Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket."

Transkript

1 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne når de kommer i tilfelle noe er uklart. Hvis du føler noen forutsetninger mangler, lag dine egne og redegjør for dem! Oppgave 1 La A være mengden {Kari, Ola, trodde, sa, mente, at, smilte, lo} Og la r være det regulære uttrykket (( Kari + Ola )( trodde + sa + mente) at )* ( Kari + Ola )( smilte + lo) Da beskriver r en mengde strenger L A* og A, L er et språk. (Vi bruker her notasjon fra forelesninger og fra JFLAP. Andre kilder bruker annen notasjon, som eller for + ). Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket. Vi bruker forkortelsene k - kari o - ola s - sa t - trodde m mente a - at i - smilte l - lo Dette er en mulig løsning, men det er også mange andre. En riktig løsning på 1.2 vil også være en løsning på 1.1.

2 3 Spørsmål 1.2 (10%) Lag en deterministisk endelig tilstandsautomat (DFA) som beskriver dette språket. (Krever ikke at det er lagt til trap-state) Oppgave 2 La G1 være grammatikken med hovedsymbol S og følgende regler: 1. S -> NP VP 2. VP -> VP AP 3. VP -> IV 4. VP -> VS CP 5. CP -> C S 6. AP -> i dag 7. AP -> i går 8. IV -> smilte lo sov 9. VS -> trodde sa mente 10. C -> at 11. NP -> Kari Ola Mari Spørsmål 2.1 (10%) G1 genererer to trær for strengen a) Kari trodde at Ola sov i går Tegn opp de to trærne. Forklar i vanlig språk hvilke forskjellige betydninger de to trærne svarer til.

3 4 I første treet er det Ola som sov i går. Kari kan ha trodd dette i går eller i dag. I det andre treet er det Kari som trodde noe i går. Sovingen kan ha skjedd i går eller tidligere. Spørsmål 2.2 (10%) Vis hvordan en «Shift-Reduce»-parser vil anerkjenne de to lesningene. Du behøver ikke konstruere trærne underveis, bare vise trekkene i anerkjenningsrutinen. Du behøver ikke vise gale trekk der algoritmen må «backtracke». 1. Kari trodde at Ola sov i går 2. Shift: Kari Kari <> trodde at Ola sov i går 3. Reduce: NP -> 'Kari' NP <> trodde at Ola sov i går 4. Shift: trodde NP trodde <> at Ola sov i går 5. Reduce: VS -> 'trodde' NP VS <> at Ola sov i går 6. Shift: at NP VS at <> Ola sov i går 7. Reduce: C -> 'at' NP VS C <> Ola sov i går 8. Shift: Ola NP VS C Ola <> sov i går 9. Reduce: NP -> 'Ola' NP VS C NP <> sov i går 10. Shift: sov NP VS C NP sov <> i går 11. Reduce: IV -> 'sov' NP VS C NP IV <> i går 12. Reduce: VP -> IV NP VS C NP VP <> i går 13. Reduce: S -> NP VP NP VS C S <> i går 14. Reduce: CP -> C S NP VS CP <> i går 15. Reduce: VP -> VS CP NP VP <> i går 16. Shift: i NP VP i <> går 17. Shift: går NP VP i går <> #

4 5 18. Reduce: AP -> 'i' 'går' NP VP AP <> # 19. Reduce: VP -> VP AP NP VP <> # 20. Reduce: S -> NP VP S <> # Found analysis: (S (NP Kari) (VP (VP (VS trodde) (CP (C at) (S (NP Ola) (VP (IV sov))))) (AP i går))) 21. Shift: i NP VS C NP VP i <> går 22. Shift: går NP VS C NP VP i går <> # 23. Reduce: AP -> 'i' 'går' NP VS C NP VP AP <> # 24. Reduce: VP -> VP AP NP VS C NP VP <> # 25. Reduce: S -> NP VP NP VS C S <> # 26. Reduce: CP -> C S NP VS CP <> # 27. Reduce: VP -> VS CP NP VP <> # 28. Reduce: S -> NP VP S <> # Found analysis: (S (NP Kari) (VP (VS trodde) (CP (C at) (S (NP Ola) (VP (VP (IV sov)) (AP i går)))))) De to anlysene er felles frem til trekk 12. Den første analysen reduserer i trekk 13. Den andre skifter til trekk 21. Ikke nødvendig å ta med trær. Tatt med her for å vise hvodan analysene svarer til trærne. Ikke nødvendgi å skrive for hvert trekk om det er shift eller reduce, men et lite pluss til de som gjør det. Det er ikke nødvendig å skrive ut hele gjenværende input på hvert trinn, men fint å ta med minst ett ord: for eksempel NP <> trodde Spørsmål 2.3 (5%) Hvorfor tror du at du ble spurt om å bruke en «Shift-Reduce-» og ikke en «Recursive Descent-parser»? Fordi regel 2 er venstrerekursiv og det takler ikke RD-parsere. Spørsmål 2.4 (5%) Grammatikk G1 inneholder to regler, (6) og (7), hvor det står to ikketerminaler på høyresiden. Adverbialfrasene «i går» og «i dag» er litt spesielle konstruksjoner, for eksempel forekommer ikke «går»

5 6 med denne betydningen andre steder enn etter «i». Det er ulike strategier en kan ta i forhold til dette. En mulighet er å betrakte «i dag» og «i går» som leksikalske enheter som er skrevet i to ord. I så fall kan en forprosessering til selve parsingen slå de to ordene sammen til en enhet, et ord, for eksempel «i_dag» og «i_går». For parsing etter denne forprosesseringen skifter vi ut regel (6) og (7) fra G1 med 6. AP -> i_dag 7. AP -> i_går Kall grammatikken etter denne utskiftingen for G2. Med en grammatikk på den formen G2 nå får, kan vi lage en raskere versjon av «Shift-reduce-» algoritmen. Hva består endringen i? Forklar hvorfor den kan gi en stor besparelse. Vi kan la hvert shift-trekk etterfølges av et (unært) reduce-trekk. Uten denne endringen vil parseren hver gang den har lagt en terminal på stacken kunne shifte igjen og legge til en ny terminal. Men de aller fleste terminaler er bare innført av leksikalske regler. De vil ikke kunne reduseres hvis de ikke er øverste symbol på stacken. Derfor vil parseren prøve mange alternativ som ikke kan føre frem, som den slipper med den raffinerte algoritmen. Spørsmål 2.5 (10%) Vis hvordan en chart-parser kan anerkjenne b) Kari sov i_går Med grammatikk G2. For eksempel: BU-strategi (BU0) Agenda (1, ((NP, ['Kari'], []), (0, 1))) (2, ((IV, ['sov'], []), (1, 2))) (3, ((AP, ['i_går'], []), (2, 3))) (4, ((S, [], [NP, VP]), (0, 0))) (5, ((VP, [], [IV]), (1, 1))) (6, ((S, [NP], [VP]), (0, 1))) (7, ((VP, [IV], []), (1, 2))) (8, ((S, [NP, VP], []), (0, 2))) (9, ((VP, [], [VP, AP]), (1, 1))) (10, ((VP, [VP], [AP]), (1, 2))) (11, ((VP, [VP, AP], []), (1, 3))) (12, ((S, [NP, VP], []), (0, 3))) (13, ((VP, [VP], [AP]), (1, 3)))

6 7 Chartet (skal tegnes) (0) Kari (1) sov (2) i_går (3) 0) 4:S->.NP VP 6:S->NP.VP 8:S->NP VP. 12:S->NP VP. 1:NP->Kari. 1) 9:VP->.VP AP 10:VP->VP.AP 13:VP->VP.AP 5:VP->.IV 7:VP->IV. 11:VP->VP AP. 2:IV->sov. 2) 3:AP->i_går. 3) Oppgave 3 (20%) La G3 være grammatikken med hovedsymbol S og følgende regler: 1. S -> NP VP 2. VP -> IV 3. VP -> TV NP 4. NP -> DET N 5. NP -> Pro 6. IV -> runs smokes sleeps run smoke sleep 7. TV -> chases envies respects chase envy respect 8. DET -> a the every some all 9. N -> cat dog cats dogs 10. Pro -> I you she he it we they me her him us them Denne grammatikken genererer noen engelske setninger, men den generer også mange ugrammatiske ordsekvenser, som A cats sleep All cats sleeps Every cat sleep I chases a dog He respect a cat The cat chases she Utvid grammatikk G3 med trekk ( features ) slik at den stadig generer de setningene som er grammatisk engelsk, men ikke de ugrammatiske ordsekvensene. Det er et mål fremdels bare å ha 5 grammatikkregler, svarende til reglene (1-5), mens de leksikalske reglene (6-10) kan skiftes med flere regler.

7 8 % start S S -> NP[AGR=?a, CASE=nom] VP[AGR=?a] VP[AGR=a?] -> IV[AGR=a?] VP[AGR=a?] -> TV[AGR=a?] NP[CASE=obj] NP[AGR=a?] -> DET[AGR=a?] N[AGR=?a] NP[AGR=a?, CASE=?c] -> Pro[AGR=a?, CASE=?c] IV[AGR=[+sg, +third]] -> runs smokes sleeps IV[AGR=[+sg, -third]] -> run smoke sleep IV[AGR=[-sg]] -> run smoke sleep TV[AGR=[+sg, +third]] -> chases envies respects TV[AGR=[+sg, -third]] -> chase envy respect TV[AGR=[-sg]] -> chase envy respect DET[AGR=[+sg, +third]] -> a every DET[AGR=[+third]] -> the some DET[AGR=[-sg, +third]] -> all N[AGR=[+sg]] -> cat dog N[AGR=[-sg]] -> cats dogs Pro[AGR=[-third, +sg], CASE = nom] -> I Pro[AGR=[-third]] -> you Pro[AGR=[-sg], CASE = nom] -> we they Pro[AGR=[+sg, +third], CASE = nom] -> he she Pro[AGR=[+sg, +third]] -> it Pro[CASE=obj] -> me her him us them Oppgave 4 Vi skal se på semantikk. Følgende regler er tatt fra NLTK-implementasjonen, simple-sem.fcfg. Vi har fjernet syntaktiske trekk for å gjøre det mer lesbart slik at vi kan konsentrere oss om semantikken. % start S S[SEM = <?subj(?vp)>] -> NP[SEM=?subj] VP[SEM=?vp] NP[SEM=<?det(?nom)> ] -> Det[SEM=?det] N[SEM=?nom] NP[SEM=?np] -> PropN[SEM=?np] VP[SEM=?v] -> IV[SEM=?v] VP[SEM=<?v(?obj)>] -> TV[SEM=?v] NP[SEM=?obj] PropN[SEM=<\P.P(cyril)>] -> 'Cyril' PropN[SEM=<\P.P(irene)>] -> 'Irene'

8 9 Det[SEM=<\P Q.all x.(p(x) -> Q(x))>] -> 'every' Det[SEM=<\P Q.exists x.(p(x) & Q(x))>] -> 'a' N[SEM=<\x.girl(x)>] -> 'girl' N[SEM=<\x.dog(x)>] -> 'dog' IV[SEM=<\x.bark(x)>] -> 'barks' IV[SEM=<\x.walk(x)>] -> 'walks' TV[SEM=<\X x.x(\y.chase(x,y))>] -> 'chases' TV[SEM=<\X x.x(\y.bite(x,y))>] -> 'bites' Spørsmål 4.1 (10%) Tegn opp treet grammatikken tilskriver til setningen c) Cyril barks og vis hvordan semantikken (SEM-trekket) til setningen blir konstruert, trinn for trinn. Semantikken på toppnoden er <\P.P(cyril)(\x.bark(x))> som reduseres i to trinn: <\P.P(cyril)(\x.bark(x))> <(\x.bark(x))(cyril)> <bark(cyril)> Spørsmål 4.2 (10%) Utvid grammatikken med adjektiv som modifiserer substantiv slik at setningen d) Every big dog barks blir tilordnet semantikken all x.( (big(x) & dog(x)) -> bark(x) ) Alternativ1 N[SEM=<?a(?n)>] -> AP[SEM=?a] N[SEM=?n] AP[SEM=<\P x.(big(x) & P(x))>] -> 'big' Alternativ2 N[SEM=<\x.(?a(x) &?n(c))>] -> AP[SEM=?a] N[SEM=?n] AP[SEM=<\x.big(x)>] -> 'big' SLUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler: 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

Oppgave 1 (samlet 40%)

Oppgave 1 (samlet 40%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgåvesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820-V2014-Oppgavesett 15, gruppe 13.5

INF2820-V2014-Oppgavesett 15, gruppe 13.5 INF2820-V2014-Oppgavesett 15, gruppe 13.5 Vi møtes på FORTRESS denne uka. Semantikk i grammatikken Utgangspunktet er det lille grammatikkfragmentet med semantiske regler presentert I NLTK-boka som simple-sem.fcfg.

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar

Detaljer

INF 2820 V2016: Obligatorisk innleveringsoppgave 3

INF 2820 V2016: Obligatorisk innleveringsoppgave 3 INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:

Detaljer

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 hele

INF 2820 V2016: Innleveringsoppgave 3 hele INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil

Detaljer

Obligatorisk oppgave 4, INF2820, 2014

Obligatorisk oppgave 4, INF2820, 2014 Obligatorisk oppgave 4, INF2820, 2014 Besvarelsene skal leveres i devilry innen 7.5 kl 1800. Filene det vises til finner du etter hvert på /projects/nlp/inf2820/ Oppgavene kan løses alene og det skal leveres

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK

Detaljer

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V2012

INF2820 Datalingvistikk V2012 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 del 1

INF 2820 V2016: Innleveringsoppgave 3 del 1 INF 2820 V2016: Innleveringsoppgave 3 del 1 Pga tekniske problemer er oppgaveteksten delt i to. Dette er første del. Andre del legges ut mandag 13.3! Besvarelsene skal leveres i devilry innen fredag 24.3

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon

Detaljer

INF2820 V2017 Oppgavesett 6 Gruppe 7.3

INF2820 V2017 Oppgavesett 6 Gruppe 7.3 INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 11. gang, 27.3.2014 Jan Tore Lønning I dag Repetere en del begreper: Trekkstrukturer Unifikasjon og subsumpsjon Trekkbaserte grammatikker Form: to alternative format Tolkning

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2016 14. gang, 27.4.2016 Jan Tore Lønning I dag Formell setningssemantikk: Systematisk oversettelse fra naturlig språk til logisk språk Utvidelser av det logiske språket To trinn

Detaljer

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 10. Gang 23.3 Jan Tore Lønning I dag Trekkbaserte grammatikker, delvis repetisjon Formelle egenskaper: Alternative format for slike grammatikker Tolkning av grammatikkreglene

Detaljer

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2015 13. gang, 27.4.2015 Jan Tore Lønning Semantikk noen poeng fra sist Vi legger vekt på at språket er om noe det denotasjonelle aspektet ved mening Det logiske forholdet mellom

Detaljer

Oppgave 1 (samlet 15%)

Oppgave 1 (samlet 15%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal svare på alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren

Detaljer

INF 2820 V2016: Obligatorisk innleverinsoppgave 1

INF 2820 V2016: Obligatorisk innleverinsoppgave 1 INF 2820 V2016: Obligatorisk innleverinsoppgave 1 OBS Korrigert eksemplene oppgave 2, 8.2 Besvarelsene skal leveres i devilry innen torsdag 18.2 kl 18.00 Filene det vises til finner du på /projects/nlp/inf2820/fsa

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming

Detaljer

INF INF1820. Arne Skjærholt. Negende les INF1820. Arne Skjærholt. Negende les

INF INF1820. Arne Skjærholt. Negende les INF1820. Arne Skjærholt. Negende les Arne Skjærholt egende les Arne Skjærholt egende les σύνταξις Syntaks, fra gresk for oppstilling, er studiet av hvordan vi bygger opp setninger fra ord. Pāṇini (ca. 400 år f.kr.) er den første som formulerer

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 9. Gang 16.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2015 11. Gang 13.4 Jan Tore Lønning I dag Unifikasjonsgrammatikker Repetisjon og overblikk: Formalisme Lingvistisk anvendelse Utvidelse av lingvistisk anvendelse NLTKs implementering

Detaljer

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker

Detaljer

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk : Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER. INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:

Detaljer

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker. INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 12. gang, 3.4.2014 Jan Tore Lønning I dag Trekkbaserte grammatikker (unifikasjonsgrammatikker) for naturlige språk NLTKs implementering av slike Litt om lingvistiske modeller

Detaljer

Hjemmeeksamen 2 i INF3110/4110

Hjemmeeksamen 2 i INF3110/4110 Hjemmeeksamen 2 i INF3110/4110 Innleveringsfrist: onsdag 19. november kl. 1400 Innlevering Besvarelsen av oppgave 2,3,4 og 5 skal leveres skriftlig på papir i IFI-ekspedisjonen. Merk denne med navn, kurskode,

Detaljer

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 10. Gang 20.3 Jan Tore Lønning I dag grammatikker med trek og unifikasjon Fortsatt:) CKY og Chart: Parsing vs anerkjenning Grammatikker med trekk Tolkning av grammatikkene,

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk

Detaljer

Kap. 5, Del 3: INF5110, fra 1/3-2011

Kap. 5, Del 3: INF5110, fra 1/3-2011 Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO et matematisk-naturvitskapelige fakultet Eksam i: IF1820 Introduksjon til språk- og kommunikasjonsteknologi Eksamsdag: 17. juni 2016 Tid for eksam: 14.30 18.30 Oppgavesettet er på 6

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 12. Gang 13.4 Jan Tore Lønning I dag Trekkbaserte grammatikker for naturlige språk med vekt på subkategorisering/argumenter, 3 tilnærminger a. Enkel løsning, grammatikk 1

Detaljer

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper. INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer

Detaljer

Dagens Tema: Grammatikker

Dagens Tema: Grammatikker INF 5110, 9. februar 2010 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

INF januar Forelesninger fremover:

INF januar Forelesninger fremover: Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside (foreløpig 2007): Pensum/læringskrav INF 5110

Detaljer

Slides til 12.1 Formelt språk og formell grammatikk

Slides til 12.1 Formelt språk og formell grammatikk Slides til 12.1 Formelt språk og formell grammatikk Andreas Leopold Knutsen April 6, 2010 Introduksjon Grammatikk er studiet av reglene som gjelder i et språk. Syntaks er læren om hvordan ord settes sammen

Detaljer

Dagens Tema: Grammatikker

Dagens Tema: Grammatikker INF 5110, 8. februar 2011 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk

Detaljer

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken

Detaljer

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon OBS: Lov å stille spørsmål underveis Forelesninger

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker

Detaljer

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden INF 5110, 1. februar 2012 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 11. Gang 20.3 Jan Tore Lønning I dag (Fra sist Trekkstrukturer og unifikasjon (J&M, seksj 15.1, J&M, seksj. 15.2) Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte

Detaljer

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden INF 5110, 31. januar 2014 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed). Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på

Detaljer

Uke 7: Små barn, små setninger I

Uke 7: Små barn, små setninger I LIN-1013: Språktilenelse, Våren 2003 Uke 7: Små barn, små setniner I 1. Litt om syntaks Sett slike trær før? IP qp NP I'! John I VP has Spec V' V DP! eaten an apple CP qp DP C'! et eple i C IP har k NP

Detaljer

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2)

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Dagens tema Syntaks (kapittel 2.1 + Komp. 47, kap. 1 og 2) 1/19 Forelesning 6 1.10.2003 Litt om kompilering og interpretering En kompilator oversetter et program til et annet språk, for eksempel maskinspråk.

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon 1. Hvorfor datalingvistikk? 2. Hva er utfordringene?

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger

Detaljer

Litt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk

Litt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk Litt om kompilering og interpretering Dagens tema Syntaks (kapittel 2. + Komp. 47, kap. og 2) En kompilator oversetter et program til et annet språk, for eksempel maskinspråk. Et program interpreteres

Detaljer

UNIVERSITETET I OSLO DET HUMANISTISKE FAKULTET. Hjemmeeksamen/heimeeksamen i. LING2104 Morfologi og syntaks 2

UNIVERSITETET I OSLO DET HUMANISTISKE FAKULTET. Hjemmeeksamen/heimeeksamen i. LING2104 Morfologi og syntaks 2 UNIVERSITETET I OSLO DET HUMANISTISKE FAKULTET ------------------------------- Hjemmeeksamen/heimeeksamen i LING2104 Morfologi og syntaks 2 Høst/haust 2013 Publisering: Mandag/måndag 25. november kl. 13

Detaljer

Hvor er vi nå - kap. 3 (+4,5)? Forenklet skisse av hva en parser gjør PARSER. Kontekstfrie grammatikker og syntaksanalyse (parsering)

Hvor er vi nå - kap. 3 (+4,5)? Forenklet skisse av hva en parser gjør PARSER. Kontekstfrie grammatikker og syntaksanalyse (parsering) Hvor er vi nå - kap. 3 (+4,5)? Kontekstfrie grammatikker og syntaksanalyse (parsering) INF5110 - kap.3 i Louden + hjelpenotat (se hjemmesida) Arne Maus Ifi, UiO v2006 program Pre - processor Makroer Betinget

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i

Detaljer

INF 2820 V2018: Innleveringsoppgave 1

INF 2820 V2018: Innleveringsoppgave 1 INF 2820 V2018: Innleveringsoppgave 1 Besvarelsene skal leveres i devilry innen fredag 9.2 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil 100 poeng. Til sammen kan en få inntil

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

INF 2820 V2016: Obligatorisk innleverinsoppgave 2

INF 2820 V2016: Obligatorisk innleverinsoppgave 2 INF 2820 V2016: Obligatorisk innleverinsoppgave 2 Besvarelsene skal leveres i devilry innen torsdag 17.3 kl 18.00 Filene det vises til finner du på o /projects/nlp/inf2820/scarrie o /projects/nlp/inf2820/cfg

Detaljer

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 12/2-2013 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Dagens temaer: Noen foiler igjen fra forrige gang SLR(1), LR(1)- og LALR(1)-grammatikker NB: Oppgaver til kap 4 og 5 er lagt ut på undervisningsplanen

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 22/2-2011 Stein Krogdahl, Ifi, UiO Oppgaver til kap 4: På slutten av dagens foiler ligger noen oppgaver med svarforslag. Disse vil bli forholdsvis

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl

Detaljer

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar

Detaljer

Med rettelser til oppgave 5.18, gjort 3/3

Med rettelser til oppgave 5.18, gjort 3/3 Med rettelser til oppgave 5.18, gjort 3/3 INF5110, 29/2-2012 Her er også alt fra 28/2 Kap. 5, Del 3: Litt om LR(1)- og LALR(1)-grammatikker Bakerst: - Noen oppgaver til kap 5 med svar - Lysarkene fra 28/2

Detaljer