Matematikk Løsningsforslag

Størrelse: px
Begynne med side:

Download "Matematikk Løsningsforslag"

Transkript

1 Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Intervallhalveringsmetoden med mer Løsningsforslag Oppgave 1 Fakultetfunksjonen a) I forrige leksjon så vi hvordan vi kan bruke for-løkker til å utføre gjentatte addisjoner. Vi kan bruke den samme tankegangen til å utføre gjentatte multiplikasjoner. Funksjonen kan implementeres slik: 1 function F=Fakultet(n) 2 3 % Funksjon som regner ut n!, n-fakultet, for det naturlige tallet n 4 % Funksjonen tar bare skalarer som input. 5 6 % Begynner med å sette F til en 7 F=1; 8 for i=1:n 9 F=F*i; % Mulitipliserer med i med i fra 1 til og med n 10 end Vi lagrer den som Faktultet.m og tester den i kommandovinduet: >> Fakultet(1) 1 >> Fakultet(4) 1

2 24 >> Fakultet(10) >> Fakultet(20) e+18 n! blir tydeligvis ganske stor ganske fort. Funksjonen slik vi har implementert den nå gir faktisk rett svar for n = 0 også. Men dette er ikke så opplagt. Vi kan bruke if-satser til å tvinge funksjonen til å gi rett svar for n = 0. Vi kan også bruke if-satser til å presisere at argumentet ikke kan være negativt: 1 function F=FakultetV2(n) 2 3 % Funksjon som regner ut n!, n-fakultet, for det naturlige tallet n 4 % Funksjonen tar bare skalarer som input. 5 6 if n<0 7 disp('n kan ikke være negativ') 8 return 9 elseif n==0 10 F=1; 11 else 12 F=1; % Setter F til én 13 for i=1:n 14 F=F*i; % Mulitipliserer med i med i fra 1 til og med n 15 end 16 end Vi tester versjon 2 også: >> FakultetV2(-5) n kan ikke være negativ >> FakultetV2(0) 1 2

3 Figur 1: Plott av γ(x + 1) og n!. >> FakultetV2(4) 24 Vi kunne også brukt en if-sats for å gi ei feilmelding dersom man satte inn et ikke-heltallig argument. b) Når vi nå lager et plott, er det mer praktisk å bruke MATLABs egen fakultets-funksjon siden denne tar vektor-argumenter: >> x=0:1e-2:5; >> y=gamma(x+1); >> n=0:5; >> y2=factorial(n); >> plot(x,y,'linewidth',2) >> hold on >> plot(n,y2,'ro','linewidth',2) >> hold off >> set(gca,'fontsize',15) >> legend('\gamma(x+1)','n!') Resultatet er vist i gur 1. c) Vi plotter e x /γ(x + 1) fra 0 til 20: 3

4 Figur 2: Plot av grafen til e x /γ(x + 1). I plottet til høgre har vi zoomet inn på maksimalverdien til funksjonen. >> x=0:1e-2:20; >> y=exp(x)./gamma(x+1); >> plot(x,y,'linewidth',2) >> set(gca,'fontsize',15) Resultatet er vist i gur 2. Mye tyder på at brøken går mot null når x blir stor altså at γ-funksjonen vokser raskere enn eksponentialfunksjonen. Vi ser også at brøken er maksimal for x 2.2. Oppgave 2 Intevallhalveringsmetoden cos x. a) Selv om likninga ser ganske enkel ut, har vi ingen teknikker for å løse denne med papir og blyant. b) Vi plotter: >> x=0:1e-2:3; >> y1=sqrt(x); >> y2=cos(x); >> plot(x,y1,'linewidth',2) >> hold on >> plot(x,y2,'r','linewidth',2) >> grid on >> hold off >> set(gca,'fontsize',15) >> legend('sqrt(x)','cos(x)') Resultatet ser vi i gur 3. Det kan se ut som at løsninga skal ligge i nærheten av

5 Figur 3: Plot av grafen til x og til cos x. I plottet til høgre har vi zoomet inn skjæringspunktet. c) Vi kan skrive likninga som x cos 0, eller f(x) = 0 der f(x) = x cos x. Vi ser at f(0) = 0 cos 0 = 1 < 0 og ( π ) π f = 2 2 cos π π 2 = 2 > 0. Altså har f(x) ulike fortegn for 0 og π/2. Siden f er kontinuerlig, må den krysse x-aksen (y = 0) for (minst) en eller annen verdi mellom 0 og π/2 1. d) Vi setter i gang (kommentarene er der bare for å forklare hva vi gjør, vanligvis har det ikke så mye for seg å kommentere kommandoer utført i kommandovinduet): >> a=0; % Bestemmer a >> b=pi/2; % Bestemmer b >> Fa=sqrt(a)-cos(a); % Funksjonsverdiene >> Fb=sqrt(b)-cos(b); >> Fa*Fb % Kontrollerer at f(a) og f(b) har ulike fortegn >> c=(a+b)/2; % Midtpunktet >> Fc=sqrt(c)-cos(c); % Funksjonsverdien i midpunktet >> Fa*Fc % Ser om f(a) og f(b) har samme fortegn 1 Denne sammenhengen kalles skjæringssetninga. 5

6 >> b=c; % Siden de ikke har det, setter vi ny b til å være c >> c=(a+b)/2; % Nytt midtpunkt og funksjonsverdi >> Fc=sqrt(c)-cos(c); >> Fa*Fc % Sjekker fortegnene igjen >> a=c; % Siden f(a) og f(c) har samme forteng, lar vi ny a vere c >> c=(a+b)/2; >> Fc=sqrt(c)-cos(c); >> Fa*Fc >> a=c; >> c=(a+b)/2; >> Fc=sqrt(c)-cos(c); >> Fa*Fc >> b=c; >> c=(a+b)/2 % Nå har vi gjort dette nok; vi regner ut sluttsvaret c = Når vi gjør mange gjentakelser på denne måten, er det viktig å bruke piltastene for alt de er verd. Men selv om vi gjør dette, blir dette fort ganske kjedelig... Etter å ha gjentat prosedyren re ganger, har vi kommet fram til det tinærma svaret x e) Vi velger å gjøre 10 iterasjoner i stedet for 4. Da får vi et mer nøyaktig svar. Metoden kan implementeres slik: 1 % Implementering av intervallhalveringsmetoden for likninga 2 % sqrt(x)-cos(x)=0 med a=0 og b=pi/2 som start-grenser 3 4 % Grenser 6

7 5 a=0; 6 b=pi/2; 7 8 % Funksjonsverdier 9 Fa=sqrt(a)-cos(a); 10 Fb=sqrt(b)-cos(b); % Starter for-løkke som kjøres 10 ganger 13 for i=1:10 14 c=(a+b)/2; % Midtpunktet 15 Fc=sqrt(c)-cos(c); % Funksjonsverdi i midtpunktet 16 if Fa*Fc<0 17 b=c; % Setter ny b til c 18 else 19 a=c; % Setter ny a til c 20 end 21 end % Regner ut nytt midtpunkt og skriver svaret til skjerm 24 x=(a+b)/2 Vi har kalt det IntervallHalvering.m. I kommandovinduet gir det følgende svar: >> IntervallHalvering Du må ikke bli for frustret om dette ikke går på første forsøk. Det er veldig vanlig å gjøre små feil, enten det er feil i logikken eller trykkfeil, som gjør at ting ikke fungerer med en gang. Når dette skjer, les feilmeldinga du får i MATLAB og se om du kan rette den opp. Vi plotter f(x) sammen med nullpunkts-kandidaten vår: >> xvektor=0:1e-2:3; >> fvektor=sqrt(xvektor)-cos(xvektor); >> plot(xvektor,fvektor,'linewidth',2) >> grid on >> hold on >> plot(x,0,'ro','linewidth',2) >> hold off >> set(gca,'fontsize',15) Som vi ser, gur 4, ser dette ut til å stemme ganske bra med den nøyaktigheten vi har i plottet. 7

8 Figur 4: Plott som viser f(x) = x cos x sammen med nullpunktet vi fant i oppgave 2e). f) I vårt skript skal altså linje 13 erstattes med while abs(b-a)>1e-3. Vi gjør det, og kjører skriptet igjen: >> IntervallHalvering Vi kk et noe annet svar. Selv om vi ikke vet om dette svaret er mer eller mindre nøyaktig enn det svaret vi kk i e), har dette svaret en klar fordel: Vi vet at feilen ikke er større enn Eller, siden vi har regna ut midtpunktet mellom a- og b-verdiene vi kk til slutt, vet vi at feilen er mindre enn while-løkka har nemlig kjørt helt til intervallet [a, b] har bredden Selvsagt kan vi sette dette tallet enda lavere og få et mer nøyaktig svar. Om vi endrer linja til while abs(b-a)>1e-5, får vi dette svaret: >> format long >> IntervallHalvering Her har vi skrevet ut svaret vårt med litt ere desimaler. Dette poenget står ganske sentralt i kurset: Selv om vi bare nner en tilnærma løsning, 8

9 kan vi få løsninga til å være så nøyaktig som vi selv måtte ønske. Og da er det kanskje ikke så farlig at den ikke er eksakt... g) 2x 4 Vår nye f(x) blir altså f(x) = 2x x 4. Siden f(0) = 4 og f(4) = 2, og f er kontinuerlig, må f ha minst ett nullpunkt på intervallet [0, 4]. Vi justerer a og b tilsvarende i linje 5 og 6, og oppdaterer f(x) i linje 9, 10 og 15. I while-linja beholder vi nøyaktigheten Med disse endringene blir skriptet vårt seende slik ut: 1 % Implementering av intervallhalveringsmetoden for likninga 2 % 2x-sqrt(x)-4=0 med a=0 og b=4 som start-grenser 3 4 % Grenser 5 a=0; 6 b=4; 7 8 % Funksjonsverdier 9 Fa=2*a-sqrt(a)-4; 10 Fb=2*b-sqrt(b)-4; % Starter for-løkke som kjøres 10 ganger 13 %for i=1:10 14 while abs(b-a)>1e-5 15 c=(a+b)/2; % Midtpunktet 16 Fc=2*c-sqrt(c)-4; % Funksjonsverdi i midtpunktet 17 if Fa*Fc<0 18 b=c; % Setter ny b til c 19 else 20 a=c; % Setter ny a til c 21 end 22 end % Regner ut nytt midtpunkt og skriver svaret til skjerm 25 x=(a+b)/2 Vi kjører skriptet og får (med mange desimaler) >> IntervallHalvering Likninga kan løses eksakt. Det er en andregradslikning ikke i x men i 9

10 x. Om vi lar u = x, slik at u 2, får vi 2u 2 u 4 = 0 u = ( 1) ± ( 1) 2 c 2 ( 4) ( 1 + ) 2 ( ) = 4 16 = 1 ± 33 4 Vi har her benyttet oss av at x ikke kan være negativ. Vi sammenligner løsninga vår med det eksakte svaret: >> Eksakt=(1+sqrt(33))^2/16; >> x-eksakt e-06 Feilen er alstå Det må vel kunne sies å være godkjent. h) Vi lager ei funksjonsl som implementerer f(x). Vi kan godt velge å bruke den siste funksjonen, 2x x 4: 1 function f=funktilinthalv(x) 2 3 % Funksjon som vi skal finne nullpunktet til 4 % Blir brukt av skriptet IntervallHalvering 5 6 %f=sqrt(x)-cos(x); 7 f=2*x-sqrt(x)-4; Her ser vi også at vi har gamle-funsjonen, f(x) = x cos(x) på lur; det er fort gjort å kommentere inn denne og ut den andre (Ta bort prosenttegnet i linje 6 og sett det inn i linje 7). Vi kan nå referere til denne funksjonen i intervallhalverings-skriptet vårt (linje 12, 13 og 19): 1 % Implementering av intervallhalveringsmetoden for likninga 2 % FunkTilIntHalv(x)=0, der funksjonen er gitt i ei eiga 3 % Funksjonfil. a og b er start-grensene for metoden. 4 5 % Grenser 6 a=0; 7 b=4; 8 9 % Presisjon 10 Pres=1e-5; 10

11 11 12 % Funksjonsverdier 13 Fa=FunkTilIntHalv(a); 14 Fb=FunkTilIntHalv(b); % Starter for-løkke som kjøres 10 ganger 17 %for i=1:10 18 while abs(b-a)>pres 19 c=(a+b)/2; % Midtpunktet 20 Fc=FunkTilIntHalv(c); % Funksjonsverdi i midtpunktet 21 if Fa*Fc<0 22 b=c; % Setter ny b til c 23 else 24 a=c; % Setter ny a til c 25 end 26 end % Regner ut nytt midtpunkt og skriver svaret til skjerm 29 x=(a+b)/2 På den måten er det enklare å oppdatere skriptet når vi skal løyse andre likninger senere. Her har vi også denert presisjonen, Pres, i ei eiga linje (linje 9). Variabelen Pres dukkar opp igjen i while-linja (linje 17). 11

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + 5 + 36 + 49 + 64 + 81 + 100 = 385.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i = 1 + + 3 + 4 + + 6 + 7 + 8 + 9 + 10 = 1 + 4 + 9 + 16 + + 36 + 49 + 64 + 81 + 100 = 38. c) I

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Tredjegradslikninga a) Vi viser her hvordan det kan gjøres både som funksjonsl og som skript. Vi starter med funksjonla: 1

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 5. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x) er en elementær

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker

Matematikk Øvingsoppgaver i numerikk leksjon 5 for-løkker Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 for-løkker I dette settet skal vi introdusere for-løkker. Først vil vi bruke for-løkker til å regne ut summer. Vi skal også se på hvordan vi kan implementere

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 35 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 35 Oppgave 1 Halveringsmetoden a) x = cos x x cos x = 0 eller f(x) = 0 med f(x) = x cos x b) f(0) = 0 cos 0 = 1 < 0 og f(π/2) = π/2 cos(π/2) = π/2 > 0. f(x)

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 1 Innleveringsfrist: 14. september klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) ln a ln 3 a+ln 4 a = ln a 1/2 ln a 1/3 +ln a 1/4 = 1 2 ln a 1 3

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet

Detaljer

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1 Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6 Løsningsforslag Oppgave 1 x 1 +6x +x 3 = 8 x 1 +3x = 3x 1 +9x +x 3 = 10. a) Totalmatrise: 6 1 8 1 3

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler

Matematikk Øvingsoppgaver i numerikk leksjon 4 m-ler Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 m-ler I denne øvinga skal vi lære oss å lage m-ler små tekstler som vi bruker i MATLAB-sammenheng. Der nst to typer m-ler: Funksjonsler og skript. Funksjonsler

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript

Matematikk Øvingsoppgaver i numerikk leksjon 3 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Skript I denne øvinga skal vi lære oss å lage skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Dette er noe vi kommer

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 40 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 40 Løsningsforlsag Oppgave 1 Lagring og innlesing av data a) Dersom vi skriver save Filnavn, blir alle variable vi har lagra til ei l som heter 'Filnavn'.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Å lage et plott a) Vi kan tilordne vektoren slik i kommandovinduet: ` x=0:.1:7*pi;' Legg merke til at det ikke er opplagt hvordan

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Høgskolen i Oslo og Akershus. i=1

Høgskolen i Oslo og Akershus. i=1 Innlevering i BYFE/EMFE 1000 Oppgavesett 2 Innleveringsfrist: 19. oktober klokka 14:00 Antall oppgaver: 2 Løsningsforslag Oppgave 1 a) Skriptet starter med å la Sum være 0, så blir det for hver iterasjon

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting

Matematikk Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter a) Vi plotter grafen med et rutenett: >> x=-3:.1:3; >> y=x.^2; >> plot(x,y) >> grid on >> axis([-2

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Riemann-summer a) b) f(x) = 1/x P = {1, 6/5, 7/5, 8/5, 9/5, 2} S = {6/5, 7/5, 8/5, 9/5, 2} (x i = x i ) Her kan partisjon og

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Numerisk derivasjon a) Vi kan for eksempel velge denne funksjonen: f(x) = sin x 2. Vi bruker kjerneregelen når vi deriverer:

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. Ellers minner vi om at der er mange MATLAB-ressurser tilgjengelig.

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2 Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 8. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Løsningsforslag Oppgave 1 Mange rektangler (og noen trapeser) n 1 V n = hf(x i ) med h = (b a)/n og x i = a + ih. i=0 a) Det grønne området i guren til

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 34

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 34 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 34 I denne øvinga skal vi først og fremst lære oss å lage plott i Octave. I tillegg skal vi lære oss hvordan vi manøvrerer oss omkring i ulike kataloger.

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. >> 2+2 4 >> -2 1

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 37 og 38

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 37 og 38 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 37 og 38 Oppgave 1 Funksjoner og tangenter 2.1: 15 a) f(x) = x 2 f(2) = 2 2 = 4 f (x) = 2x f (2) = 2 2 = 4 Likninga for tangenten kan vi nne ved formelen

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver.

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 4 Innleveringsfrist:??? klokka 14:00 Antall oppgaver: 5, 20 deloppgaver. Innlevering i BYFE Oppgavesett 4 Innleveringsfrist:??? klokka 4: Antall oppgaver: 5, deloppgaver Løsningsforslag Oppgave a) ln π e x cos e x ) dx Variabelbytte: u e x, du dx ex, dx e du. x Nye grenser:

Detaljer

Oppgaver om fart, strekning og akselerasjon. Løsningsforslag. Oppgave 1

Oppgaver om fart, strekning og akselerasjon. Løsningsforslag. Oppgave 1 1 Oppgaver om fart, strekning og akselerasjon Løsningsforslag Oppgave 1 s(t) = t + sin(πt) v(t) = s (t) = + cos(πt) (πt) = + π cos(πt) a(t) = v (t) = π( sin(πt)) π = π 2 sin(πt) Dette kan kanskje fungere

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting

Matematikk Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting Som du sikkert vet, nnes det mye programvare som kan plotte funksjoner for eksempel GeoGebra og Desmos. Selvsagt vil vi ikke på

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver Matematikk 1, 1/13 Eksamensaktuelle numerikk-oppgåver Oppgåve 1 Skript-jeopardy a) Vi ser at skriptet inneheld ei for-løkke der variabelen n tar verdiane 1,,..., 1. For kvar gong blir n 3 lagt til variabelen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte

Detaljer

Erfaringar med numeriske metodar i matematikk-undervisinga for dataingeniørstudentar. Haugesund, 5. juni 2018

Erfaringar med numeriske metodar i matematikk-undervisinga for dataingeniørstudentar. Haugesund, 5. juni 2018 Erfaringar med numeriske metodar i matematikk-undervisinga for dataingeniørstudentar Haugesund, 5. juni 2018 «Kandidaten har gode kunnskaper om numeriske beregninger og deres muligheter og begrensninger»

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x.

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. Oppgave 7.2.6 a) x d 1.0 x := 1.0 (1) for n from 1 by 1 to 20 do x d sin x end do x := 0.8170988 x := 0.7562117 x := 0.6783077 x := 0.6275718321 x := 0.5871809966 x := 0.550163908 x := 0.5261070755 x :=

Detaljer

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver veke 14 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver veke 14 Løysingsforslag Oppgave 1 Samanlikning med analytisk løysing y = 3 2 x y, y(0) = 1. a) Dierensiallikninga er separabel: dy dx = 3 x y 2 dy = 3 x dx y

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. > 2+2 4 > 3-2 1

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

For det aktuelle nullpunktet, som skal ligge mellom 0 og, kan vere eit greit utgongspunkt.

For det aktuelle nullpunktet, som skal ligge mellom 0 og, kan vere eit greit utgongspunkt. Innlevering nr. 3 Løysingsforslag Oppgåve 1 Vi plottar funksjonen først: x=-2:1e-2:3; y=x.*sin(x)-1; plot(x,y,'linewidth',2) hold on plot([0 pi/2],[0 0],'rx') grid on For det aktuelle nullpunktet, som

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 43

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 43 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 43 Oppgave 1 Riemann-summer med regulære partisjoner a) Vi velger oss f(x) = x 2 + e x, a = 1 og b = 1. Integralet blir b a f(x) dx = 1 1 ( x 2 + e x) dx

Detaljer

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40 Innlevering i BYFE/EMFE 1000 Oppgavesett 4 Innleveringsfrist: 8. mars klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) Om vi tenker oss at vi spiser x 1 hg banan, drikker x hg lettmelk og spiser

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do Oppgave 7.2.6 a) x d 1.0 for n from 1 by 1 to 200 do x d sin x Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. d) Det er klart at f x = 0 hvis og bare hvis x

Detaljer

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5 Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene

Detaljer

Numerisk løsning av ikke-lineære ligninger

Numerisk løsning av ikke-lineære ligninger Numerisk løsning av ikke-lineære ligninger Anne Kværnø February 26, 2018 1 Problemstilling Vi vil først se på numeriske teknikker for å løse skalare ligninger (en ligning, en ukjent), for eksempel eller

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag

MAT1110: Obligatorisk oppgave 2, V Løsningsforslag MAT1110: Obligatorisk oppgave 2, V-2015 Oppgave 1: a) Vi har Av 1 = ( 4 6 6 1 Løsningsforslag ) ( 3 2 ) = ( 24 16 ) = 8v 1, så v 1 er en egenvektor med egenverdi 8. Tilsvarende er ( ) ( ) ( ) 4 6 2 10

Detaljer

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i. Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. >> 2+2 4 >> 3-2

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Matriser Løsningsforslag Oppgave 1 Redusert trappeform og løsning av lineære likningssystemer a) Totalmatrisa blir Vi tilordner dette i MATLAB: 5 1 1

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag

MAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag 1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015

Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015 Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =

Detaljer

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

1. (a) Finn egenverdiene og egenvektorene til matrisen A =

1. (a) Finn egenverdiene og egenvektorene til matrisen A = 1. (a) Finn egenverdiene og egenvektorene til matrisen A = ( ) 2 3. 1 4 Svar: λ = 5 med egenvektorer [x, y] T = y[1, 1] T og λ = 1 med egenvektorer [x, y] T = y[ 3, 1] T, begge strengt tatt med y 0. (b)

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

TMA4105 Matematikk 2 Vår 2008

TMA4105 Matematikk 2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent.

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent. Innlevering i BYFE 000 Oppgavesett Innleveringsfrist: 0 oktober klokka :00 Antall oppgaver: 6 Noen av disse oppgavene løses ved hjelp av papir blyant, mens andre oppgaver løses ved hjelp av MATLAB til

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer