INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning"

Transkript

1 INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

2 I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars

3 Dynamisk programmering I en beregning kan det inngå delberegninger som må foretas flere ganger Med DP tar vi vare på resultatet av disse beregningene underveis slik at Vi slipper å gjøre delberegningene flere ganger Øker effektiviteten, F.eks. i noen tilfeller fra eksponentiell til polynomisk tid Kan lagre flertydige strukturer med felles deler Vi skal se på CKY-parser, nå Chartparser, senere 3

4 CKY-parsing CKY/CYK (Cocke-Kasami-Younger) algoritmen Hovedide: 1. For hvert segment [i, j] av ord i input, bestem hvilke ikke-terminaler som disse ordene kan avledes fra 2. Bottom-up 3. Kortere segmenter før lengre segmenter 4

5 Chomsky-normalform (CNF) CKY algoritmen forutsetter at grammatikken er på Chomsky-normalform En grammatikk er på Chomsky-normalform hvis alle reglene er på en av følgende former: A B C (ikketerminaler) A t (t en terminal) Vi skal senere se at: Enhver CFG G hvor ε L(G), er svakt ekvivalent til en G på CNF. Altså L(G) = L(G ) 1. mars

6 CKY-parsing, forts. Hvilke kategorier har ord j, dvs segment [j-1,j]? Betrakt alle regler: A w j for en eller annen A Lagr disse A-ene i tabell[j-1, j] Se så på segmenter av to ord, [i, i + 2]: For å legge en ikke-terminal, A, i tabell[i, i+2] må det Finnes en regel A B C for en eller annen B og C B må utspenne [i, i+1] C må utspenne [i+1, i+2] 6

7 CKY-parsing ff. Deretter se på tre-ordsfragmenter [i, i+3]: For å legge en ikke-terminal, A, i tabell[i, i+3] må det Finnes en regel A B C for en eller annen B og C B må utspenne [i, i+1] og C må utspenne [i+1, i+3], eller B må utspenne [i, i+2] og C må utspenne [i+2, i+3] I det generelle tilfellet [i, j]: Det må finnes en regel A B C for en eller annen B og C B må utspenne [i, k] og C må utspenne [k, j], for en eller annen k, hvor i<k<j 7

8 CNF Conversion 3/1/2016 Speech and Language Processing - Jurafsky and Martin 8

9 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 9

10 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 10

11 Example Hvordan fylle søyle 5 3/1/2016 Speech and Language Processing - Jurafsky and Martin 11

12 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 12

13 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 13

14 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 14

15 Example 3/1/2016 Speech and Language Processing - Jurafsky and Martin 15

16 CKY Algorithm 3/1/2016 Speech and Language Processing - Jurafsky and Martin 16

17 CKY-implementasjon (følger pseudok.) def cky(words, cfg): tabl = [[set([]) for j in range(len(words)+1) ] for i in range(len(words))] for j in range(len(words)): tabl[j][j+1] = set([p.lhs() for p in cfg.productions() if p.rhs() == (words[j],)]) for i in range(j-1,-1,-1): for k in range(i+1, j+1, 1): tabl[i][j+1] = tabl[i][j+1].union( [p.lhs() for p in grammar.productions() if (p.rhs()[0] in tabl[i][k] and p.rhs()[1] in tabl[k][j+1])]) return tabl 17

18 CKY-implementasjon (mer prosedyrell) def cky(words, cfg): tabl = [[[] for j in range(len(words)+1) ] for i in range(len(words))] for j in range(len(words)): tabl[j][j+1] = [p.lhs() for p in cfg.productions() if p.rhs() == (words[j],)] for i in range(j-1,-1,-1): for k in range(i+1, j+1, 1): for p in grammar.productions(): if (p.rhs()[0] in tabl[i][k] and p.rhs()[1] in tabl[k][j+1]): if not p.lhs() in tabl[i][j+1]: tabl[i][j+1].append(p.lhs()) return tabl 18

19 I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars

20 Chomsky-normalform (CNF) CKY algoritmen forutsetter at grammatikken er på Chomsky-normalform En grammatikk er på Chomsky-normalform hvis alle reglene er på en av følgende former: A B C (ikketerminaler) A t (t en terminal) Enhver CFG G hvor ε L(G) er svakt ekvivalent til en G på CNF, dvs L(G)=L(G ) 1. mars

21 Chomsky-normalform (CNF) Enhver CFG G hvor ε L(G) er svakt ekvivalent til en G på CNF Oppskrift: 1. Erstatt alle regler på formen A ε 2. Erstatt alle regler på formen A B for B en ikke-terminal 3. For hver regel A β, der β > 1 og β inneholder en eller flere terminaler t 1,, t n : 1. Innfør nye ikke-terminaler T 1,, T n. 2. Erstatt t i med T i 3. Innfør reglene T i t i for i = 1,, n 4. For hver regel A B 1 B 2 B n, n > 2, : 1. Innfør nye ikke-terminaler C 1,, C n-1 og regler 2. A B 1 C 1 3. C i B i+1 C i+1 for i = 1,, n-1 1. mars

22 De to første trinnene: 1. Erstatt alle regler på formen A ε unntatt evt. S ε: 1. Finn mengden E av alle ikke-terminaler A, s.a. A + ε 2. For hver regel B β: Legg til alle regler på formen B β, der β fremkommer ved å stryke en eller flere ikke-terminaler fra E. 3. Stryk alle regler på formen A ε 2. Erstatt alle regler på formen A B for B en ikke-terminal: 1. For enhver ikke-terminal B: For enhver A s.a. A B eller A + B: For enhver β s.a. B β: Innfør A β, hvis den ikke alt finnes 2. Fjern alle unære regler med ikke-terminal h.s. 1. mars

23 Eksempel Grammatikk 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. B ε 1. mars

24 Eksempel Grammatikk 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. B ε Trinn 1 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. stryk 7. S a 8. A a 9. A a b 10.B a c 1. mars

25 Eksempel Grammatikk 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. B ε Trinn 1 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. stryk 7. S a 8. A a 9. A a b 10.B a c Trinn 2 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. stryk 5. B a B c 6. strøket 7. S a 8. A a 9. A a b 10.B a c 11.A a B c 12.A a c 1. mars

26 Eksempel Grammatikk 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. B ε Trinn 1 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. stryk 7. S a 8. A a 9. A a b 10.B a c Trinn 2 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. strøket 5. B a B c 6. strøket 7. S a 8. A a 9. A a b 10.B a c 11.A a B c 12.A a c Trinn 3 I. S X A II. A X A III. A X A Y IV. strøket V. B X B Z VI. strøket VII. S a VIII. A a IX. A X Y X. B X Z XI. A X B Z XII. A X Z XIII. X a XIV. Y b XV. Z c 1. mars

27 Eksempel Grammatikk 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. B ε Trinn 1 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. A B 5. B a B c 6. stryk 7. S a 8. A a 9. A a b 10.B a c Trinn 2 E = {A, B} 1. S a A 2. A a A 3. A a A b 4. stryk 5. B a B c 6. strøket 7. S a 8. A a 9. A a b 10.B a c 11.A a B c 12.A a c Trinn 3 I. S X A II. A X A III. A X A Y IV. strøket V. B X B Z VI. strøket VII. S a VIII. A a IX. A X Y X. B X Z XI. A X B Z XII. A X Z XIII. X a XIV. Y b XV. Z c Trinn 4 I. S X A II. A X A III.a A X P III.b P A Y IV. strøket V.a B X Q V.b B Z VI. strøket VII. S a VIII. A a IX. A X Y X. B X Z XI.a A X R X1.b B Z XII. A X Z XIII. X a XIV. Y b XV. Z c 1. mars

28 Sample L1 Grammar 3/1/2016 Speech and Language Processing - Jurafsky and Martin 28

29 CNF Conversion 3/1/2016 Speech and Language Processing - Jurafsky and Martin 29

30 Begrensninger i CKY 1. Grammatikken må være på CNF 2. Det foreslås strukturer som holder lokalt, men ikke globalt: Løsninger baserer seg på å kombinere TD og BU Hjelp for begge problemene å innføre dotted items og chart-parsing senere i semesteret 1. mars

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.

Detaljer

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce

Detaljer

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon

Detaljer

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])

Detaljer

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser

Detaljer

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

INF2820 Datalingvistikk V2012

INF2820 Datalingvistikk V2012 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech

Detaljer

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen

Detaljer

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det

Detaljer

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr en omfatter 1 Perspektiv I en omfatter 2 Perspektiv II en omfatter 3 Perspektiv III en omfatter 4 Perspektiv IV en omfatter 5 Perspektiv V en omfatter 6 Perspektiv VI en omfatter 7 Perspektiv VII en omfatter

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

INF 2820 V2016: Obligatorisk innleveringsoppgave 3

INF 2820 V2016: Obligatorisk innleveringsoppgave 3 INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK

Detaljer

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler: 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk : Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk

Detaljer

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie

Detaljer

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006 ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning INF2820 Datalingvistikk 19. januar 2014 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte

Detaljer

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER. INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:

Detaljer

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal Oppgave 2 INF5110 oppgave 2 på eksamen v04 med teori rne Maus Ifi FirstMengder Def { terminal First () = { a finnes avledning * a α } Dessuten: Om er utnullbar, så er ε First() Eks. 4.9 eregning av First-mengde

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning INF2820 Datalingvistikk 20. januar 2016 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære språk OBS: Lov å

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper. INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning INF2820 Datalingvistikk 21. januar 2015 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk 16. januar 2017 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære

Detaljer

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed). Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på

Detaljer

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning INF2820 Datalingvistikk V2016 Forelesning 4, 10.2 Jan Tore Lønning I dag Ord Begrensninger med regulære språk Regulære uttrykk i praksis Utvidete regulære uttrykk Frasestruktur og kontekstfrie grammatikker

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

Oppgave 1 (samlet 40%)

Oppgave 1 (samlet 40%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren

Detaljer

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme

Detaljer

INF2820 V2017 Oppgavesett 6 Gruppe 7.3

INF2820 V2017 Oppgavesett 6 Gruppe 7.3 INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3

Detaljer

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning INF2820 Datalingvistikk V2016 Forelesning 4, 10.2 Jan Tore Lønning I dag Ord Begrensninger med regulære språk Regulære uttrykk i praksis Utvidete regulære uttrykk Frasestruktur og kontekstfrie grammatikker

Detaljer

Da!har!vi!avklart!det!

Da!har!vi!avklart!det! Daharviavklartdet En#studie#av#emneavrunding#i#møtesamtaler# SaraJ.Koppang Masteroppgaveiretorikkogkommunikasjon RETKOM4195(30stp.) Instituttforlingvistiskeognordiskestudier Dethumanistiskfakultet UNIVERSITETETIOSLO

Detaljer

VEDLEGG B FOTODOKUMENTASJON

VEDLEGG B FOTODOKUMENTASJON I Bildeliste fra tilstandsvurdering: Bilde 1: Fylling/Landside; Utglidning og bevegelse i steinvegg... II Bilde 2:Fylling/ Landside; Utglidning og bevegelse i steinvegg, sett fra landside... II Bilde 3:

Detaljer

LOVSPEIL. Aml. 1977 / Aml. 2005

LOVSPEIL. Aml. 1977 / Aml. 2005 LOVSPEIL Aml. / Aml. 2005 Dette lovspeilet er utarbeidet av Direktoratet for arbeidstilsynet og viser hvor bestemmelser i arbeidsmiljøloven av er å gjenfinne i den nye arbeidsmiljøloven som trådte i kraft

Detaljer

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket. 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF januar Forelesninger fremover:

INF januar Forelesninger fremover: Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside (foreløpig 2007): Pensum/læringskrav INF 5110

Detaljer

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 10. Gang 20.3 Jan Tore Lønning I dag grammatikker med trek og unifikasjon Fortsatt:) CKY og Chart: Parsing vs anerkjenning Grammatikker med trekk Tolkning av grammatikkene,

Detaljer

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 12/2-2013 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Dagens temaer: Noen foiler igjen fra forrige gang SLR(1), LR(1)- og LALR(1)-grammatikker NB: Oppgaver til kap 4 og 5 er lagt ut på undervisningsplanen

Detaljer

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken

Detaljer

! Munch!på!Tøyen!eller!i!Bjørvika?!

! Munch!på!Tøyen!eller!i!Bjørvika?! MunchpåTøyenelleriBjørvika? En#diskursanalyse#av#debatten#om#det#nye#Munchmuseet#sett#i# sammenheng#med#museenes#samfunnsrolle# SeungHaeYu Instituttforkulturstudierogorientalskespråk Dethumanistiskefakultet

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 hele

INF 2820 V2016: Innleveringsoppgave 3 hele INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil

Detaljer

Hjemmeeksamen 2 i INF3110/4110

Hjemmeeksamen 2 i INF3110/4110 Hjemmeeksamen 2 i INF3110/4110 Innleveringsfrist: onsdag 19. november kl. 1400 Innlevering Besvarelsen av oppgave 2,3,4 og 5 skal leveres skriftlig på papir i IFI-ekspedisjonen. Merk denne med navn, kurskode,

Detaljer

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1: INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2

Detaljer

INF /2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF /2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 17/2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Mer om LR-parsering Hadde også igjen noen foiler fra 12/2 Oblig 1 er lagt ut. Det blir en intro til Oblig 1 ved Eyvind Axelsen torsdag 19/2 1 Flertydige

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Stein Krogdahl, Ifi, UiO Torsdag 26/2: Første time Kap. 5 (avslutning?) Andreas Svendsen kommer andre time, snakker om oblig 1 (spesielt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgåvesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 26. januar 2011 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan

Detaljer

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005. Stein Krogdahl, Ifi, UiO

Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005. Stein Krogdahl, Ifi, UiO Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005 Stein Krogdahl, Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) S A B B A LR-parsering og grammatikker: t 1 t 2 t 3 t 7 t 4 t 5 t 6 - LR(0) Det

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

KUNNSKAPSLØFTET EN PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I VERDAL OG LEVANGER KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING

KUNNSKAPSLØFTET EN PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I VERDAL OG LEVANGER KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I GRUNNSKOLENE I LEVANGER OG VERDAL KOMMUNER HØRINGSUTKAST MAI 2005 1. Innledning Kunnskapsløftet er en ny og omfattende reform av

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2015 11. Gang 13.4 Jan Tore Lønning I dag Unifikasjonsgrammatikker Repetisjon og overblikk: Formalisme Lingvistisk anvendelse Utvidelse av lingvistisk anvendelse NLTKs implementering

Detaljer

INF 2820 V2016: Obligatorisk innleverinsoppgave 1

INF 2820 V2016: Obligatorisk innleverinsoppgave 1 INF 2820 V2016: Obligatorisk innleverinsoppgave 1 OBS Korrigert eksemplene oppgave 2, 8.2 Besvarelsene skal leveres i devilry innen torsdag 18.2 kl 18.00 Filene det vises til finner du på /projects/nlp/inf2820/fsa

Detaljer

Stoff som i boka står i kap 4, men som er

Stoff som i boka står i kap 4, men som er INF5110 V2011 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 9. Februar 2011 Stein Krogdahl, Ifi, UiO Oppgaver som gjennomgås gå tirsdag 15/2: - Spørsmålene på de to siste foilene

Detaljer

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon OBS: Lov å stille spørsmål underveis Forelesninger

Detaljer

IN1140: Introduksjon til språkteknologi. Forelesning #1

IN1140: Introduksjon til språkteknologi. Forelesning #1 IN1140: Introduksjon til språkteknologi Forelesning #1 Erik Velldal Universitetet i Oslo 22. august 2017 Tema for i dag 2 Introduksjon Hva er språkteknologi? Hva er IN1140? Praktiske detaljer Grupper Obliger

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon 1. Hvorfor datalingvistikk? 2. Hva er utfordringene?

Detaljer

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 5. Gang - 13.2 Jan Tore Lønning I dag Tekstnormalisering: lemmatisering og «stemming» Tagget tekst og tagging Begrensninger ved regulære språk Frasestruktur og kontekstfrie

Detaljer

Syntax/semantics - I INF 3110/ /29/2005 1

Syntax/semantics - I INF 3110/ /29/2005 1 Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program

Detaljer

Muligheter og begrensninger ved medikamentell behandling av psykiske lidelser hos voksne med utviklingshemming. Psykiske lidelser, voksne m/utvh.

Muligheter og begrensninger ved medikamentell behandling av psykiske lidelser hos voksne med utviklingshemming. Psykiske lidelser, voksne m/utvh. Muligheter og begrensninger ved medikamentell behandling av psykiske lidelser hos voksne med utviklingshemming Lege Terje Houeland Spesialist i (voksen)psykiatri ReHabiliteringuka Helse Stavanger HF, 24.10.2012

Detaljer

Kap. 5, Del 3: INF5110, fra 1/3-2011

Kap. 5, Del 3: INF5110, fra 1/3-2011 Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO

Detaljer

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før.

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. Choices, choices Tiende forelesning Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. DAG- SP er erkeeksemplet (og den underliggende modellen for all DP).

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 9. Gang 16.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden INF 5110, 31. januar 2014 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

KUNNSKAPSLØFTET EN PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I VERDAL OG LEVANGER KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING

KUNNSKAPSLØFTET EN PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I VERDAL OG LEVANGER KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING KUNNSKAPSLØFTET: PLAN FOR KOMPETANSEUTVIKLING FOR PEDAGOGISK PERSONALE I GRUNNSKOLENE I LEVANGER OG VERDAL KOMMUNER 1. Innledning Kunnskapsløftet er en ny og omfattende reform av hele grunnopplæringen.

Detaljer