2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning
|
|
- Pia Sletten
- 7 år siden
- Visninger:
Transkript
1 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar /24/2012 Speech and Language Processing - Jurafsky and Martin 4 Eksempel: grammar1 Avledning, leses: kan direkte avledes fra dersom: har formen C for en ikke-terminal C det er en regel på formen C og = 1 * m, leses: m kan avledes fra 1 dersom: det fins en sekvens 1, 2,, m der m>1, og i i+1 En kontekstfri grammatikk G generer språket L(G) = { w A* S * w} 24. februar februar
2 Trær En CFG G, generer et tre t hviss Toppen av t er merket med S Bladene er merket med terminaler Hvert lokalt tre er tillatt av en produksjonsregel T(G) for mengde av trær generert av G Utkomme ( yield ) av treet t er Forkort symbolene på bladene i riktig hviss for rekkefølge hvis og bare hvis En streng w er avledbar fra G hviss w er utkomme til et tre i T(G). 24. februar Høyre- og venstreavledninger Til hvert tre svarer det mange avledninger. For kontekstfrie grammatikker er forskjellene mellom avledninger som svarer til samme tre uinteressante. En avledning er en venstreavledning ( leftmost derivation ) hvis vi alltid ekspanderer ikke terminalen lengst til venstre. Høyreavledning dfi defineres tilsvarende. Til ethvert tre generert av grammatikken svarer det nøyaktig en venstreavledning og nøyaktig en høyreavledning. 24. februar Eksempel: VF og HF Eksempel: VF og HF VF: Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N HF: S NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park 24. februar Venstreavledning: Høyreavledning: Det N VP NP V NP PP the N VP NP V NP P NP the dog VP NP V NP P Det N the dog V NP PP NP V NP P Det park the dog saw NP PP NP V NP P the park the dog saw Det N PP NP V NP in the park the dog saw a N PP NP V Det N in the park the dog saw a man PP NP V Det man in the park the dog saw a man P NP NP V a man in the park the dog saw a man in NP NP the dog saw a man in Det N Det N the dog saw a man in the N Det man 24. februar februar Parsing Gitt en grammatikk G og streng s Spm1: Er s L(G) Spørsmål om anerkjennelse ( recognition ) Spm2: Vi er interessert i (frase)strukturen til s Hvorfor er s L(G)? Finn alle trær i T(G) som har s som utkomme ( yield ) Ekvivalent: Finn alle høyreavledninger av s. Finn alle venstreavledninger av s. Parsing 24. februar
3 Recursive descent parser Lager en venstreavledning Bygger et tre: Fra toppen ( top-down ) Fra venstre mot høyre Tilstrekkelig li å bare se på venstreavledninger fordi de svarer til trær Streber mot tidligst mulig å sjekke mot input-data Venstreavledning Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N S NP VP Det N VP N VP dog VP V NP PP NP PP a man in the park Det N PP a man in the park N PP man in the park PP in the park P NP in the park NP the park Det N the park N park # # 24. februar februar Algoritme ikke-deterministisk Words, Cats: strenger (Words resten av input, Cats resten av avledningen) Words:= inputstreng Cats:= list( S ) Løkke: Hvis Words=Cats= : stopp med suksess! Hvis first(words)=first(cats): Words:=rest(Words), Cats:=rest(Cats) Hvis first(cats) er en ikke terminal B, velg en regel B, og la Cats:= + rest(cats) Kommentarer Eksempel på anerkjenning For å få parser bør vi i tillegg returnere et tre Et trinn er ikke-deterministisk: Velg en regel Dette gir et søkerom å holde orden på 24. februar februar Søkerom RD: Venstre først = prøver reglene i fast rekkefølge Dybde først 24. februar def RDRecognize(grammar, words): top = grammar.start() return match(grammar, [top], words) def match(grammar, cats, words): if len(cats) == 0: return len(words) == 0 if p.lhs() == cats[0]: if p.is_lexical(): if len(words)>0 and words[0] == p.rhs()[0]: if match(grammar, cats[1:], words[1:]): rhs = p.rhs() newcats = list(rhs) + cats[1:] if match(grammar, newcats, words): return False 24. februar
4 Hvordan representere trær i Python En mulig enkel representasjon (blant flere): En node som ikke er et blad som et par (X, Y) der: X er moras kategori Y er listen av døtre, av type list: Hvert element i Y er selv en node Y kan være tom En bladnode er en terminal, av type string Et tre er representert som en node. (S, [(NP, [(Det, ['the']), (N, ['dog'])]), (VP, [(V, ['saw']), (NP, [(Det, ['a']), (N, ['man'])]), (PP, [(P, [in]), ['in']) (NP, [(Det, ['the']), (N, ['park'])] )])])]) 24. februar def RDParse(grammar, words, trace=0): top = grammar.start() init_tree = (top, []) parses = match(grammar, [init_tree], words, init_tree) def match(grammar, nodes, words, tree): """Try all possible ways for matching the *cats* and remaining *words*. Complete the *tree*. Print the successful trees for the whole sentence. Return the number of successful parses for this branch.""" if len(nodes) == 0: if len(words) == 0: skriv_tre(tree) print " " 24. februar def match(grammar, nodes, words, tree): if len(nodes) == 0: if len(words) == 0: skriv_tre(tree) node = nodes[0] cat = node[0] if p.lhs() == cat: if p.is_lexical(): if len(words)>0 and words[0] == p.rhs()[0]: node[1].append(words[0]) match(grammar, nodes[1:], words[1:], tree) node[1].pop() rhs = p.rhs() daughters = [(cat,[]) for cat in rhs] node[1][0:len(daughters)]=daughters newnodes = daughters+nodes[1:] match(grammar, newnodes, words, tree) for i in range(len(node[1])): node[1].pop() 24. februar Problemer for RD-parsing 1. Venstrerekursjon: Hvordan takler parseren N AP N N N PP? 2. Dobbeltarbeid: Som en del av en overordnet gal analyse kan den finne riktige deler, men disse blir glemt 3. Prøving og feiling som er litt blind 24. februar Høyreavledning NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP Det N Det man S # NP VP # N V NP PP # N V NP P NP # NP V NP P Det N # NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP Det N Det dog # 24. februar februar
5 Bottom-up: Shift reduce parser Words, Der strenger (Words resten av input, Der det som er funnet så langt) Vanlig notasjon: Der Words Words:= inputstreng Der := Løkke: Hvis Words= og Der= S stopp med suksess! Hvis mulig, gjør en av følgende: (Shift:) Hvis Words=/=, La Der:=Der first(words) og Words:=rest(Words) (Reduce:) Hvis det fins,, B, en regel B og Der = : la Der= B 24. februar Algoritme ikke-deterministisk Denne kan lett utvides til parser ved at vi legger inn deltrær i Der i stedet for bare kategorier. SR-parsere har problemer med tomme høyresider To plasser for valg/ikke-determinisme: Skal vi flytte eller redusere? Hva skal vi velge når vi har flere valg for reduksjon? Den kan gjøres mer effektiv hvis vi vet at høyresidene ikke blander terminaler og ikke-terminaler: Når vi flytter, gjør vi samtidig en unær reduksjon. Svarer til regel på formen B t (Vi kan også gjøre den mer effektiv hvis grammatikken er på CNF: Bare se på de to siste symbolene i Der når vi reduserer Svarer til regel på formen A BC) 24. februar def recognize(grammar, stack, rest, trace): if trace > 0: print stack, rest if rest==[] and len(stack)==1 and stack[0]==grammar.start(): if not p.is_lexical(): rhs = list(p.rhs()) n = len(rhs) if stack[ n:] == rhs: newstack = stack[0: n] newstack.append(p.lhs()) if recognize(grammar, newstack, rest, trace): if not len(rest) == 0: word = rest[0] if p.is_lexical() and rest[0]==p.rhs()[0]: newst = stack[:] newst.append(p.lhs()) if recognize(grammar, newst, rest[1:], trace): 24. februar def parse(grammar, stack, rest, trees, trace): if rest == [] and len(stack)==1 and stack[0][0]==grammar.start(): trees.append(stack[0]) if not p.is_lexical(): rhs = list(p.rhs()) n = len(rhs) top = [node[0] for node in stack[ n:]] if top == rhs: newstack = stack[0: n] newstack.append((p.lhs(), stack[ n:])) parse(grammar, newstack, rest, trees, trace) if not len(rest) == 0: word = rest[0] if p.is_lexical() and rest[0]==p.rhs()[0]: cat = p.lhs() newstack = stack[:] newstack.append((cat, [word])) newrest = rest[1:] parse(grammar,newstack, newrest, trees, trace) 24. februar return 2012 trees 28 5
INF2820 Datalingvistikk V2012
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:
DetaljerINF2820 Datalingvistikk V Gang 26.2 Jan Tore Lønning
INF2820 Datalingvistikk V2018 7. Gang 26.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce
Detaljer2/22/2011. Høyre- og venstreavledninger. I dag. Chomsky-normalform (CNF) Chomsky-normalform (CNF) PARSING. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 Høyre- og venstreavledninger Til hvert tre svarer det mange avledninger. For kontekstfrie
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 I dag Avledninger og normalformer Parsing: ovenifra og ned (top-down) Parsing: nedenifra
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser
DetaljerINF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce
Detaljer2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2018 6. Gang - 19.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk Grammatikker og trær i NLTK Kontekstfrie grammatikker, avledninger og trær Hva er parsing?
DetaljerINF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning
INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt
DetaljerINF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt
DetaljerINF2820 Datalingvistikk V Gang 19.3 del 1 Jan Tore Lønning
INF2820 Datalingvistikk V2018 10. Gang 19.3 del 1 Jan Tore Lønning I dag: to deler A. Active chart-parsing Fortsatt fra sist B. Tekstklassifisering 2 CHART-PARSING 3 I dag chart-parsing Chart-parsing:
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 24. februar
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av
DetaljerOppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:
2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk
Detaljer3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Nom Nom PP NP PP P NP Det Nom, N P NP, PN 0 book 1 the 2 flight 3
Detaljer2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming
Detaljer3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det
DetaljerINF 2820 V2015: Obligatorisk innleveringsoppgave 3
INF 2820 V2015: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen fredag 17.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Del 1 RD Parsing Oppgave 1:
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 2. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
DetaljerINF5830, H2009, Obigatorisk innlevering 2. 1 Oppgave: Unære produksjoner i CKY
INF5830, H2009, Obigatorisk innlevering 2 Innleveringsfrist 4.11 1 Oppgave: Unære produksjoner i CKY For bottom-up parsere, som CKY, har vi forutsatt at grammatikken er på CNF. For de ikke-leksikalske
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
Detaljer2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.
INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie
DetaljerINF 2820 V2016: Obligatorisk innleveringsoppgave 3
INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering
DetaljerINF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerINF2820 V2017 Oppgavesett 5 arbeidsoppgaver
INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren
DetaljerOppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 11. gang, 27.3.2014 Jan Tore Lønning I dag Repetere en del begreper: Trekkstrukturer Unifikasjon og subsumpsjon Trekkbaserte grammatikker Form: to alternative format Tolkning
DetaljerINF2820 V2017 Oppgavesett 5 Gruppe 21.2
INF2820 V2017 Oppgavesett 5 Gruppe 21.2 Denne uka er det først noen teoretiske oppgaver. Deretter er det en del praktiske arbeidsoppgaver som vil forberede deg til arbeidet med innleveringsoppgavesett
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerINF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper
Detaljer3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerSpørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 9. Gang 16.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 SAMMENHENGER FSA OG REGULÆRE UTTRYKK 31. januar
DetaljerSyntax/semantics - I INF 3110/ /29/2005 1
Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2018 9. Gang 13.3 Jan Tore Lønning I dag to deler A. Trekkstrukturgramatikker Fortsatt fra sist B. Chart-parsing Fortsetter parsing fra for to uker siden 2 TREKKSTRUKTUR- GRAMMATIKKER
DetaljerINF3110 Programmeringsspråk
INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater
DetaljerRepetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.
INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker
Detaljer1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan
DetaljerEksamen INF2820 Datalingvistikk, H2018, Løsningsforslag
Eksamen INF2820 Datalingvistikk, H2018, Løsningsforslag 1 2 Tre1: Tre 2: Tre 3: 3 Det kan være lurt å bytte ut regel NP > NP og NP med NP > NP C NP C > og Grammatikk G blander terminaler og ikketerminaler
DetaljerKap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).
Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 8. Gang 9.3 Jan Tore Lønning I dag Avslutte parsing i denne omgang Chomsky Normal Form (CNF) Algoritme for omforming CKY Algoritme Implementasjon Begynne trekkgramatikker
DetaljerINF 2820 V2016: Innleveringsoppgave 3 hele
INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin
DetaljerOppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :
Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave
DetaljerINF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 26. januar 2015 2 ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 26. januar 2015
DetaljerINF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 3. februar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 25. januar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF5110 V2012 Kapittel 4: Parsering ovenfra-ned
INF5110 V2012 Kapittel 4: Parsering ovenfra-ned (top-down) Tirsdag 7. februar Stein Krogdahl, Ifi, UiO Oppgaver som gjennomgås i morgen, onsdag: -Spørsmålene på de to siste foilene fra onsdag 1/2 (Bl.a.
DetaljerKap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO
Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl
DetaljerDagens Tema: Grammatikker Kap. 3 i K. C. Louden
INF 5110, 29. januar 2015 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon
DetaljerSyntaksanalyse. Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger. IN 211 Programmeringsspråk
Syntaksanalyse Skanner (repetisjon) Parsering top-down bottom-up LL(1)-parsering Recursive descent Forutsetninger Ark 1 av 26 Forelesning 15.10.2001 Syntaksanalyse En parser er et program som analyserer
DetaljerINF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning
INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
Detaljer1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer
DetaljerINF2820 V2017 Oppgavesett 6 Gruppe 7.3
INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3
DetaljerOppgave 1. Spørsmål 1.1 (10%) Gitt det regulære uttrykket: a((bcd)+(cd))*cd
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerOppgave 1 (samlet 40%)
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker
INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2015 2 ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 23. januar 2015
DetaljerINF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt
DetaljerKap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF / Stein Krogdahl Ifi, UiO
Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 8/2-2013 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) Tokenklasser + ikketerminaler B B Tilstander Tabell for LR-parsering
DetaljerSyntax/semantics INF 3110/ /8/2004 1
Syntax/semantics Program program execution Paradigms Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-24 9/8/24 Program
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 5. Gang - 13.2 Jan Tore Lønning I dag Tekstnormalisering: lemmatisering og «stemming» Tagget tekst og tagging Begrensninger ved regulære språk Frasestruktur og kontekstfrie
DetaljerINF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 10. Gang 23.3 Jan Tore Lønning I dag Trekkbaserte grammatikker, delvis repetisjon Formelle egenskaper: Alternative format for slike grammatikker Tolkning av grammatikkreglene
DetaljerKap. 4 del I Top Down Parsering INF5110 v2006. Stein Krogdahl Ifi, UiO
Kap. 4 del I Top Down Parsering INF5110 v2006 Stein Krogdahl Ifi, UiO 1 Innhold First og Follow-mengder Boka ser på én parseringsmetode først, uten å se på First/Follow-mengder. Vi tar teorien først To
DetaljerINF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning
INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerSpråktyper og syntaksanalyseteknikker. Dagens temaer. Hvordan lage en deterministisk automat? Fra jernbanediagram til ID-automat
Dagens temaer Språktyper og syntaksanalyseteknikker Regulære språk og automater (fortsatt fra forrige uke) Syntaksanalyse o Skanner o Parsering top-down bottom-up o LL()-parsering Reursive desent orutsetninger
DetaljerINF2820-V2018 Oppgavesett 10 Gruppe 18.4
INF2820-V2018 Oppgavesett 10 Gruppe 18.4 Chart-parsing med papir og penn Denne oppgaven tjener flere formål: Få bedre grep på chart-parsing See hvordan en chart-parser behandler venstrerekursjon Praktisk
DetaljerINF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:
INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerINF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerINF 5110, 3. februar Dette foilheftet: Kapittel 3
INF 5110, 3. februar 2009 Stein Krogdahl Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon De kommende ca. 4 forelesninger: Kontekstfrie
DetaljerDagens Tema: Grammatikker
INF 5110, 9. februar 2010 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon
DetaljerKontekstfrie grammatikker og syntaksanalyse (parsering)
Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside: Pensum/læringskrav 1. februar 2007 Stein
DetaljerINF januar Forelesninger fremover:
Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside (foreløpig 2007): Pensum/læringskrav INF 5110
DetaljerDagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2)
Dagens tema Syntaks (kapittel 2.1 + Komp. 47, kap. 1 og 2) 1/19 Forelesning 6 1.10.2003 Litt om kompilering og interpretering En kompilator oversetter et program til et annet språk, for eksempel maskinspråk.
DetaljerKap.4 del I Top Down Parsering INF5110 v2005. Arne Maus Ifi, UiO
Kap.4 del I Top Down Parsering INF5110 v2005 Arne Maus Ifi, UiO Innhold Motivering Boka gir først parsering uten First/Follow-mengder og så innfører dem. Vi tar teorien først First og Follow-mengder Fjerning
DetaljerLitt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk
Litt om kompilering og interpretering Dagens tema Syntaks (kapittel 2. + Komp. 47, kap. og 2) En kompilator oversetter et program til et annet språk, for eksempel maskinspråk. Et program interpreteres
DetaljerBottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006
ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker
Detaljer