INF2820 Datalingvistikk V gang, Jan Tore Lønning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF2820 Datalingvistikk V gang, Jan Tore Lønning"

Transkript

1 INF2820 Datalingvistikk V gang, Jan Tore Lønning

2 I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2

3 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2]) (Nom, [2,3]) (N, [2,3]) (NP, [1, 3]) (S, [0,5]) S, VP, X2 NP S, VP, X2 Nom NP PP S, VP, V, Nom, N Det Nom, N P NP, PN 0 book 1 the 2 flight 3 through 4 Houston 5 4. mars

4 Begrensninger i CKY 1. Grammatikken må være på CNF 2. Det foreslås strukturer som holder lokalt, men ikke globalt: Løsninger baserer seg på å kombinere TD og BU Hjelp for begge problemene å innføre dotted items 4. mars

5 States The table-entries are called states and are represented with dotted-rules. S VP NP Det Nominal VP V NP - A VP is predicted - An NP is in progress - A VP has been found 3/4/2014 Speech and Language Processing - Jurafsky and Martin 5

6 States/Locations S VP [0,0] A VP is predicted at the start of the sentence NP Det Nominal [1,2] VP V NP [0,3]. An NP is in progress; the Det goes from 1 to 2 A VP has been found starting at 0 and ending at 3 3/4/2014 Speech and Language Processing - Jurafsky and Martin 6

7 Active Chart datastruktur NP Det Nom Nom Nom PP NP PP P NP Det Nom, N P NP, PN 0 book 1 the 2 flight 3 through 4 Houston 5 NP Det Nom Nom Nom PP PP P NP NP Det Nom Nom Nom PP PP P NP Partielt snapshot 4. mars

8 Fundamentalregelen NP Det Nom Nom Nom PP 0 book 1 the 2 flight 3 through 4 Houston 5 NP Det Nom Fra (A α B β, [i,k] ) + (B γ, [k, j] ) Lag (A α B β, [i,j] ) 4. mars

9 Chart-parsing Agenda Chart Hovedide: Fjern en kant k fra Agenda Hvis k ikke er i chart: Legg k til Chart For alle kanter m i chartet: Prøv å match k og m med fundamentalregelen Hvis match, legg ny kant til Agenda Gjenta til Agenda er tom March 4,

10 I tillegg Initialisering For det n-te ordet w i setningen For alle leksikalske regler på formen B w, for en eller annen B: Legg (B w, [n-1,n] ) til agendaen på et eller annet tidspunkt Introduser aktive kanter: Legg de aktive kantene (B γ, [k,k]) som er nødvendige, til agendaen Hold regnskap med hva som blir gjort, slik at alt blir gjort Ulike strategier for Rekkefølgen oppgavene utføres Og dermed: Hvilke aktive kanter som er nødvendige Om de leksikalske reglene må innom agenda eller kan gå rett til chartet. March 4,

11 Bottom-up Legg de aktive kantene (B γ, [k,k]) som er nødvendige, til agendaen Når en inaktiv/fullstendig kant (B γ, [m, n] ) blir lagt til chartet Finn alle A, β s.a. A B β er en regel og (to alternative understrategier:) (Straegi BU0:) Legg kanten (A B β, [m, m]) til agendaen. (Strategi BU1:) Legg kanten (A B β, [m, n]) til agendaen. March 4,

12 Make-predictions, fig BU1 4. mars

13 Top-Down Legg de aktive kantene (B γ, [k,k]) som er nødvendige, til agendaen Initialiser: Legg ( S, [0, 0]) til agenda Når en aktiv/ufullstendig kant (A α B β, [m, n] ) legges inn I chartet: Finn alle regler som har formen (B γ) for en eller annen γ, og legg kanten (B γ, [n, n]) til agendaen. March 4,

14 Make-predictions, fig mars

15 Eksempel Parse: gi jenta fisk med BU og TD-strategi S VP VP IV VP TV NP VP DTV NP NP NP N IV fisk sov TV fisk kjøp DTV gi N jenta fisk 4. mars

16 4. mars Chart-algoritme, fig

17 I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 17

18 Struktur En kant representeres som: <edge> = (<dotted item>,<span>) <dotted item> = (<lhs>,<rhs found>,<rhs to find>) <span> = (<begin>,<end>) Eksempler: (S ->. NP VP, [0,0]) as ((S,[],[NP, VP]),(0,0)) (S -> NP. VP, [0,3]) as ((S,[NP],[VP]),(0,3)) (S -> NP VP., [0,5]) as ((S,[NP, VP],[]),(0,5)) 18

19 BU: Initialiser def make_chart(words, grammar, strategy='td'): agenda = [] chart = [] for i in range(len(words)): for p in grammar.productions(): if len(p.rhs()) == 1 and p.rhs()[0] == words[i]: agenda.append(((p.lhs(),list(p.rhs()),[]), (i, i+1))) 19

20 Add to chart while agenda: edge = agenda.pop() if edge not in chart: chart.append(edge) ((mother, found, to_find),(start, end)) = edge if to_find: # active edge 20

21 Fundamental rule if to_find: # active edge pivot = to_find[0] for edge2 in chart: ((mother2, found2, to_find2),(start2, end2)) = edge2 if mother2 == pivot and to_find2==[] and end==start2: newfound = found[:]+[pivot] agenda.append(((mother, newfound, to_find[1:]), (start, end2))) else: # inactive edge for edge2 in chart: ((mother2, found2, to_find2),(start2, end2)) = edge2 if to_find2 and to_find2[0]==mother and end2==start: newfound = found2[:]+[mother] agenda.append(((mother2, newfound, to_find2[1:]), (start2, end))) 21

22 BU: Make predictions if not to_find: for p in grammar.productions(): if p.rhs()[0] == mother: agenda.append(((p.lhs(), [mother], list(p.rhs())[1:]), (start, end))) return chart 22

23 TD: Initialize def make_chart(words, grammar, strategy='td'): agenda = [] chart = [] if strategy == 'td': top = grammar.start() for p in grammar.productions(): if p.lhs() == top: agenda.append(((p.lhs(), [], list(p.rhs())), (0, 0))) for i in range(len(words)): for p in grammar.productions(): if len(p.rhs()) == 1 and p.rhs()[0] == words[i]: agenda.append(((p.lhs(),list(p.rhs()),[]), (i, i+1))) 23

24 TD Add to chart Fundamental rule Same as BU 24

25 Make predictions: TD vs BU if strategy == 'td' and to_find: for p in grammar.productions(): if p.lhs() == to_find[0] and p.is_nonlexical(): agenda.append(((p.lhs(), [], list(p.rhs())), (end, end))) elif strategy == 'bu0' and not to_find: for p in grammar.productions(): if p.rhs()[0] == mother: agenda.append(((p.lhs(), [], list(p.rhs())), (start, start))) elif strategy == 'bu1' and not to_find: for p in grammar.productions(): if p.rhs()[0] == mother: agenda.append(((p.lhs(), [mother], list(p.rhs())[1:]), (start, end))) return chart 25

26 Egenskaper Merk Unære regler Mer enn to symb. på høyreside Dette går fint Venstrerekursjon ikke noe problem Tomme prod. OK ved TD-strategi, Problem ved BU 4. mars

27 Earleys algoritme Som presentert av J&M Tilsvarer en chart-parser med: TD innføring av aktive/inkomplette kanter Streng venstre mot høyre Litt egen rutine for leksikalske oppslag (=Scanner) Dermed behøver en bare bruke fundamentalregelen når en legger til inaktive/komplette kanter (og ser mot venstre) (=Completer) (De aktive ser mot høyre og vil ikke se noen inaktive kanter) Når en legger til aktive kanter, må en lage nye aktive kanter (=Predictor) 4. mars

28 Earleys algoritme Som presentert av J&M Fig har en løkke som begynner for each state in chart[i] do og som modifiserer chart[i] Dette kan kreve litt omskrivning ved programmering 4. mars

29 I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 29

30 CKY Parsing og Chart parsing Er dette egentlig en parser? Strengt tatt: Nei! Det er en anerkjenner Hvordan kan vi lage en parser som følger denne algoritmen? 3/4/2014 Speech and Language Processing - Jurafsky and Martin 30

31 Alternativ Alt 1: Bygg trær underveis og legg dem i chartet S S S S a Med en flertydig grammatikk kan chartet/tabellen vokse eksponensielt 31

32 Example (0) a (1) a (2) a (3) a (4) ) (Sa) (S(Sa)(Sa)) (S(S(Sa)(Sa))(Sa)) (S(S(S(Sa)(Sa))(Sa))(Sa)) (S(Sa)(S(Sa)(Sa))) (S(S(Sa)(S(Sa)(Sa)))(Sa)) (S(S(Sa)(Sa))(S(Sa)(Sa))) (S(Sa)(S(S(Sa)(Sa))(Sa))) (S(Sa)(S(Sa)(S(Sa)(Sa)))) ) (Sa) (S(Sa)(Sa)) (S(S(Sa)(Sa))(Sa)) (S(Sa)(S(Sa)(Sa))) ) (Sa) (S(Sa)(Sa)) ) (Sa) March 4,

33 Et bedre alternativ Ikke bygg hele trær Men inkluder i strukture informasjon som gjør det mulig å konstruere alle trær. (Merk: Hvis vi vil skrive ut alle trær får vi uansett en eksponensiell algoritme fordi antallet trær til en streng kan være eksponensielt i lengden av inputt.) 33

34 Example (0) a (1) a (2) a (3) a (4) ) (1,S,'a') (3,S,[(1,2)]) (6,S,[(1,5),(3,4)]) (10,S,[(1,9),(3,8),(6,7)]) ) (2,S,'a') (5,S,[(2,4)]) (9,S,[(2,8),(5,7)]) ) (4,S,'a') (8,S,[(4,7)]) ) (7,S,'a')

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt

Detaljer

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det

Detaljer

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming

Detaljer

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen

Detaljer

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger

Detaljer

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

INF2820 Datalingvistikk V2012

INF2820 Datalingvistikk V2012 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:

Detaljer

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK

Detaljer

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:

Oppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler: 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker

Detaljer

INF 2820 V2016: Obligatorisk innleveringsoppgave 3

INF 2820 V2016: Obligatorisk innleveringsoppgave 3 INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper. INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer

Detaljer

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket. 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte

Detaljer

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 10. Gang 20.3 Jan Tore Lønning I dag grammatikker med trek og unifikasjon Fortsatt:) CKY og Chart: Parsing vs anerkjenning Grammatikker med trekk Tolkning av grammatikkene,

Detaljer

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed). Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på

Detaljer

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 12. gang, 3.4.2014 Jan Tore Lønning I dag Trekkbaserte grammatikker (unifikasjonsgrammatikker) for naturlige språk NLTKs implementering av slike Litt om lingvistiske modeller

Detaljer

Oppgave 1 (samlet 40%)

Oppgave 1 (samlet 40%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 10. Gang 23.3 Jan Tore Lønning I dag Trekkbaserte grammatikker, delvis repetisjon Formelle egenskaper: Alternative format for slike grammatikker Tolkning av grammatikkreglene

Detaljer

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk : Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2015 11. Gang 13.4 Jan Tore Lønning I dag Unifikasjonsgrammatikker Repetisjon og overblikk: Formalisme Lingvistisk anvendelse Utvidelse av lingvistisk anvendelse NLTKs implementering

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper

Detaljer

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 12/2-2013 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Dagens temaer: Noen foiler igjen fra forrige gang SLR(1), LR(1)- og LALR(1)-grammatikker NB: Oppgaver til kap 4 og 5 er lagt ut på undervisningsplanen

Detaljer

Syntax/semantics - I INF 3110/ /29/2005 1

Syntax/semantics - I INF 3110/ /29/2005 1 Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program

Detaljer

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006 ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie

Detaljer

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren

Detaljer

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1: INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 11. gang, 27.3.2014 Jan Tore Lønning I dag Repetere en del begreper: Trekkstrukturer Unifikasjon og subsumpsjon Trekkbaserte grammatikker Form: to alternative format Tolkning

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 hele

INF 2820 V2016: Innleveringsoppgave 3 hele INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar

Detaljer

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal Oppgave 2 INF5110 oppgave 2 på eksamen v04 med teori rne Maus Ifi FirstMengder Def { terminal First () = { a finnes avledning * a α } Dessuten: Om er utnullbar, så er ε First() Eks. 4.9 eregning av First-mengde

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgåvesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

Syntaksanalyse. Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger. IN 211 Programmeringsspråk

Syntaksanalyse. Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger. IN 211 Programmeringsspråk Syntaksanalyse Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger Ark 1 av 26 Forelesning 15.10.2001 Syntaksanalyse En parser er et program som analyserer

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Stein Krogdahl, Ifi, UiO Torsdag 26/2: Første time Kap. 5 (avslutning?) Andreas Svendsen kommer andre time, snakker om oblig 1 (spesielt

Detaljer

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER. INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:

Detaljer

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF /2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF /2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 17/2, 2015 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Mer om LR-parsering Hadde også igjen noen foiler fra 12/2 Oblig 1 er lagt ut. Det blir en intro til Oblig 1 ved Eyvind Axelsen torsdag 19/2 1 Flertydige

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i

Detaljer

INF januar Forelesninger fremover:

INF januar Forelesninger fremover: Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside (foreløpig 2007): Pensum/læringskrav INF 5110

Detaljer

Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005. Stein Krogdahl, Ifi, UiO

Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005. Stein Krogdahl, Ifi, UiO Kap. 5 del 2: LR(1)- og LALR(1)-grammatikker INF5110 V2005 Stein Krogdahl, Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) S A B B A LR-parsering og grammatikker: t 1 t 2 t 3 t 7 t 4 t 5 t 6 - LR(0) Det

Detaljer

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning INF2820 Datalingvistikk V2016 Forelesning 4, 10.2 Jan Tore Lønning I dag Ord Begrensninger med regulære språk Regulære uttrykk i praksis Utvidete regulære uttrykk Frasestruktur og kontekstfrie grammatikker

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 del 1

INF 2820 V2016: Innleveringsoppgave 3 del 1 INF 2820 V2016: Innleveringsoppgave 3 del 1 Pga tekniske problemer er oppgaveteksten delt i to. Dette er første del. Andre del legges ut mandag 13.3! Besvarelsene skal leveres i devilry innen fredag 24.3

Detaljer

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist)

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning I dag Regulære språk og endelige tilstandsmaskiner oppsummering Reg.ex. i praksis, særlig i Python Litt Python Algoritme for DFA med Python-implementasjon

Detaljer

Kap. 5, del 2 LR(1)- og LALR(1)-grammatikker INF5110 V2008

Kap. 5, del 2 LR(1)- og LALR(1)-grammatikker INF5110 V2008 Kap. 5, del 2 LR(1)- og LALR(1)-grammatikker INF5110 V2008 Stein Krogdahl, Ifi, UiO I dag 19/2: Time 1: Fortsette kap.5 Time 2: Hjelpelærer Fredrik Sørensen presenterer Oblig 1 Plan framovrer: Torsdag

Detaljer

INF 2820 V2016: Obligatorisk innleverinsoppgave 1

INF 2820 V2016: Obligatorisk innleverinsoppgave 1 INF 2820 V2016: Obligatorisk innleverinsoppgave 1 OBS Korrigert eksemplene oppgave 2, 8.2 Besvarelsene skal leveres i devilry innen torsdag 18.2 kl 18.00 Filene det vises til finner du på /projects/nlp/inf2820/fsa

Detaljer

Syntax/semantics INF 3110/ /8/2004 1

Syntax/semantics INF 3110/ /8/2004 1 Syntax/semantics Program program execution Paradigms Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-24 9/8/24 Program

Detaljer

Dynamisk programmering Undervises av Stein Krogdahl

Dynamisk programmering Undervises av Stein Krogdahl Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) 16/ Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) 16/ Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 16/2-2011 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) B B t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker:

Detaljer

Språktyper og syntaksanalyseteknikker. Dagens temaer. Hvordan lage en deterministisk automat? Fra jernbanediagram til ID-automat

Språktyper og syntaksanalyseteknikker. Dagens temaer. Hvordan lage en deterministisk automat? Fra jernbanediagram til ID-automat Dagens temaer Språktyper og syntaksanalyseteknikker Regulære språk og automater (fortsatt fra forrige uke) Syntaksanalyse o Skanner o Parsering top-down bottom-up o LL()-parsering Reursive desent orutsetninger

Detaljer

Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/ av Stein Krogdahl)

Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/ av Stein Krogdahl) Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/3-2015 av Stein Krogdahl) Oversikt over kapittelet Generelt om statisk semantisk analyse Attributt-grammatikker

Detaljer

Kap. 5, Del 3: INF5110, fra 1/3-2011

Kap. 5, Del 3: INF5110, fra 1/3-2011 Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO

Detaljer

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning INF2820 Datalingvistikk V2016 Forelesning 4, 10.2 Jan Tore Lønning I dag Ord Begrensninger med regulære språk Regulære uttrykk i praksis Utvidete regulære uttrykk Frasestruktur og kontekstfrie grammatikker

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 26. januar 2011 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 22/2-2011 Stein Krogdahl, Ifi, UiO Oppgaver til kap 4: På slutten av dagens foiler ligger noen oppgaver med svarforslag. Disse vil bli forholdsvis

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å

Detaljer

Kap. 4, del I: Top Down Parsering Pluss oppgave til kapittel 3 INF5110 V2008

Kap. 4, del I: Top Down Parsering Pluss oppgave til kapittel 3 INF5110 V2008 Kap. 4, del I: Top Down Parsering Pluss oppgave til kapittel 3 INF5110 V2008 Stein Krogdahl Ifi, UiO NB: Av de foilene som ble delt ut på papir på forelesningen 5/2 så utgår nr 39 43. Foil 44 er tatt med

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 12. Gang 13.4 Jan Tore Lønning I dag Trekkbaserte grammatikker for naturlige språk med vekt på subkategorisering/argumenter, 3 tilnærminger a. Enkel løsning, grammatikk 1

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 9. Gang 16.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

Oppgave 1 (samlet 15%)

Oppgave 1 (samlet 15%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal svare på alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk 16. januar 2017 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære

Detaljer

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 11. Gang 20.3 Jan Tore Lønning I dag (Fra sist Trekkstrukturer og unifikasjon (J&M, seksj 15.1, J&M, seksj. 15.2) Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte

Detaljer

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2)

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Dagens tema Syntaks (kapittel 2.1 + Komp. 47, kap. 1 og 2) 1/19 Forelesning 6 1.10.2003 Litt om kompilering og interpretering En kompilator oversetter et program til et annet språk, for eksempel maskinspråk.

Detaljer

Stoff som i boka står i kap 4, men som er

Stoff som i boka står i kap 4, men som er INF5110 V2011 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 9. Februar 2011 Stein Krogdahl, Ifi, UiO Oppgaver som gjennomgås gå tirsdag 15/2: - Spørsmålene på de to siste foilene

Detaljer