MAT1140 Strukturer og argumenter
|
|
- Ragnhild Øverland
- 5 år siden
- Visninger:
Transkript
1 12. november 2018 MAT1140 Strukturer og argumenter Innleveringsfrist Obligatorisk oppgave 2 av 2 Torsdag 8. november 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen eller om du skriver løsningen direkte inn på datamaskin (for eksempel ved bruk av L A TEX). Besvarelsen skal leveres som én PDF-fil. Scannede ark må være godt lesbare. Besvarelsen skal inneholde navn, emne og oblignummer. Det forventes at man har en klar og ryddig besvarelse med tydelige begrunnelser. Husk å inkludere alle relevante plott og figurer. Studenter som ikke får sin opprinnelige besvarelse godkjent, men som har gjort et reelt forsøk på å løse oppgavene, vil få én mulighet til å levere en revidert besvarelse. Samarbeid og alle slags hjelpemidler er tillatt, men den innleverte besvarelsen skal være skrevet av deg og reflektere din forståelse av stoffet. Er vi i tvil om du virkelig har forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse. Søknad om utsettelse av innleveringsfrist Hvis du blir syk eller av andre grunner trenger å søke om utsettelse av innleveringsfristen, må du ta kontakt med studieadministrasjonen ved Matematisk institutt (e-post: studieinfo@math.uio.no) i god tid før innleveringsfristen. For å få adgang til avsluttende eksamen i dette emnet, må man bestå alle obligatoriske oppgaver i ett og samme semester. Det kreves 60 % skår for å få denne obligen godkjent, For fullstendige retningslinjer for innlevering av obligatoriske oppgaver, se her: LYKKE TIL!
2 Oppgave 1. (i) Vis ved induksjon på kardinalitet, at hver ikke-tomme totalt ordnede endelige mengde har et største element. For hver n N lar vi P (n) være utsagnet: Hver totalt ordnede mengde med kardinalitet n har et største element. For n = 1. La A være en totalt ordnet mengde med kardinalitet 1. La x være slik at A = {x}. Da er x største element i A. Dette viser P (1). La n N og anta at P (n) er sant. La A være en totalt ordnet mengde med kardinalitet n + 1. Velg x A og skriv A = A \ {x}. Da har A kardinalitet n og er totalt ordnet, så vi kan bruke induksjonshypotesen til å finne et største element y i A. Siden A er totalt ordnet har vi x < y eller y < x. Hvis x < y er y største element i A og hvis y < x er x største element i A. Dermed har vi vist P (n + 1). (ii) Vis ved induksjon på kardinalitet, at for hver ikke-tomme totalt ordnede endelige mengde A finnes det en og bare en voksende bijeksjon [[0, n[[ A, der n = A og: [[0, n[[= {x Z : 0 x < n}. (1) For hver n N lar vi P (n) være utsagnet: For hver totalt ordnede mengde A med kardinalitet n finnes det en og bare en voksende bijeksjon [[0, n[[ A. For n = 1. Det finnes bare en bijeksjon [[0, n[[ A. Den er voksende. La n N og anta at P (n) er sann. La A være en totalt ordnet mengde med kardinalitet n + 1. La x være største element i A og skriv A = A \ {x}. Da har A kardinalitet n. La f : [[0, n[[ A være den voksende bijeksjonen gitt av P (n). Utvid f til en avbildning g : [[0, n + 1[[ A ved å sette g(n) = x. Da er g en voksende bijeksjon. Anta nå at g : [[0, n + 1[[ A også er en voksende bijeksjon. Man ser først at g (n) er største element i A, dermed g (n) = x. Dermed må restriksjonen av g til [[0, n[[ bestemme en bijeksjon f : [[0, n[[ A. Den er voksende. Dermed får vi f = f. Dette gir tilsammen at g = g. Vi har nå vist P (n + 1). (iii) La A være en endelig mengde, med kardinalitet n 0. Finn en bijeksjon mellom mengden av totale ordensrelasjoner på A, og mengden av bijeksjoner [[0, n[[ [[0, n[[. 1
3 For hver totale ordensrelasjon R på A lar vi Φ(R) være den unike voksende bijeksjonen [0, n[ A gitt ved forrige spørsmål. Hovedidéen er at Φ(R) bestemmer R entydig, slik at Φ er en bijeksjon mellom totale ordensrelasjoner på A og bijeksjoner [[0, n[[ A. Vi detaljerer dette bildet. La O være mengden av totale ordensrelasjoner på A og la S være mengden av bijeksjoner [0, n[ [0, n[. Velg en bijeksjon f : [0, n[ A. Merk at når R O har vi f 1 Φ(R) S. Vi betrakter avbildningen: Ψ : { O S R f 1 Φ(R). (2) Vi viser at Ψ er en bijeksjon: injektivitet: Anta Ψ(R) = Ψ(R ). Da får vi Φ(R) = Φ(R ). Men siden Φ(R) er en voksende bijeksjon har vi, for x, y A: R(x, y) Φ(R) 1 (x) Φ(R) 1 (y), (3) Φ(R ) 1 (x) Φ(R ) 1 (y), (4) R (x, y). (5) Dermed R = R. surjektivitet: La σ S. Vi ønsker å finne R O slik at f 1 Φ(R) = σ. Bemerk at f σ : [[0, n[[ A er en bijeksjon. For x, y A definerer vi R(x, y) ved: R(x, y) (f σ) 1 (x) (f σ) 1 (y). (6) Dette gjør f σ til en voksende bijeksjon, dermed Φ(R) = f σ. La A være en mengde utstyrt med en ordensrelasjon. Man sier at A er velordnet dersom hver ikke-tomme delmengde har et minste element. En velordnet mengde er en mengde A utstyrt med en ordensrelasjon som gjør A velordnet. Oppgave 2. Vis at N (utstyrt med sin vanlige ordensrelasjon) er velordnet. En strategi kan være å anta at A er en delmengde av N uten minste element og da vise at [[0, n[[ A = for hver n N. 2
4 Anta at A er en delmengde av N uten minste element. For hver n N lar vi P (n) være utsagnet [[0, n[[ A =. P (0) er sant siden [[0, 0[[=. La n N og anta at P (n) er sant. Anta for motsigelse at [[0, n + 1[[ A. La x [[0, n + 1[[ A. Siden x [[0, n[[ får vi x = n. For y A har vi y < n, dermed y n. Dette viser at n er minste element i A, som er umulig. Dermed P (n + 1). Oppgave 3. La A være velordnet. Anta at f : A A er strengt voksende. Vis at for hver x A har vi f(x) x. Bemerkning: Enhver velordnet mengde er totalt ordnet, siden delmengder på formen {x, y} må ha et minste element. Spesielt får vi at negasjonen av f(x) x er f(x) < x. Anta for motsigelse at det finnes x A slik at f(x) < x. La x være den minste elementet i A med den egenskapen, som vi kaller P. Siden f er strengt voksende får vi f(f(x)) < f(x). Men dette viser at f(x) har egenskapen P og er strengt mindre enn x, som er umulig. Oppgave 4. La A og B være to ordnede mengder. Vi definerer en relasjon på A B ved, for alle (x, y), (x, y ) A B: (x, y) (x, y ) (x < A x ) (x = x y B y ). (7) (i) Vis at dette definerer en ordensrelasjon på A B. Refleksivitet: x = x y B y, dermed (x, y) (x, y). Antisymetri: Anta (x, y) (x, y ) og (x, y ) (x, y). Hvis x < A x får vi x < A x og x x, som motstrider (x, y ) (x, y). Dermed x = x og y B y. Vi får y B y på samme måte, dermed y = y. Transitivitet: Anta (x, y) (x, y ) og (x, y ) (x, y ). Hvis x < A x : Siden x < A x eller x = x får vi x < A x dermed (x, y) (x, y ). Hvis x = x : Vi får to muligheter: (a) Hvis x = x får vi x = x og y B y B y dermed (x, y) (x, y ). (b) Hvis ikke har vi x < A x, dermed x < A x, dermed (x, y) (x, y ). (ii) Vis at hvis A og B er velordnede, så er også A B er velordnet. 3
5 La C være en ikke-tom delmengde av A B. Definer: C A = {x A : y B (x, y) C}. (8) Siden C ikke er tom, er C A en ikke-tom delmengde av A. La x være minste element i C A. Definer: C B = {y B : (x, y) C}. (9) Da er C B en ikke-tom delmengde av B, la y være dets minste element. Vi påstår nå at (x, y) er minste element i C. La (x, y ) C. Vi har x A x. Hvis x = x har vi y B y dermed (x, y) (x, y ). Hvis x x har vi x < A x dermed (x, y) (x, y ). Oppgave 5. (i) La deg inspirere av Cantors diagonalargument til å bevise følgende. Hvis A er en mengde med minst to elementer, så er A N (altså mengden av følger i A) ikke tellbar. La x og y være to forskjellige elementer i A. Anta for motsigelse at vi kan finne en bijeksjon Φ : N A N. For hver n N er da Φ(n) en følge i A som vi kan skrive (Φ(n) m ) m N. Vi definerer en følge u = (u n ) n N i A ved at, for hver n N: Hvis Φ(n) n = x så definerer vi u n = y. Hvis Φ(n) n x så definerer vi u n = x. Vi bemerker at for hver n N har vi Φ(n) n u n, dermed Φ(n) u. Dette viser at Φ ikke er surjektiv. (ii) Vis 1 at mengden av bijeksjoner fra N til N ikke er tellbar. En strategi kan være å definere en injeksjon fra {0, 1} N inn i denne mengden. 1 Dette spørsmålet er mer krevende enn de andre. 4
6 La S være mengden av bijeksjoner fra N til N. Vi definerer en avbildning Φ : {0, 1} N S på følgende måte: La u = (u n ) n N være en følge i {0, 1} altså et element i {0, 1} N. Vi definerer Φ(u) som følger. Vi bemerker at mengdene {2n, 2n + 1} for n N dekker N og er to og to disjunkte a. For hver n N: hvis u n = 1 definerer vi Φ(u)(2n) = 2n + 1 og Φ(u)(2n + 1) = 2n. hvis u n = 0 definerer vi Φ(u)(2n) = 2n og Φ(u)(2n + 1) = 2n + 1. Da er Φ(u) : N N bijektiv (og er sin egen invers). Vi ser også at u er bestemt av Φ(u), siden vi kan se fra Φ(u)(2n) hva u n er. Altså er Φ injektiv. Hvis S hadde vært tellbar hadde vi hatt en bijeksjon f : N S, og da hadde f 1 Φ vært en injeksjon {0, 1} N N. Det ville gitt en surjeksjon N {0, 1} N, som er umulig fra forrige spørsmål. a De danner altså en partisjon av N. 5
STK1000 Obligatorisk oppgave 1 av 2
6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen
DetaljerSTK1000 Obligatorisk oppgave 2 av 2
STK1000 Obligatorisk oppgave 2 av 2 Innleveringsfrist Torsdag 16. november 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og
DetaljerMAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no).
Innleveringsfrist MAT20 Obligatorisk oppgave av 2 Torsdag 20. september 208, klokken 4:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen
DetaljerNotat med oppgaver for MAT1140
Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis
DetaljerMEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).
28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen
DetaljerNotat om Peanos aksiomer for MAT1140
Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi
DetaljerMAT1110. Obligatorisk oppgave 1 av 2
30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner
DetaljerNotat om kardinalitet for MAT1140 (litt uferdig)
Notat om kardinalitet for MAT1140 (litt uferdig) Poenget med tall kan man kanskje si er det å telle. In mengdeteorien ønsker man å telle antall elementer i en mengde, og det tallet man oppnår kalles da
DetaljerMAT-INF 1100: Obligatorisk oppgave 1
13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
DetaljerMAT-INF 1100: Obligatorisk oppgave 1
22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å
DetaljerRepetisjonsforelesning - INF1080
Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en
DetaljerDette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har:
Notat 4 for MAT1140 4 Mer om mengder 4.1 Familier av mengder Union og snitt. Aksiom 4.1. Dersom A er en mengde bestående av mengder, kan de sistnevnte føyes sammen til en stor mengde, kalt unionen til
DetaljerMEK1100, vår Obligatorisk oppgave 1 av 2.
9. februar 2017 Innleveringsfrist MEK1100, vår 2017 Obligatorisk oppgave 1 av 2 Torsdag 2. mars 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels
Detaljer7 Ordnede ringer, hele tall, induksjon
Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med
Detaljerx A e x = x e = x. (2)
Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra
DetaljerNotat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner
Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever
DetaljerMAT-INF 1100: Obligatorisk oppgave 2
MAT-INF 1100: Obligatorisk oppgave 2 Innleveringsfrist: torsdag 8. november 2018 kl. 14:30 Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å besvare en matematisk
DetaljerLøsningsforslag oblig. innlevering 1
Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den
DetaljerEksamen MAT H Løsninger
Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F
DetaljerHint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.
Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere
DetaljerLØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)
DetaljerTo mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.
Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og
DetaljerMAT 1120: Obligatorisk oppgave 2, H-09
MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære
DetaljerObligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer
Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle
DetaljerDagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.
INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1
DetaljerINF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]
INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til
DetaljerSTK1000 Innføring i anvendt statistikk
06. september 2018 STK1000 Innføring i anvendt statistikk Obligatorisk oppgave 1 av 2. Datasettene til de to første oppgavene er hentet fra biologi. Innleveringsfrist Torsdag 20. september 2018, klokken
DetaljerObligatorisk oppgave 1 MAT1120 H15
Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)
DetaljerMAT-INF 2360: Obligatorisk oppgave 2
6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels
DetaljerUNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden
DetaljerZorns lemma og utvalgsaksiomet
MAT1140, H-16 Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma bygger på det
DetaljerEksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag
Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra
DetaljerObligatorisk oppgavesett 1 MAT1120 H16
Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerAksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.
Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære
DetaljerKONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r
DetaljerINF3170 Forelesning 1
INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................
DetaljerDagens plan. INF3170 Logikk
INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.
DetaljerMAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile
MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for
DetaljerMAT-INF 2360: Obligatorisk oppgave 3
8. april, 2013 MAT-INF 2360: Obligatorisk oppgave 3 Innleveringsfrist: 2/5-2013, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7.
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
DetaljerTillegg til kapittel 11: Mer om relasjoner
MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker
DetaljerTMA 4140 Diskret Matematikk, 4. forelesning
TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA
DetaljerMatematikk for IT, høsten 2016
Matematikk or IT, høsten 016 Oblig 4 Løsningsorslag 30. setember 016.4.11 a) ( 1, 3, 5, 7, ) Her vil relasjonsmengden være slik: {(1, 1), (3, 1), (3, 3), (5, 1), (5, 3), (5, 5), (7, 1), (7, 3), (7, 5),
DetaljerForelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted
Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen - 22. januar 2007 1 Praktisk informasjon 1.1 Forelesere og tid/sted Foreleser: Christian Mahesh Hansen (chrisha@ifi.uio.no) Kontor 2403,
DetaljerLO118D Forelesning 3 (DM)
LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 29. november 2013 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) Oppgave
DetaljerINVERST FUNKSJONSTEOREM MAT1100 KALKULUS
INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert
DetaljerMAT 1120: Obligatorisk oppgave 1, H-09
MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,
DetaljerMAT-INF 2360: Obligatorisk oppgave 2
6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels
DetaljerMengder, relasjoner og funksjoner
MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)
DetaljerINF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015
INF3170 / INF4171 Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet Andreas Nakkerud 15. september 2015 Kripke-modeller Vi ser på modeller for et språk L. Definisjon En Kripke-modell er et
DetaljerForelesning januar 2006 Induktive denisjoner og utsagnslogikk
Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave
DetaljerSTK1000 Innføring i anvendt statistikk
01. november 2018 STK1000 Innføring i anvendt statistikk Obligatorisk oppgave 2 av 2 BIO Innleveringsfrist Torsdag 15. november 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger
DetaljerNotes for MAT-INF Snorre Christiansen, 5. april 2005
Notes for MAT-INF3 6 Snorre Christiansen, 5. april 25 Den obligatoriske oppgaven består i Problem A og Problem B Oppgave og 3. Problem C er et åpent spørsmål det ikke er obligatorisk å svare på. Problem
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Fredg 8. desemer 2017 Tid for eksmen: 14:30 18:30 Oppgvesettet er på 5 sider. Vedlegg: Ingen
DetaljerObligatorisk oppgave 1 MAT1120 HØSTEN 2014
Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Innleveringsfrist: torsdag 25. september 2014, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, Ekspedisjonskontoret, 7. etasje i N.H. Abels hus.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet er
DetaljerLøsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian
DetaljerPartielle ordninger, Zorns lemma og utvalgsaksiomet
MAT1140, H-15 Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns
DetaljerLØSNINGSFORSLAG EKSAMEN V06, MA0301
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket
DetaljerMIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 13. oktober 2017 Tid:
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under midtsemesterprøven: Christian Skau 73591755 Bokmål MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk
DetaljerLitt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel
INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02
DetaljerEksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus
DetaljerEKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:
EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian
DetaljerSTK2100. Obligatorisk oppgave 1 av 2
14. februar 2018 Innleveringsfrist STK2100 Obligatorisk oppgave 1 av 2 Torsdag 1. mars 2018, klokken 14:30 gjennom Devilry (https:devilry.ifi.uio.no). Praktiske instruksjoner Første side av din innlevering
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret
DetaljerKapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret
DetaljerKapittel 5: Relasjoner
MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Relasjoner 23. februar 2010 (Sist oppdatert: 2010-02-23 14:33) MAT1030 Diskret Matematikk
DetaljerMA3002 Generell topologi
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Richard Williamson, (735) 90154 MA3002 Generell topologi Lørdag 1. juni 2013 Tid:
DetaljerEksamensoppgave i TMA4140 Diskret matematikk
Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00
DetaljerAndre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7.
Andre obligatoriske oppgave i STK1000 H2016: Oppgavesettet har fire oppgaver. Oppgave 1 består av oppgaver fra boka. Disse ligner på ukesoppgavene for uke 43 og 44, og gir nyttig øvelse for eksamen og
DetaljerOppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner
Oppsummering MAT1030 Diskret matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 18. februar 2008 Vi har gjort oss ferdige med innføringen av Boolesk mengdelære.
DetaljerMAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet
MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma
DetaljerPrøveeksamen 2016 (med løsningsforslag)
Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt
DetaljerFYS2140 Hjemmeeksamen Vår Ditt kandidatnummer
FYS2140 Hjemmeeksamen Vår 2016 Ditt kandidatnummer 8. mars 2016 Viktig info: Elektronisk innlevering på devilry med frist fredag 18. mars kl. 16.00. Leveringsfristen er absolutt. Bevarelsen må merkes tydelig
DetaljerMIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : INSTRUKSJONER:
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : 1515-1700 Tillatte hjelpemidler
DetaljerForelesning 11. Relasjoner. Dag Normann februar Oppsummering. Relasjoner. Relasjoner. Relasjoner
Forelesning 11 Dag Normann - 18. februar 2008 Oppsummering Vi har gjort oss ferdige med innføringen av Boolesk mengdelære. Bruk av Venn-diagrammer er et av læringsmålene i dette emnet. Vi så kort på digital
DetaljerLØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1
LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier
DetaljerMAT1030 Forelesning 11
MAT1030 Forelesning 11 Relasjoner Roger Antonsen - 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner Binære relasjoner Definisjon. La A være en mengde. En binær relasjon på A er
DetaljerINF3170 Forelesning 2
INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................
DetaljerInjektive og surjektive funksjoner
Injektive og surjektive funksjoner Christian F. Heide 5. september 07 Dette notatet forklarer begrepene injektive og surjektive funksjoner, og er tenkt brukt som et supplement til avsnitt.5 i boken «Mathem»
DetaljerLøsningsforslag til oblig 1 i DM 2018
Løsningsforslag til oblig 1 i DM 2018 Oppgave 2 p: «Det regner» q: «Det blåser» a) ikke p og ikke q blir: p q = ( p q) b) q hvis ikke p blir det samme som hvis ikke p så q: p q c) p bare hvis ikke q blir:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte
DetaljerForelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner
Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.
DetaljerMAT-INF 1100: Obligatorisk oppgave 1
8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels
Detaljer