INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning"

Transkript

1 INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

2 ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar

3 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som leser tapen: Den kan bare bevege tapen i en retning. Den har en begrenset hukommelse: et endelig antall forskjellige tilstander den kan være i Tilstanden er bestemt av: forrige tilstand+siste symbol den har lest 3 1/19/2017

4 Navn Brukes om hverandre: Finite state automaton - FSA Finite automaton FA Finite state machine - FSM Kan betraktes som Notasjoner for å beskrive språk Notasjon for en automat som leser en tape og skifter tilstand for hvert symbol den leser 1/19/2017 Speech and Language Processing - Jurafsky and Martin 4

5 En FSA for breking Denne automaten har fem tilstander: q 0, q 1, q 2, q 3, q 4 Den har en begynnertilstand: q 0 (markert med pil) Den har en sluttilstand markert med ring: q 4 Den har fem transisjoner (=kanter i grafen) Hver kant er merket med et symbol fra et alfabet A, der {a, b,!} A 5 1/19/2017

6 En FSA for breking - tolkning Begynn i tilstand: q 0 Hvis du ser en b så: Flytt en plass Skift til tilstand: q 1 Hvis du er i tilstand q 1 og ser en a, så flytt en plass og skift til tilstand q 2. Men hvis du er i tilstand q 2 og ser en a, så flytt en plass og skift til tilstand q 3. Osv. (Hvis du er i en tilstand og ser et symbol som ikke har en kant, så stopp! ) Den beskriver det samme språket som baaa*! 6 1/19/2017

7 Figure 2.15

8 Eksempel Anta at A={a,b,c} Denne beskriver alle ord som inneholder nøyaktig 3 b-er. Oppgave: Hvordan kan den endres til å beskrive alle ord som inneholder 3n antall b-er der n er et naturlig tall? 19. januar

9 Eksempel Anta at A={a,b,c} Denne beskriver alle ord som inneholder nøyaktig 3 b-er. Oppgave: Hvordan kan den endres til å beskrive alle ord som inneholder 3n antall b-er der n er et naturlig tall? 19. januar

10 Formell definisjon En (deterministisk) endelig maskin består av 1. En endelig mengde av tilstander: Q= {q 0, q 1,, q N 1 } 2. Et endelig alfabet av symboler: 3. En begynnertilstand: q 0 Q (J&M bruker konvensjonen at q 0 er begynnertilstand) 4. En mengde av sluttilstander F Q (Denne kan være tom) 5. En transisjonsfunksjon som til hver q Qog a gir en tilstand q = (q,a) i Q (I symboler ) :Q Q 10 1/19/2017

11 Tre ulike notasjoner for en FSA Diagram Tabell Formelt som i definisjonen: 1. Q= {q 0, q 1, q 2, q 3,q 4 } 2. = {a, b,!} 3. Begynnertilstand: q 0 4. Sluttilstander F = {q 4 } 5. Transisjonsfunksjon : (q 0,b)= q 1 (q 1,a)= q 2 (q 2,a)= q 3 Osv. 1/19/2017 Speech and Language Processing - Jurafsky and Martin 11

12 Strengt tatt - Figure Fra definisjonen skal det være en kant ut fra hver tilstand for hvert symbol. Vi kan legge til en ekstra tilstand, men bryr oss ikke alltid om å tegne den. Alfabet ={a,b,!} a b!

13 Hva mener vi med «språk»? 19. januar

14 Naturlige språk Et språk består av Ord: ball Setninger: Kari kastet en ball En setning kan sees på som en sekvens av ord For å kjenne setningen, må vi vite: Hvilke ord er i språket? Hvilke sekvenser av ord er setninger? F.eks. ikke *kastet kastet ball Kari en Formell språkteori er et forsøk på å modellere dette 19. januar

15 Formelle språk Et formelt språk består av: En endelig mengde A Ø En delmengde L A* Merk A* er alle mulige strenger over A er den tomme strengen (skrives også og ). Ø er det tomme språket Ø { } Eksempel 1 A = {a, b, c} A* = {, a, b, c, aa, ab, ac, ba,, cccc, } L ={x A* x inneholder nøyaktig to a er} Eksempel 2 A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} L ={x A* x begynner ikke med 0} {0} 19. januar

16 FSA og språk En FSA beskriver et (formelt) språk Som nettverk: Et ord er i språket hvis vi kan gå fra begynnertilstanden til en sluttilstand og ved hver kant fjerner vi et symbol fra ordet. Sjekk om følgende er i språket: baaaa! baaaa baaabaa! 16 1/19/2017

17 Naturlige språk som formelle språk Formelt språk: Definert av regler/grammatikk Naturlig språk: Definert av bruk Vi bruker formelle språk som modeller for naturlige språk Eksempel 4 A = {a, b, c,, æ, ø, å} A* = {, a, b, c, aa, ab, ac, ba,, cccc,, datalingvistikk, } L = mengden av de bokstavstrengene vi ser på som norske ord. Eksempel 3 A = mengden av alle former av alle ord i Bokmålsordboka A* = mengden av alle sekvenser av slike ord L = mengden av de strengene fra A* vi anser som grammatiske norske setninger Eksempel 5 A = {a, b, c,, æ, ø, å, \blank, \.} L = mengden av de strengene vi ser på som norske setninger. 19. januar

18 Recognition Simply a process of starting in the start state Examining the current input Consulting the table Going to a new state and updating the tape pointer. Until you run out of tape. 1/19/2017 Speech and Language Processing - Jurafsky and Martin 18

19 Key Points Deterministic means that at each point in processing there is always one unique thing to do (no choices). D-recognize is a simple table-driven interpreter The algorithm is universal for all unambiguous regular languages. To change the machine, you simply change the table. Tidsforbruk: Proporsjonalt med lengden av strengen Lagerforbruk: Konstant 1/19/2017 Speech and Language Processing - Jurafsky and Martin 19

20 Endelige tilstandsspråk Et språk som anerkjennes av en FSA kaller vi et endelig tilstandsspråk Ikke alle språk er FSA-språk, f.eks. ikke a n b n Vi skal se etter hvert at et språk er et FSA-språk hvis og bare hvis det er regulært. Nå: Hvis språket <A, L> er et FSA språk, så er komplementspråket <A, A* L> også FSA Bevis: Neste side 20

21 Metode Vi starter med en deterministisk FSA M1 for L 19. januar

22 Trinn1 Vi legger til: En «trap state» hvis det ikke finnes For alle tilstander og symboler i A hvor det ikke er en kant, legger vi kant som peker til «trap state». Kall denne automaten M januar

23 Metode M3 Vi bytter ut hvilke tilstander som er sluttilstander Siden ethvert uttrykk vil føre oss fra begynnertilstanden til nøyaktig en tilstand i M3 (og i M2), vil M3 anerkjenne («recognize») et uttrykk hvis og bare hvis M2 (og M1) ikke gjøre det. 19. januar

24 Hva har vi lært? Definisjon av deterministiske endelige tilstandsautomater Hvordan disse definerer et språk Hvordan vi kan konstruere en DFA for komplementet til en språk definert av en DFA Algoritme for anerkjenning med DFA går i linjær tid 19. januar

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 26. januar 2011 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

Følger Sipsers bok tett både i stoff og oppgaver.

Følger Sipsers bok tett både i stoff og oppgaver. 1 - hrj 1 Følger Sipsers bok tett både i stoff og oppgaver. Tirsdag forelesninger, nytt stoff Onsdag eksempler og utfyllende stoff Torsdag oppgaver fra uka før Start: kapittel 1 (2uker), 2 (2uker),3 (2uker),4

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione Arne Skjærholt Terza lezione Arne Skjærholt Terza lezione Regulære uttrykk Regex Regulære uttrykk (regular expressions) er et godt eksempel på det som kalles finite-state methods (hvorfor det heter det

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

Skanning del I INF /01/15 1

Skanning del I INF /01/15 1 Skanning del I INF 5110-2015 21/01/15 1 Skanning: innhold (begge forelesningene) Hva gjør en skanner? Input: Programteksten. Output: Ett og ett token fra programteksten (sekvensielt). Regulære uttrykk/definisjoner.

Detaljer

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan

Detaljer

INF2080 Logikk og beregninger

INF2080 Logikk og beregninger INF2080 Logikk og beregninger Forelesning 4: Regulære uttrykk Sist oppdatert: 2012-01-24 12:05 4.1 Regulære uttrykk Beskrive aksepterte ord 4.1 Regulære uttrykk Beskrive aksepterte ord INF2080 Logikk og

Detaljer

INF 2820 V2016: Obligatorisk innleverinsoppgave 1

INF 2820 V2016: Obligatorisk innleverinsoppgave 1 INF 2820 V2016: Obligatorisk innleverinsoppgave 1 OBS Korrigert eksemplene oppgave 2, 8.2 Besvarelsene skal leveres i devilry innen torsdag 18.2 kl 18.00 Filene det vises til finner du på /projects/nlp/inf2820/fsa

Detaljer

Skanning del I. Kapittel 2 INF 3110/ INF

Skanning del I. Kapittel 2 INF 3110/ INF Skanning del I Kapittel 2 18.01.2013 1 Skanning: innhold (begge forelesningene) Hva gjør en skanner? Input: programteksten. Output: Ett og ett token fra programteksten (sekvensielt). Regulære uttrykk/definisjoner.

Detaljer

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper. INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 3, 30.1 Jan Tore Lønning I dag Regulære språk og endelige tilstandsmaskiner oppsummering Reg.ex. i praksis, særlig i Python Litt Python Algoritme for DFA med Python-implementasjon

Detaljer

Typisk: Kan det være både nøkkelord og navn, så skal det ansees som nøkkelord

Typisk: Kan det være både nøkkelord og navn, så skal det ansees som nøkkelord Scanning-I Kap. 2 Hovedmål Gå ut fra en beskrivelse av de enkelte leksemer (tokens), og hvordan de skal deles opp i klasser Lage et program (funksjon, prosedyre, metode) som leverer ett og ett token, med

Detaljer

Scanning - I Kap. 2. Hva scanneren gjør

Scanning - I Kap. 2. Hva scanneren gjør Scanning - I Kap. 2!! Hovedmål! Gå ut fra en beskrivelse av de enkelte tokens, og hvordan de skal deles opp i klasser! Lage et program (funksjon, prosedyre, metode) som leverer ett og ett token, med all

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte

Detaljer

Syntax/semantics - I INF 3110/ /29/2005 1

Syntax/semantics - I INF 3110/ /29/2005 1 Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie

Detaljer

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme

Detaljer

En repetisjon hrj høst 2009

En repetisjon hrj høst 2009 En repetisjon hrj høst 2009 Data Maskin Data Syntaktiske objekter - endelige Mengde { } Multimengde [ ] Liste < > Symbol String = Liste av symboler Vi kan alltid finne ut om to syntaktiske objekter er

Detaljer

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER. INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 13. november 2014 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring

Detaljer

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning

2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech

Detaljer

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker. INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])

Detaljer

INF2820 Datalingvistikk V2012

INF2820 Datalingvistikk V2012 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

Dagens tema: Regulære språk og uttrykk

Dagens tema: Regulære språk og uttrykk IN 2 Programmeringsspråk Dagens tema: Regulære språk og uttrykk Ulike typer språk (Kompendium 47: 23) Hvorfor er regulære uttrykk så interessante? Ulike representasjoner av regulære språk (Kompendium 47:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Sjette forelesning Arne Skjærholt 25 januar, 2012 SIST GANG Forrige gang: Alle rare ordene Alle rare morfene Nå: Morfologi med datamaskin (computational

Detaljer

INF2820 V2017 Oppgavesett 6 Gruppe 7.3

INF2820 V2017 Oppgavesett 6 Gruppe 7.3 INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

INF 2820 V2018: Innleveringsoppgave 1

INF 2820 V2018: Innleveringsoppgave 1 INF 2820 V2018: Innleveringsoppgave 1 Besvarelsene skal leveres i devilry innen fredag 9.2 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil 100 poeng. Til sammen kan en få inntil

Detaljer

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2017 1 FS-metoder Oversikt Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 06 februar, 2012 OVERSIKT Finite-state -teknologi er kjapp og effektiv nyttig for et antall språkteknologiske

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 7. november 016 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring blant

Detaljer

Hva er syntaks? En overskrift i en norsk avis: Dagens tema Grundig repetisjon og utdyping:

Hva er syntaks? En overskrift i en norsk avis: Dagens tema Grundig repetisjon og utdyping: Hva er syntaks? En overskrift i en norsk avis: Fanger krabber så lenge de orker Dagens tema Grundig repetisjon og utdyping: Er det i C lov å skrive for (;;) { while () { Syntaks kontra semantikk for å

Detaljer

Kap. 5, Del 3: INF5110, fra 1/3-2011

Kap. 5, Del 3: INF5110, fra 1/3-2011 Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO

Detaljer

Dagens tema Grundig repetisjon og utdyping: Syntaks kontra semantikk

Dagens tema Grundig repetisjon og utdyping: Syntaks kontra semantikk Dagens tema Grundig repetisjon og utdyping: Syntaks kontra semantikk Regulære uttrykk og automataer Ulike typer språk Ulike representasjoner av regulære språk Endelige tilstandsmaskiner (FSM-er) Deterministiske

Detaljer

Anatomien til en kompilator - I

Anatomien til en kompilator - I Anatomien til en kompilator - I 5/22/2006 1 Framgangsmåte for automatisk å lage en scanner Beskriv de forskjellige token-klassene som regulære uttrykk Eller litt mer fleksibelt, som regulære definisjoner

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK

Detaljer

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen

3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2017 1 FS-metoder Oversikt Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv

Detaljer

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket. 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Torgeir Lebesbye torgeirl@ifi.uio.no Universitetet i Oslo Lars-Erik Bruce larsereb@ifi.uio.no Universitetet i Oslo

Detaljer

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk INF0: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk Mathias Lohne mathialo Rekursjonseksempel Eksempel Finn kjøretid for følgende program: (Ex11 b) 1 float foo(a) { n = Alength; 3 4 if

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar

Detaljer

Forelesning 4 torsdag den 28. august

Forelesning 4 torsdag den 28. august Forelesning 4 torsdag den 28. august 1.10 Rekursjon Merknad 1.10.1. Hvert tall i sekvensen 1, 2, 4, 8, 16,... er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt? Vi kan ikke skrive

Detaljer

INF2080 Logikk og beregninger

INF2080 Logikk og beregninger INF2080 Logikk og beregninger Forelesning 22: Fliser Sist oppdatert: 2012-04-16 20:32 22.1 Fliser Beregne med fliser 22.1 Fliser Beregne med fliser INF2080 Logikk og beregninger Forelesning 22 Side 3 /

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF5110 - Kompilatorteknikk Eksamensdag : Onsdag 5. juni 2013 Tid for eksamen : 14.30-18.30 Oppgavesettet er på : Vedlegg :

Detaljer

Viktige begrep i kapittel 1.

Viktige begrep i kapittel 1. Viktige begrep i kapittel 1. 1. Egenskaper ved relasjoner. La R A A være en binær relasjon. (a) At R er refleksiv betyr at x (x, x) R. (b) At R er symmetrisk betyr at x y ((x, y) R (y, x) R ). (c) At R

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden

Detaljer

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo INF4820 H2008 Institutt for Informatikk Universitetet i Oslo 30. september Outline 1 2 3 4 5 Outline 1 2 3 4 5 Flertydighet Example "" "fisk" subst appell mask ub fl @løs-np "fisker" subst appell

Detaljer

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen

1/18/2011. Forelesninger. I dag: Obligatoriske oppgaver. Gruppeundervisning. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon OBS: Lov å stille spørsmål underveis Forelesninger

Detaljer

Avgjørbarhet / Uavgjørbarhet

Avgjørbarhet / Uavgjørbarhet Avgjørbarhet / Uavgjørbarhet For å kunne snakke om avgjørbarhet/uavgjørbarhet trenger vi Turingmaskiner og for å snakke om Turingmaskiner trenger vi formelle språk, og strenger og alfabeter. Pluss litt

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen til INF2820 Datalingvistikk Ole Johan Dahls hus 18. januar 2011 2 I dag: 0 Praktisk informasjon 1. Hvorfor datalingvistikk? 2. Hva er utfordringene?

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon

Detaljer

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger

Detaljer

Generell rekursjon og induksjon. at(n) + bt(n 1) + ct(n 2) = 0

Generell rekursjon og induksjon. at(n) + bt(n 1) + ct(n 2) = 0 Forelesning 17 Generell rekursjon og induksjon Dag Normann - 10. mars 2008 Opphenting Forrige uke så vi på rekurrenslikninger. En rekurrenslikning er en funksjonslikning på formen at(n) + bt(n 1) + ct(n

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk

Detaljer

FASIT/LF FOR EKSAMEN TMA4140, H07

FASIT/LF FOR EKSAMEN TMA4140, H07 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 FASIT/LF FOR EKSAMEN TMA440, H07 Oppgave (0%) Benytt matematisk induksjon til å vise at for alle heltall n. n i i!

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer