INF2820 Datalingvistikk V Gang 26.2 Jan Tore Lønning
|
|
- Erling Arntzen
- 6 år siden
- Visninger:
Transkript
1 INF2820 Datalingvistikk V Gang 26.2 Jan Tore Lønning
2 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
3 Eksempel: VF og HF Venstreavledning: S NP VP Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N the dog saw a man in the park Høyreavledning: S NP VP NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP saw a man in the park Det N saw a man in the park Det man saw a man in the park the dog saw a man in the park 21. februar
4 Høyre- og venstreavledninger En avledning er en venstreavledning ( leftmost derivation ) hvis vi alltid ekspanderer ikke-terminalen lengst til venstre. Høyreavledning defineres tilsvarende. Til ethvert tre generert av grammatikken svarer det nøyaktig en venstreavledning og nøyaktig en høyreavledning. 21. februar
5 Recursive Descent parser Lager en venstreavledning Tilsvarer å bygge et tre: Fra toppen ( top-down ) Fra venstre mot høyre 21. februar
6 Venstreavledning S NP VP Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N the dog saw a man in the park S the dog saw a man in the park Datastruktur NP VP the dog saw a man in the park Det N VP the dog saw a man in the park the N VP the dog saw a man in the park N VP dog saw a man in the park dog VP dog saw a man in the park VP saw a man in the park V NP PP saw a man in the park saw NP PP saw a man in the park NP PP a man in the park Det N PP a man in the park a N PP a man in the park N PP man in the park man PP man in the park PP in the park P NP in the park in NP in the park NP the park Det N the park the N the park N park park park # # 21. februar
7 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
8 Shift-Reduce Høyreavledning S NP VP NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP saw a man in the park Det N saw a man in the park Det man saw a man in the park the dog saw a man in the park reduce shift S # NP VP # NP V NP PP # NP V NP P NP # NP V NP P Det N # NP V NP P Det park # NP V NP P Det park NP V NP P the park NP V NP P the park NP V NP in the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V Det man in the park NP V a man in the park NP V a man in the park NP saw a man in the park NP saw a man in the park Det N saw a man in the park Det dog saw a man in the park Det dog saw a man in the park the dog saw a man in the park # the dog saw a man in the park Datastruktur: stack rest input 21. februar
9 Bottom-up: Shift-Reduce parser Struktur: Words: en liste av ord (terminaler) Stack: en stack av symboler (terminaler og ikketerminaler) Vanlig notasjon: Stack Words (toppen av stacken til høyre i Stack) Start: Words:= ordene i setningen som skal analyseres Stack:= tom Løkke: Hvis Words=[] og Stack=[S]: stopp med suksess! Hvis mulig, gjør en av følgende: (Shift:) Hvis Words=/=[], La Stack:=Stack+ first(words) og Words:=rest(Words) (Reduce:) Hvis det fins,, B, en regel B og Stack= + : la Stack= + B 21. februar
10 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
11 def recognize(grammar, stack, rwords, trace=0): if rwords==[] and len(stack)==1 and stack[0]==grammar.start(): return True else: for p in grammar.productions(): rhs = list(p.rhs()) n = len(rhs) if stack[-n:] == rhs: newstack = stack[0:-n] newstack.append(p.lhs()) if recognize(grammar, newstack, rwords,trace): return True if not len(rwords) == 0: newstack = stack[:] newstack.append(rwords[0]) if recognize(grammar, newstack, rwords[1:], trace): return True return False 21. februar
12 Fra anerkjenner til parser La stacken bestå av deltrær Shift som før Stack: 4 elements Remaining input 12
13 Fra anerkjenner til parser La stacken bestå av deltrær Shift som før Reduksjon: For hver av de n øverste deltrærne t 1, t 2,, t i, t n på stacken: Ta merkelappen l i på toppnoden Hvis det finnes en regel X l 1, l 2,, l i, l n fjern t 1,, t i, t n fra toppen av stacken Lag et tre t med: X som merke på mora t 1,, t i, t n som døtre Push t på toppen av stacken 13
14 Demo nltk.app.srparser() 21. februar
15 Algoritme ikke-deterministisk To plasser for valg/ikke-determinisme: Skal vi flytte eller redusere? Hva skal vi velge når vi har flere valg for reduksjon? Eks: NP DET N NP N Hvis grammatikken er på standardform, kan algoritmen gjøres noe mer effektiv: Hver gang vi shifter et ord over på stacken, må vi redusere, Mao. Det eneste stedet på stacken vi tillater en terminal er på toppen. 21. februar
16 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
17 Problemer spesielt for Shift-Reduce Unære produksjonsregler: Shift-Reduce kan tillate disse, men en må sjekke at det ikke er cykler av unære regler i grammatikken: A B B A Tomme produksjonsregler: NP DET N PPS PPS PP PPS PPS # Når skulle vi foreslå dem? Hvor mange? Iterasjon? 17
18 Problem for både RD og SR Ineffektivitet RD: Eksempel: S NP VP Noen valg under NP Noen valg under VP Vi foretar valgene for VP på nytt for hvert alternativ under NP Tilsvarende for SR For hvert valg vi foretar må vi se på alle muligheter for resten av strengen på nytt 21. februar
19 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
20 Dynamisk programmering I en beregning kan det inngå delberegninger som må foretas flere ganger Med DP tar vi vare på resultatet av disse beregningene underveis slik at Vi slipper å gjøre delberegningene flere ganger Øker effektiviteten, F.eks. i noen tilfeller fra eksponentiell til polynomisk tid Kan lagre flertydige strukturer med felles deler Vi skal se på CKY-parser, nå Chartparser, senere 20
21 CKY-parsing CKY/CYK (Cocke-Kasami-Younger) algoritmen Hovedide: 1. For hvert segment [i, j] av ord i input, bestem hvilke ikke-terminaler som disse ordene kan avledes fra 2. Bottom-up 3. Kortere segmenter før lengre segmenter 21
22 Chomsky-normalform (CNF) CKY algoritmen forutsetter at grammatikken er på Chomsky-normalform En grammatikk er på Chomsky-normalform hvis alle reglene er på en av følgende former: A B C (ikketerminaler) A t (t en terminal) Vi skal senere se at: Enhver CFG G hvor L(G), er svakt ekvivalent til en G på CNF. Altså L(G) = L(G ) 21. februar
23 CKY-parsing, forts. Hvilke kategorier har ord j, dvs segment [j-1,j]? Betrakt alle regler: A w j for en eller annen A Lagr disse A-ene i tabell[j-1, j] Se så på segmenter av to ord, [i, i + 2]: For å legge en ikke-terminal, A, i tabell[i, i+2] må det Finnes en regel A B C for en eller annen B og C B må utspenne [i, i+1] C må utspenne [i+1, i+2] 23
24 CKY-parsing ff. Deretter se på tre-ordsfragmenter [i, i+3]: For å legge en ikke-terminal, A, i tabell[i, i+3] må det Finnes en regel A B C for en eller annen B og C B må utspenne [i, i+1] og C må utspenne [i+1, i+3], eller B må utspenne [i, i+2] og C må utspenne [i+2, i+3] I det generelle tilfellet [i, j]: Det må finnes en regel A B C for en eller annen B og C B må utspenne [i, k] og C må utspenne [k, j], for en eller annen k, hvor i<k<j 24
25 CNF-grammatikk til eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 25
26 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 26
27 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 27
28 Eksempel Hvordan fylle søyle 5? 2/21/2018 Speech and Language Processing - Jurafsky and Martin 28
29 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 29
30 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 30
31 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 31
32 Eksempel 2/21/2018 Speech and Language Processing - Jurafsky and Martin 32
33 CKY Algorithm 2/21/2018 Speech and Language Processing - Jurafsky and Martin 33
34 I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce Recognizer Svakheter ved RD- og SR-parsing CKY-algoritmen Python-implementasjon 21. februar
35 CKY-implementasjon (følger pseudok.) def cky(words, cfg): tabl = [[set([]) for j in range(len(words)+1) ] for i in range(len(words))] for j in range(len(words)): tabl[j][j+1] = set([p.lhs() for p in cfg.productions() if p.rhs() == (words[j],)]) for i in range(j-1,-1,-1): for k in range(i+1, j, 1): 35
36 CKY-implementasjon (følger pseudok.) for i in range(j-1,-1,-1): for k in range(i+1, j+1, 1): tabl[i][j+1] = tabl[i][j+1].union( [p.lhs() for p in grammar.productions() if (p.rhs()[0] in tabl[i][k] and p.rhs()[1] in tabl[k][j+1])]) return tabl 36
37 CKY-implementasjon (følger pseudok.) def cky(words, cfg): tabl = [[set([]) for j in range(len(words)+1) ] for i in range(len(words))] for j in range(len(words)): tabl[j][j+1] = set([p.lhs() for p in cfg.productions() if p.rhs() == (words[j],)]) for i in range(j-1,-1,-1): for k in range(i+1, j+1, 1): tabl[i][j+1] = tabl[i][j+1].union( [p.lhs() for p in grammar.productions() if (p.rhs()[0] in tabl[i][k] and p.rhs()[1] in tabl[k][j+1])]) return tabl 37
38 CKY-implementasjon (mer prosedyrell) def cky(words, cfg): tabl = [[[] for j in range(len(words)+1) ] for i in range(len(words))] for j in range(len(words)): tabl[j][j+1] = [p.lhs() for p in cfg.productions() if p.rhs() == (words[j],)] for i in range(j-1,-1,-1): for k in range(i+1, j+1, 1): for p in grammar.productions(): if (p.rhs()[0] in tabl[i][k] and p.rhs()[1] in tabl[k][j+1]): if not p.lhs() in tabl[i][j+1]: tabl[i][j+1].append(p.lhs()) return tabl 38
39 Begrensninger i CKY 1. Grammatikken må være på CNF 2. Det foreslås strukturer som holder lokalt, men ikke globalt: Løsninger baserer seg på å kombinere TD og BU Hjelp for begge problemene å innføre dotted items og chart-parsing senere i semesteret 21. februar
INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 2. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:
DetaljerINF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.
DetaljerINF2820 Datalingvistikk V2012
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
DetaljerINF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk
Detaljer2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 I dag Avledninger og normalformer Parsing: ovenifra og ned (top-down) Parsing: nedenifra
Detaljer2/22/2011. Høyre- og venstreavledninger. I dag. Chomsky-normalform (CNF) Chomsky-normalform (CNF) PARSING. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 Høyre- og venstreavledninger Til hvert tre svarer det mange avledninger. For kontekstfrie
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2018 6. Gang - 19.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk Grammatikker og trær i NLTK Kontekstfrie grammatikker, avledninger og trær Hva er parsing?
Detaljer2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 24. februar
Detaljer2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming
DetaljerINF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning
INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 8. Gang 9.3 Jan Tore Lønning I dag Avslutte parsing i denne omgang Chomsky Normal Form (CNF) Algoritme for omforming CKY Algoritme Implementasjon Begynne trekkgramatikker
DetaljerINF2820 Datalingvistikk V Gang 19.3 del 1 Jan Tore Lønning
INF2820 Datalingvistikk V2018 10. Gang 19.3 del 1 Jan Tore Lønning I dag: to deler A. Active chart-parsing Fortsatt fra sist B. Tekstklassifisering 2 CHART-PARSING 3 I dag chart-parsing Chart-parsing:
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk
Detaljer3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk
DetaljerINF 2820 V2015: Obligatorisk innleveringsoppgave 3
INF 2820 V2015: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen fredag 17.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Del 1 RD Parsing Oppgave 1:
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK
DetaljerINF5830, H2009, Obigatorisk innlevering 2. 1 Oppgave: Unære produksjoner i CKY
INF5830, H2009, Obigatorisk innlevering 2 Innleveringsfrist 4.11 1 Oppgave: Unære produksjoner i CKY For bottom-up parsere, som CKY, har vi forutsatt at grammatikken er på CNF. For de ikke-leksikalske
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Nom Nom PP NP PP P NP Det Nom, N P NP, PN 0 book 1 the 2 flight 3
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerOppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:
2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'
Detaljer3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det
Detaljer3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerINF 2820 V2016: Obligatorisk innleveringsoppgave 3
INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering
DetaljerOppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerOppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :
Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave
DetaljerEksamen INF2820 Datalingvistikk, H2018, Løsningsforslag
Eksamen INF2820 Datalingvistikk, H2018, Løsningsforslag 1 2 Tre1: Tre 2: Tre 3: 3 Det kan være lurt å bytte ut regel NP > NP og NP med NP > NP C NP C > og Grammatikk G blander terminaler og ikketerminaler
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2018 9. Gang 13.3 Jan Tore Lønning I dag to deler A. Trekkstrukturgramatikker Fortsatt fra sist B. Chart-parsing Fortsetter parsing fra for to uker siden 2 TREKKSTRUKTUR- GRAMMATIKKER
DetaljerOppgave 1 (samlet 40%)
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker
DetaljerKap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).
Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk
DetaljerSpørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker
DetaljerINF2820-V2018 Oppgavesett 10 Gruppe 18.4
INF2820-V2018 Oppgavesett 10 Gruppe 18.4 Chart-parsing med papir og penn Denne oppgaven tjener flere formål: Få bedre grep på chart-parsing See hvordan en chart-parser behandler venstrerekursjon Praktisk
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin
DetaljerINF 2820 V2016: Innleveringsoppgave 3 hele
INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En
DetaljerINF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 26. januar 2015 2 ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 26. januar 2015
DetaljerINF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 25. januar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 3. februar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF2820 V2017 Oppgavesett 5 Gruppe 21.2
INF2820 V2017 Oppgavesett 5 Gruppe 21.2 Denne uka er det først noen teoretiske oppgaver. Deretter er det en del praktiske arbeidsoppgaver som vil forberede deg til arbeidet med innleveringsoppgavesett
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgåvesettet er på 5 side(r) Vedlegg: 0
DetaljerINF2820 V2017 Oppgavesett 5 arbeidsoppgaver
INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerKap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO
Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl
DetaljerINF3110 Programmeringsspråk
INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater
DetaljerKap.4 del 2 Top Down Parsering INF5110 v2005. Arne Maus Ifi, UiO
Kap.4 del 2 Top Down Parsering INF5110 v2005 Arne Maus Ifi, UiO LL(1) tabell for uttrykks-grammatikk Har fjernet venstrerekursjon: Har fjernet venstre-rekursjon: Alternativ def. av LL(1) grammatikker Sier
DetaljerSyntaksanalyse. Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger. IN 211 Programmeringsspråk
Syntaksanalyse Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger Ark 1 av 26 Forelesning 15.10.2001 Syntaksanalyse En parser er et program som analyserer
DetaljerRepetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.
INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer
DetaljerINF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA
Detaljer2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.
INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:
DetaljerKap.4 del I Top Down Parsering INF5110 v2005. Arne Maus Ifi, UiO
Kap.4 del I Top Down Parsering INF5110 v2005 Arne Maus Ifi, UiO Innhold Motivering Boka gir først parsering uten First/Follow-mengder og så innfører dem. Vi tar teorien først First og Follow-mengder Fjerning
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.
DetaljerINF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker
INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte
Detaljer1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer
DetaljerBottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006
ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2015 2 ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 23. januar 2015
DetaljerKap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF / Stein Krogdahl Ifi, UiO
Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 8/2-2013 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) Tokenklasser + ikketerminaler B B Tilstander Tabell for LR-parsering
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie
DetaljerINF5110 V2012 Kapittel 4: Parsering ovenfra-ned
INF5110 V2012 Kapittel 4: Parsering ovenfra-ned (top-down) Tirsdag 7. februar Stein Krogdahl, Ifi, UiO Oppgaver som gjennomgås i morgen, onsdag: -Spørsmålene på de to siste foilene fra onsdag 1/2 (Bl.a.
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 SAMMENHENGER FSA OG REGULÆRE UTTRYKK 31. januar
DetaljerSyntax/semantics - I INF 3110/ /29/2005 1
Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program
DetaljerKap. 4 del I Top Down Parsering INF5110 v2006. Stein Krogdahl Ifi, UiO
Kap. 4 del I Top Down Parsering INF5110 v2006 Stein Krogdahl Ifi, UiO 1 Innhold First og Follow-mengder Boka ser på én parseringsmetode først, uten å se på First/Follow-mengder. Vi tar teorien først To
DetaljerINF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper
DetaljerOppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal
Oppgave 2 INF5110 oppgave 2 på eksamen v04 med teori rne Maus Ifi FirstMengder Def { terminal First () = { a finnes avledning * a α } Dessuten: Om er utnullbar, så er ε First() Eks. 4.9 eregning av First-mengde
DetaljerINF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:
INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde
DetaljerINF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция
Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk
DetaljerDagens Tema: Grammatikker Kap. 3 i K. C. Louden
INF 5110, 29. januar 2015 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon
DetaljerINF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning
INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme
DetaljerKap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) 16/ Stein Krogdahl Ifi, UiO
Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 16/2-2011 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) B B t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker:
DetaljerDynamisk programmering
Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å
DetaljerINF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.)
Oppgave 1 Uavgjørbarhet INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/12-2005, 14.15 (lille aud.) L = {(M 1, M 2 ) M 1 og M 2 er Turingmaskiner som er ekvivalente, dvs. gir samme output for samme
DetaljerINF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk
DetaljerDagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2)
Dagens tema Syntaks (kapittel 2.1 + Komp. 47, kap. 1 og 2) 1/19 Forelesning 6 1.10.2003 Litt om kompilering og interpretering En kompilator oversetter et program til et annet språk, for eksempel maskinspråk.
DetaljerLitt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk
Litt om kompilering og interpretering Dagens tema Syntaks (kapittel 2. + Komp. 47, kap. og 2) En kompilator oversetter et program til et annet språk, for eksempel maskinspråk. Et program interpreteres
DetaljerStack. En enkel, lineær datastruktur
Stack En enkel, lineær datastruktur Hva er en stack? En datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi
Detaljer1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan
DetaljerINF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i
DetaljerKap. 5, Del 3: INF5110, fra 1/3-2011
Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO
DetaljerOppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar
Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken
DetaljerStoff som i boka står i kap 4, men som er. 10. Februar Ifi, UiO
INF5110 V2010 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 10. Februar 2010 Stein Krogdahl Ifi, UiO Oppgaver som gjennomgås 16/2: - Spørsmålene på foil 35 og 36 fra 9/10 - Finn
Detaljer