Obligatorisk oppgave 1 MAT1120 HØSTEN 2008

Størrelse: px
Begynne med side:

Download "Obligatorisk oppgave 1 MAT1120 HØSTEN 2008"

Transkript

1 Obligatorisk oppgave 1 MAT1120 HØSTEN 2008 Innleveringsfrist: fredag 26/ , innen kl Besvarelsen leveres på Matematisk institutt, Ekspedisjonskontoret, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du nner på hjemmesiden. Det er ofte lange køer både ved skriveren og utenfor ekspedisjonskontoret rett før innleveringsfristen, så det er lurt å levere tidligere. Dersom du på grunn av sykdom eller andre tungtveiende grunner har behov for å utsette innleveringen, må du i god tid før innleveringsfristen sende søknad til : studieinfo@math.uio.no Husk at sykdom må dokumenteres ved legeattest. For å få godkjent oppgavesettet må ingen av de 16 obligatoriske punktene leveres helt blankt og det må komme klart frem fra besvarelsen at du har gjort et seriøst forsøk på å løse alle disse punktene. Videre må minst 10 av de obligatoriske punktene være besvart på en tilfredstillende måte, med en ryddig fremstilling og gode begrunnelser. Det vil også bli lagt vekt på at Matlab-delene i oppgavesettet er rimelig godt besvart besvarelser som viser mangelfulle Matlab-ferdigheter kan bli underkjent selv om disse tilfredstiller de andre kravene. Der det står at Matlab skal brukes, må det vedlegges passende utskrifter med kommentarer. Studenter som ikke får sin opprinnelige besvarelse godkjent, men som har gjort et reelt forsøk på å løse oppgavesettet, vil få en mulighet til å levere en revidert besvarelse. Studenter som ikke får godkjent begge sine besvarelser til oblig. 1 og oblig. 2 vil ikke få adgang til avsluttende eksamen. Det er lov å samarbeide om oppgavene. Men alle må levere sin egen personlig besvarelse og selv ha gjennomført alle Matlab-kjøringer. Er vi i tvil om at du virkelig ha forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse. Det vises ellers til regelverket for obligatoriske oppgaver, som du nner via en lenke på hjemmesiden til emnet. 1

2 1 Om Markov kjeder Avsnitt 4.9 i Lays bok gir en innføring i Markov kjeder. Vi minner om at en Markov kjede i R n er en følge av sannsynlighetsvektorer x 0, x 1, x 2,... i R n som er slik at x k+1 = P x k, k = 0, 1, 2,... der P er en n n stokastisk matrise. Vi har da at x k = P k x 0, k 0. Markov kjeder brukes ofte til å modellere "tilfeldige" prosesser med "diskret" tidsskala. Anta at vi studerer et system som kan veksle mellom et endelig antall tilstander, la oss si n. Hva som menes med tilstander i en konkret situasjon er gjerne en del av selve modelleringen av systemet. Er det f.eks. været i Oslo vi ønsker å modellere som en tilfeldig prosess kan vi innskrenke oss til en grov inndeling i tre tilstander (f.eks. sol, skyer og regn), eller vi kan innføre ere tilstander (f.eks. sol, delvis skyet, jevnt overskyet, periodevis regn, regn). Vi tenker oss at overgang mellom tilstander skjer ved tidspunktene 1, 2,... og styres i henhold til bestemte sannsynligheter (som gjerne anslås ved eksperimenter). Vi antar her at disse sannsynlighetene ikke forandrer seg med tiden (i mer naturtro modeller vil disse ofte gjøre det). Mengden S = {s 1, s 2,..., s n } av alle de n ulike tilstandene systemet kan være i kalles gjerne tilstandsrommet til systemet. Sannsynligheten for at systemet går fra tilstand s j til tilstand s i i ett tidsskritt angis ved et tall p ij i intervallet [0, 1]. Disse sannsynlighetene, som kalles overgangssannsynligheter, tilfredstiller da at n i=1 p ij = 1 for enhver j, slik at n n matrisen P = [p ij ] er en stokastisk matrise. Matrisen P kalles overgangsmatrisen til systemet. Vanligvis er vi gitt en startvektor x 0 R n som er en sannsynlighetsvektor; poenget er at i-te komponent a i til x 0 angir da sannsynligheten for at systemet er i tilstand s i ved starttidspunktet t = 0. Hvis vi f.eks. vet med 100 prosents sikkerhet (altså med sannsynlighet 1) at systemet er i tilstand s j for en bestemt j ved t = 0, betyr det at a i = 0 når i j, mens a j = 1, altså at x 0 = e j (= standardbasisvektor nr. j i R n ). I denne obligen skal vi stort sett tenke oss Markov kjeder der startvektoren er en av e j -ene, dvs at prosessen begynner i en av tilstandene ("starttilstanden") ved t = 0. Vektoren x 1 = P x 0 blir en ny sannsynlighetsvektor (dette følger av oppgave i Lay). Denne vektoren er slik at dens i-te 2

3 komponent angir sannsynligheten for at systemet er i tilstand s i ved tidspunktet t = 1. De neste vektorene i den assosierte Markov kjeden, gitt ved x k+1 = P x k, k 0, har en tilsvarende tolkning. Ofte fremstiller man et system som ovenfor ved hjelp av en gur der alle tilstandene angis med piler seg i mellom, og der overgangssansynlighetene mellom tilstander angis over/under/ved siden av pilene. Det er da vanlig å sløyfe å tegne en pil mellom tilstandene s j og s i dersom p ij = 0. Eksempel. La n = 5. Et system er angitt ved følgende gur: 1 s s s s s 5 1 Den tilhørende overgangsmatrisen blir P = (1) Her er f.eks. p 32 = 0.3, så sannsynligheten for å gå fra tilstand s 2 til tilstand s 3 i ett tidsskritt er 0.3. Produktet av to overgangssannsynligheter har en naturlig tolkning som sannsynligheten for at en bestemt begivenhet inntreer. Anta f.eks. at vi vet at prosessen ovenfor starter i tilstand s 3. Hva er da sannsynligheten for at prosessen går slik i løpet av to tidsskritt : s 3 s 2 s 1? Jo, en elementær sannsynlighetsbetraktning gir at denne begivenheten har sannsynlighet lik produktet av de to aktuelle overgangssannsynlighetene, nemlig p 12 p 23 = = Vi kan her tenke oss at en "partikkel" starter i s 3, hopper derfra til en tilstand s l med sannsynlighet p l3 ved t = 1, at den hopper videre derfra til en tilstand s i med sannsynlighet p il ved t = 2, osv. Sannsynligheten for at partikkelen vandrer langs "veien" s 3 s 2 s 1 i løpet av to tidsskritt (blant alle mulige "veier" fra s 3 i løpet av to tidsskritt) er da nettopp p 12 p 23 = = I avsnitt 4.9 i Lays bok er mye av fokus rettet mot Markov kjeder der overgangsmatrisen er såkalt regulær. Dette skyldes at det nnes da en entydig bestemt likevektsvektor, som vektorene i Markov kjeden vil konvergere mot (jf. Teorem 18, s. 294). Regularitetet er et sterkt krav, som mange stokastiske matriser ikke oppfyller. 3

4 Oppgave 1 La P være en n n stokastisk matrise. a) La k være et naturlig tall. Vis ved induksjon på k at P k er en stokastisk matrise : for k=1 er dette opplagt sant; så du skal anta at P k er en stokastisk matrise for en k 1 og begrunne at da er også P k+1 en stokastisk matrise. b) Bruk Matlab til å beregne P k for k {2, 3, 4, 50, 100} der P er matrisen i (1). Kan du konkludere med at P ikke er regulær på grunnlag av disse beregningene? c) Igjen, la P være matrisen i (1). Bestem en basis for Nul (P I n ). Begrunn deretter at P ikke er regulær (Hint : Har P en entydig likevektsvektor?). Tilbake til en Markov kjede med overgangsmatrise P. Elementene i potensmatrisen P k vil også være sannsynligheter. Vi innfører litt notasjon først. Hvis A = [a ij ] er en n n matrise og k er et naturlig tall eller 0, lar vi a (k) ij være elementet i posisjon (i, j) i matrisen A k. Husk her at A 0 = I n (n n identitetsmatrisen). Da vil p (k) ij være sannsynligheten for at systemet går fra tilstand s j til tilstand s i i løpet av k tidsskritt. Vi begrunner dette for k = 2. Rad-kolonne-regelen for matriseproduktet P 2 = P P gir at p (2) ij = n p il p lj l=1 Nå er p il p lj sannsynligheten for å gå fra s j til s l og videre derfra til s i i h.h.v. første og andre tidsskritt. Ved å summere over alle mulige mellomtilstander s l får vi sannsynligheten for å gå fra s j til s i i løpet av 2 tidsskritt. 2 Absorberende Markov kjeder Det nnes en type Markov kjeder som dukker opp i en del praktiske situasjoner og som dere skal få litt innsikt i i denne obligen. Her vil overgangsmatrisen ikke være regulær, og oppførselen til slike Markov kjeder i det lange løp blir da ganske annerledes enn i det regulære tilfellet. Prosessene som modelleres er de der det nnes tilstander som fanger vandrende partikler i det lange løp. De som gjerne vil ha et konkret eksempel i tankene bør ta en titt på neste avsnitt allerede nå. Vi betrakter en Markov kjede assosiert med et system med tilstandsrom S = {s 1, s 2,..., s n } og overgangsmatrise P. 4

5 Hvis en tilstand s j er slik at p jj = 1 (og dermed p ij = 0 for i j), så kalles s j absorberende. Grunnen er at hvis prosessen kommer til en slik tilstand, så vil den aldri forlate denne tilstanden. En måte å si at tilstanden s j er absorberende er at kolonne nr. j i P er lik e j. Selve Markov kjeden kalles potensielt absorberende dersom det nnes minst én absorberede tilstand; den kalles absorberende dersom det nnes minst én absorberede tilstand, og det er mulig å komme fra enhver tilstand s j til minst én absorberende tilstand s i i løpet av ett eller ere tidsskritt. Hvis vi bruker bemerkningen på slutten av forrige avsnitt kan det siste kravet uttrykkes slik : For enhver gitt j, så nnes det en absorberende tilstand s i og et naturlig tall k slik at p (k) ij > 0. (Merk her at både s i og k kan variere med j). Betrakt nå en potensielt absorberende Markov kjede som denert ovenfor, og anta at det nnes m absorberende tilstander (der 1 m n). Dersom m = n er P lik identitetsmatrisen I n og systemet er trivielt, det skjer jo ingen utvikling. Så vi antar likegodt at m < n. Videre antar vi at de m aborberende tilstandene er de "siste" tilstandene s n m+1, s n m+2,..., s n ; dette kan vi alltid gjøre etter en evt. renummerering av tilstandene. Da kan vi skrive overgangsmatrisen P slik : [ ] Q O P = (2) R 1 Her er Q en (n m) (n m) matrise som gir overgangssannsynlighetene mellom de tilstandene som ikke er absorberende, O er nullmatrisen av dimensjon (n m) m, R 1 er m (n m) matrisen som gir overgangssannsynlighetene fra ikke-absorberende tilstander til absorberende tilstander. Oppgave 2 Betrakt en Markov kjede med overgangsmatrise P gitt ved (1). a) Sjekk at Markov kjeden er potensielt absorberende og angi de absorberende tilstandene. Lag en ny nummerering av tilstandene slik at overgangsmatrisen blir på formen (2). Angi da Q og R 1. Hva er kolonnesummene i Q? b) Bruk oppgave 1b) til å begrunne at Markov kjeden er absorberende. c) Bruk Matlab til å bestemme Q k for noen "store" verdier av k. Sjekk at lim k Q k ser ut til å bli nullmatrisen når k er stor nok. I m 5

6 [Grenseverdien for en følge av matriser er denert komponentvis, dvs. ut fra grenseverdien for hver av komponentene.] Oppgave 3 La P være overgangsmatrisen til en potensielt absorberende Markov kjede, der P er skrevet på formen (2). a) La k være et naturlig tall. Vis ved induksjon på k at [ Q k ] P k O = R k der R k betegner en m (n m) matrise (som du ikke skal angi et uttrykk for). Merk: Formelen er opplagt sann for k = 1. Du skal derfor vise at når k 1, så gjelder formelen for P k+1 når du antar at den gjelder for P k. Du må da bruke rad-kolonne-regelen for produktet av partisjonerte matriser (cf. avsnitt 2.4 i Lay). Merk ellers at det følger av denne formelen at P ikke er regulær. b) Begrunn at det at Markov kjeden er absorberende kan uttrykkes ved at for enhver gitt ikke-absorberende tilstand s j, så nnes det en k slik at kolonne nr. j i R k ikke er nullvektoren (mao inneholder minst et positivt element). c) Begrunn at dim Nul (P I n ) m. d) Anta nå at Markov kjeden er absorberende. Det kan da vises at I m lim k Qk = O (3) der O er nullmatrisen med samme størrelse som Q. Forklar ved hjelp av dette at det fra en gitt starttilstand er sannsynlighet lik 1 for absorpsjon i en eller annen absorberende tilstand i det lange løp. Vi antar fra nå av at vi betrakter en absorberende Markov kjede, med overgangsmatrise P angitt på formen (2). Vi skal se nærmere på matrisen I Q der Q er som i (2) og I = I n m. Oppgave 4 a) Vis at I Q er invertibel. Hint: Se på systemet (I Q)x = 0, gang ut og bruk etterhvert at (3) holder. b) Begrunn at P har en entydig likevektsvektor q hvis og bare hvis m = 1. Hva er da q? Den inverse til I Q vil derfor eksistere, og vi denerer N = (I Q) 1. Matrisen N kalles gjerne fundamentalmatrisen til overgangsmatrisen P. Vi kan si litt mer om denne matrisen. 6

7 Oppgave 5 Vis at N = I + Q + Q Q k + (4) der konvergens av denne rekken igjen betyr konvergens komponentvis. Hint: Beregn først (I Q)(I + Q + Q Q k ); multipliser så begge sider med N og la k gå mot uendelig. Koesientene til N = [n ij ] gir verdigfull informasjon. Betrakt nemlig to ikke-absorberende tilstander s i og s j. Det kan da vises at n ij er lik det forventede antall 1 ganger prosessen er i s i når den starter i s j. Vi har sett at når prosessen starter i en ikke-absorberende tilstand, så vil den i det lange løp absorberes i en absorberende tilstand. Et naturlig spørsmålet er da: Hvor lang tid kan vi forvente at dette tar? La f j være det forventede antall skritt fram til absorpsjon i en eller annen absorberende tilstand når prosessen starter i en ikke-absorberende tilstand s j. Dette gir en kolonnevektor f i R n m med j-te komponent lik f j. Oppgave 6 La e betegner kolonnevektoren i R n m med bare 1-ere. Forklar ved hjelp av resultatet om n ij -ene nevnt ovenfor at følgende likhet holder : f = N T e mao at f T = [1 1 1] N. Et annet interessant spørsmål for en absorberende Markov kjede er: Hva er sannsynligheten for å absorberes i en viss absorberende tilstand s i? La b ij være sannsynligheten for absorpsjon i absorberende tilstand s i gitt at man starter i en ikke-absorberende tilstand s j. La B være m (n m) matrisen gitt ved B = [b ij ]. 1 Når det gjelder forventet antall, her og ellers i obligen, er det nok med en intuitiv forståelse av begrepet. Det kan formelt deneres som forventningen til den aktuelle stokastiske variabelen (de som har noe bakgrunn i sannsynlighetsregning vil forstå hva som menes med dette). Her kan vi likegodt tenke oss at vi foretar en serie med N eksperimenter, der vi lar en partikkel starte i s j og teller antall ganger partikkelen er innom s i før den absorberes. Hvis a k angir dette antallet for eksperiment nr. k, så vil gjennomsnittet 1 N N k=1 a k konvergere (med sannsynlighet 1) mot et ikke-negativt tall a når N går mot uendelig. Tallet a kan da taes som denisjonen av det forventede antallet i denne situasjon. Hvis vi f.eks. observerer gjennomgående at partikkelen er innom s i en gang i halvparten av eksperimentene og 2 ganger ellers, så blir a =

8 Matrisen B kan beregnes ut fra fundamentalmatrisen N og matrisen R 1 i P, se (2), ved følgende enkle formel: B = R 1 N. Oppgave 7 (NB: denne oppgaven er ikke obligatorisk; den er bare for de som har tid, lyst og interesse!) Begrunn formelen for B ovenfor. Hint: Ved en passende sannsynlighetsbetraktning kan du først forklare at b ij = n m k 0 l=1 (R 1) il (Q k ) lj. Bytt så rekkefølgen på summasjonene (dette får du lov å gjøre uten å begrunne at det faktisk er lov her). 3 Tennis Til slutt skal vi bruke resultatene over til å analysere en viktig situasjon i tennis (du behøver ikke kunne noe om tennis!). Tellingen i tennis kan virke komplisert, men består i at de to spillerne spiller en rekke games. Litt mer om tellingen, selv om dette ikke er nødvendig for å løse oppgaven, nner du her 2. Vi skal se på en Markov kjede som har med avslutningen av et game å gjøre. La oss tenke oss en kamp mellom Roger Federer (Sveits) og Raphael Nadal (Spania); disse er ranket som henholdsvis nummer 2 og 1 i verden idag. La oss si at de spiller et game der de er kommet til stillingen (som betyr at begge spillerne har vunnet tre ballvekslinger); dette kalles deuce, eller like på norsk. Resten av gamet består i at de spiller ere ballvekslinger (minst to) og at stillingen endrer seg mellom følgende muligheter, som er tilstandene i vår Markov kjede : FW ("Federer wins") : betyr at Federer har vunnet gamet. AF ("advantage Federer") : betyr at Federer har vunnet én ballveksling mer enn Nadal, og hvis Federer også vinner neste, så vinner han gamet. deuce : spillerne har vunnet like mange ballvekslinger. 2 For å vinne kampen må man (normalt) vinne 2 sett, og ett sett består i å vinne 6 game. Imidlertid må man vinne med to games overvekt, men hvis det blir 6-6 i et sett spilles et avgjørende tiebreak (som er et game med fortløpende telling til 7, der man må vinne med minst to poengs overvekt) 8

9 AN ("advantage Nadal") : betyr at Nadal har vunnet én ballveksling mer enn Federer, og hvis Nadal også vinner neste, så vinner han gamet. NW ("Nadal wins") : betyr at Nadal har vunnet gamet. Det er altså 5 tilstander (s 1 = FW, s 2 = AF, s 3 = deuce, s 4 = AN og s 5 = NW). To av dem er absorberende, nemlig FW og NW, for da er gamet over. For enkelhets skyld antar vi at overgangssannsynlighetene mellom disse tilstandene er gitt ved matrisen P fra (1) her også, mao at vi har følgende situasjon: 1 FW 0.7 AF deuce AN 0.35 NW 1 Sannsynlighetene er konstruert med tanke på at det er Roger Federer som har serven i dette gamet. I tennis har man en stor fordel av å ha egen serve. Det kan du se ved at pilene som går mot venstre er representert ved større sannsynligheter enn pilene som går til høyre. Piler som går til venstre representerer ballvekslinger Federer vinner, piler som går til høyre representerer ballvekslinger Nadal vinner. Oppgave 8 a) For hver av stillingene AF, deuce og AN, beregn ved hjelp av Matlab sannsynligheten for at Federer vinner gamet (FW). Hva blir tilsvarende sannsynligheter for Nadal? Merk: Et tilsvarende problem er faktisk gitt som en oppgave i MAT1110. Oppgaven løses der ved å sette opp et passende likningssytem med tre lineære likninger i de tre ukjentene (disse likningene baserer seg på den såkalte loven om total sannsynlighet). Her ber vi deg om å beregne disse tre sannsynlighetene ved hjelp av det du har lært i forrige avsnitt. b) For hver av stillingene AF, deuce og AN, beregn ved hjelp av Matlab det forventede antall ballvekslinger som gjenstår i gamet. Det er forøvrig mange interessante matematiske problemstillinger i tennis, som i de este andre idretter! Noe er kjent eller gjort, men trolig er det mange utfordringer igjen! 9

Obligatorisk oppgave 1 MAT1120 H15

Obligatorisk oppgave 1 MAT1120 H15 Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Innleveringsfrist MAT20 Obligatorisk oppgave av 2 Torsdag 20. september 208, klokken 4:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Innleveringsfrist: torsdag 25. september 2014, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, Ekspedisjonskontoret, 7. etasje i N.H. Abels hus.

Detaljer

4.9 Anvendelser: Markovkjeder

4.9 Anvendelser: Markovkjeder 4.9 Anvendelser: Markovkjeder Markov kjeder er en spesiell type diskret dynamisk system. Stokastisk modell: grunnleggende i sannsynlighetsregning. Vinner av Abelprisen 2007, S. Varadhan, jobber i dette

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

Obligatorisk oppgavesett 2 MAT1120 H16

Obligatorisk oppgavesett 2 MAT1120 H16 Obligatorisk oppgavesett 2 MAT1120 H16 Innleveringsfrist: torsdag 03.11.2016, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 4.8 Teorem 16 s. 282: y k+n + a 1 y k+n 1 + + a n 1 y k+1 + a n y k = z k har alltid en løsning

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). 28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30- Statistikk Dato for utlevering: 5.03.06 Dato for innlevering: 05.04.06 innen kl. 5:00 Innleveringssted: Ekspedisjonen i. etasje ES hus

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

STK1000 Obligatorisk oppgave 1 av 2

STK1000 Obligatorisk oppgave 1 av 2 6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 3

MAT-1004 Vårsemester 2017 Obligatorisk øving 3 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6. a b

OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6. a b OPPGAVEHEFTE I STK1000 TIL KAPITTEL 5 OG 6 1. Regneoppgaver til kapittel 5 6 Oppgave 1. Mange som kommer til STK1000 med dårlige erfaringer fra tidligere mattefag er livredd ulikheter, selv om man har

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

MAT1140 Strukturer og argumenter

MAT1140 Strukturer og argumenter 12. november 2018 MAT1140 Strukturer og argumenter Innleveringsfrist Obligatorisk oppgave 2 av 2 Torsdag 8. november 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om

Detaljer

FORELESNING I STK1130

FORELESNING I STK1130 FORELESNING I STK30 STEFFEN GRØNNEBERG (STEFFENG@MATHUIONO) Sammendrag Det anbefales at man TEX er den kommende obligen, og her er et lite eksempel på relevant TEX-kode TEX er uten tvil det fremtidige

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon 4.-4.5 med fasit Oppgaver til seksjon 4.. Finn alle løsningene til ligningssystemet x + y z = x + y z = x + y + z =. Finn alle løsningene til ligningssystemet x y + z = x y = 4 x +

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

STK1000 Obligatorisk oppgave 2 av 2

STK1000 Obligatorisk oppgave 2 av 2 STK1000 Obligatorisk oppgave 2 av 2 Innleveringsfrist Torsdag 16. november 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2.

MEK1100, vår Obligatorisk oppgave 1 av 2. 9. februar 2017 Innleveringsfrist MEK1100, vår 2017 Obligatorisk oppgave 1 av 2 Torsdag 2. mars 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på

Detaljer

Notes for MAT-INF Snorre Christiansen, 5. april 2005

Notes for MAT-INF Snorre Christiansen, 5. april 2005 Notes for MAT-INF3 6 Snorre Christiansen, 5. april 25 Den obligatoriske oppgaven består i Problem A og Problem B Oppgave og 3. Problem C er et åpent spørsmål det ikke er obligatorisk å svare på. Problem

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

Matematisk induksjon

Matematisk induksjon Matematisk induksjon 1 Innledning Dette er et nytt forsøk på å forklare induksjon. Strategien min i forelesning var å prøve å unngå å få det til å se ut som magi, ved å forklare prinsippet fort ved hjelp

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

OBLIG 2 - MAT 1120 Høsten 2005

OBLIG 2 - MAT 1120 Høsten 2005 > with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

MAT-INF 2360: Obligatorisk oppgave 2

MAT-INF 2360: Obligatorisk oppgave 2 6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels

Detaljer

6.4 (og 6.7) Gram-Schmidt prosessen

6.4 (og 6.7) Gram-Schmidt prosessen 6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer