir blyant, mens andre oppgaver løses ved hjelp av MATLAB til
MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag
1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir
eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor
eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)
TDT4105 IT Grunnkurs Høst 2014
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital
Oppgaver om fart, strekning og akselerasjon. Løsningsforslag. Oppgave 1
1 Oppgaver om fart, strekning og akselerasjon Løsningsforslag Oppgave 1 s(t) = t + sin(πt) v(t) = s (t) = + cos(πt) (πt) = + π cos(πt) a(t) = v (t) = π( sin(πt)) π = π 2 sin(πt) Dette kan kanskje fungere
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:
Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
