2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning

Størrelse: px
Begynne med side:

Download "2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning"

Transkript

1 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar /24/2012 Speech and Language Processing - Jurafsky and Martin 4 Eksempel: grammar1 Avledning, leses: kan direkte avledes fra dersom: har formen C for en ikke-terminal C det er en regel på formen C og = 1 * m, leses: m kan avledes fra 1 dersom: det fins en sekvens 1, 2,, m der m>1, og i i+1 En kontekstfri grammatikk G generer språket L(G) = { w A* S * w} 24. februar februar

2 Trær En CFG G, generer et tre t hviss Toppen av t er merket med S Bladene er merket med terminaler Hvert lokalt tre er tillatt av en produksjonsregel T(G) for mengde av trær generert av G Utkomme ( yield ) av treet t er Forkort symbolene på bladene i riktig hviss for rekkefølge hvis og bare hvis En streng w er avledbar fra G hviss w er utkomme til et tre i T(G). 24. februar Høyre- og venstreavledninger Til hvert tre svarer det mange avledninger. For kontekstfrie grammatikker er forskjellene mellom avledninger som svarer til samme tre uinteressante. En avledning er en venstreavledning ( leftmost derivation ) hvis vi alltid ekspanderer ikke terminalen lengst til venstre. Høyreavledning dfi defineres tilsvarende. Til ethvert tre generert av grammatikken svarer det nøyaktig en venstreavledning og nøyaktig en høyreavledning. 24. februar Eksempel: VF og HF Eksempel: VF og HF VF: Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N HF: S NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park 24. februar Venstreavledning: Høyreavledning: Det N VP NP V NP PP the N VP NP V NP P NP the dog VP NP V NP P Det N the dog V NP PP NP V NP P Det park the dog saw NP PP NP V NP P the park the dog saw Det N PP NP V NP in the park the dog saw a N PP NP V Det N in the park the dog saw a man PP NP V Det man in the park the dog saw a man P NP NP V a man in the park the dog saw a man in NP NP the dog saw a man in Det N Det N the dog saw a man in the N Det man 24. februar februar Parsing Gitt en grammatikk G og streng s Spm1: Er s L(G) Spørsmål om anerkjennelse ( recognition ) Spm2: Vi er interessert i (frase)strukturen til s Hvorfor er s L(G)? Finn alle trær i T(G) som har s som utkomme ( yield ) Ekvivalent: Finn alle høyreavledninger av s. Finn alle venstreavledninger av s. Parsing 24. februar

3 Recursive descent parser Lager en venstreavledning Bygger et tre: Fra toppen ( top-down ) Fra venstre mot høyre Tilstrekkelig li å bare se på venstreavledninger fordi de svarer til trær Streber mot tidligst mulig å sjekke mot input-data Venstreavledning Det N VP the N VP the dog VP the dog V NP PP the dog saw NP PP the dog saw Det N PP the dog saw a N PP the dog saw a man PP the dog saw a man P NP the dog saw a man in NP the dog saw a man in Det N the dog saw a man in the N S NP VP Det N VP N VP dog VP V NP PP NP PP a man in the park Det N PP a man in the park N PP man in the park PP in the park P NP in the park NP the park Det N the park N park # # 24. februar februar Algoritme ikke-deterministisk Words, Cats: strenger (Words resten av input, Cats resten av avledningen) Words:= inputstreng Cats:= list( S ) Løkke: Hvis Words=Cats= : stopp med suksess! Hvis first(words)=first(cats): Words:=rest(Words), Cats:=rest(Cats) Hvis first(cats) er en ikke terminal B, velg en regel B, og la Cats:= + rest(cats) Kommentarer Eksempel på anerkjenning For å få parser bør vi i tillegg returnere et tre Et trinn er ikke-deterministisk: Velg en regel Dette gir et søkerom å holde orden på 24. februar februar Søkerom RD: Venstre først = prøver reglene i fast rekkefølge Dybde først 24. februar def RDRecognize(grammar, words): top = grammar.start() return match(grammar, [top], words) def match(grammar, cats, words): if len(cats) == 0: return len(words) == 0 if p.lhs() == cats[0]: if p.is_lexical(): if len(words)>0 and words[0] == p.rhs()[0]: if match(grammar, cats[1:], words[1:]): rhs = p.rhs() newcats = list(rhs) + cats[1:] if match(grammar, newcats, words): return False 24. februar

4 Hvordan representere trær i Python En mulig enkel representasjon (blant flere): En node som ikke er et blad som et par (X, Y) der: X er moras kategori Y er listen av døtre, av type list: Hvert element i Y er selv en node Y kan være tom En bladnode er en terminal, av type string Et tre er representert som en node. (S, [(NP, [(Det, ['the']), (N, ['dog'])]), (VP, [(V, ['saw']), (NP, [(Det, ['a']), (N, ['man'])]), (PP, [(P, [in]), ['in']) (NP, [(Det, ['the']), (N, ['park'])] )])])]) 24. februar def RDParse(grammar, words, trace=0): top = grammar.start() init_tree = (top, []) parses = match(grammar, [init_tree], words, init_tree) def match(grammar, nodes, words, tree): """Try all possible ways for matching the *cats* and remaining *words*. Complete the *tree*. Print the successful trees for the whole sentence. Return the number of successful parses for this branch.""" if len(nodes) == 0: if len(words) == 0: skriv_tre(tree) print " " 24. februar def match(grammar, nodes, words, tree): if len(nodes) == 0: if len(words) == 0: skriv_tre(tree) node = nodes[0] cat = node[0] if p.lhs() == cat: if p.is_lexical(): if len(words)>0 and words[0] == p.rhs()[0]: node[1].append(words[0]) match(grammar, nodes[1:], words[1:], tree) node[1].pop() rhs = p.rhs() daughters = [(cat,[]) for cat in rhs] node[1][0:len(daughters)]=daughters newnodes = daughters+nodes[1:] match(grammar, newnodes, words, tree) for i in range(len(node[1])): node[1].pop() 24. februar Problemer for RD-parsing 1. Venstrerekursjon: Hvordan takler parseren N AP N N N PP? 2. Dobbeltarbeid: Som en del av en overordnet gal analyse kan den finne riktige deler, men disse blir glemt 3. Prøving og feiling som er litt blind 24. februar Høyreavledning NP V NP PP NP V NP P NP NP V NP P Det N NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP Det N Det man S # NP VP # N V NP PP # N V NP P NP # NP V NP P Det N # NP V NP P Det park NP V NP P the park NP V NP in the park NP V Det N in the park NP V Det man in the park NP V a man in the park NP Det N Det dog # 24. februar februar

5 Bottom-up: Shift reduce parser Words, Der strenger (Words resten av input, Der det som er funnet så langt) Vanlig notasjon: Der Words Words:= inputstreng Der := Løkke: Hvis Words= og Der= S stopp med suksess! Hvis mulig, gjør en av følgende: (Shift:) Hvis Words=/=, La Der:=Der first(words) og Words:=rest(Words) (Reduce:) Hvis det fins,, B, en regel B og Der = : la Der= B 24. februar Algoritme ikke-deterministisk Denne kan lett utvides til parser ved at vi legger inn deltrær i Der i stedet for bare kategorier. SR-parsere har problemer med tomme høyresider To plasser for valg/ikke-determinisme: Skal vi flytte eller redusere? Hva skal vi velge når vi har flere valg for reduksjon? Den kan gjøres mer effektiv hvis vi vet at høyresidene ikke blander terminaler og ikke-terminaler: Når vi flytter, gjør vi samtidig en unær reduksjon. Svarer til regel på formen B t (Vi kan også gjøre den mer effektiv hvis grammatikken er på CNF: Bare se på de to siste symbolene i Der når vi reduserer Svarer til regel på formen A BC) 24. februar def recognize(grammar, stack, rest, trace): if trace > 0: print stack, rest if rest==[] and len(stack)==1 and stack[0]==grammar.start(): if not p.is_lexical(): rhs = list(p.rhs()) n = len(rhs) if stack[ n:] == rhs: newstack = stack[0: n] newstack.append(p.lhs()) if recognize(grammar, newstack, rest, trace): if not len(rest) == 0: word = rest[0] if p.is_lexical() and rest[0]==p.rhs()[0]: newst = stack[:] newst.append(p.lhs()) if recognize(grammar, newst, rest[1:], trace): 24. februar def parse(grammar, stack, rest, trees, trace): if rest == [] and len(stack)==1 and stack[0][0]==grammar.start(): trees.append(stack[0]) if not p.is_lexical(): rhs = list(p.rhs()) n = len(rhs) top = [node[0] for node in stack[ n:]] if top == rhs: newstack = stack[0: n] newstack.append((p.lhs(), stack[ n:])) parse(grammar, newstack, rest, trees, trace) if not len(rest) == 0: word = rest[0] if p.is_lexical() and rest[0]==p.rhs()[0]: cat = p.lhs() newstack = stack[:] newstack.append((cat, [word])) newrest = rest[1:] parse(grammar,newstack, newrest, trees, trace) 24. februar return 2012 trees 28 5

INF2820 Datalingvistikk V2012

INF2820 Datalingvistikk V2012 INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser

Detaljer

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce

Detaljer

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning

2/20/2012. I dag. Parsing. Recursive descent parser SÆRLIG TABELLPARSING. Venstre- og høyreavledning. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARING, ÆRLIG TABELLPARING 20. februar 2012 2 hift-reduce parser (bottom-up) vakheter ved disse 20. februar 2012 3 Parsing Gitt en grammatikk G og

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK

Detaljer

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.

Detaljer

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning

2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming

Detaljer

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det

Detaljer

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger

Detaljer

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.

2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER. INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:

Detaljer

INF 2820 V2016: Obligatorisk innleveringsoppgave 3

INF 2820 V2016: Obligatorisk innleveringsoppgave 3 INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie

Detaljer

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning

INF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk

Detaljer

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver

INF2820 V2017 Oppgavesett 5 arbeidsoppgaver INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 11. gang, 27.3.2014 Jan Tore Lønning I dag Repetere en del begreper: Trekkstrukturer Unifikasjon og subsumpsjon Trekkbaserte grammatikker Form: to alternative format Tolkning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning

INF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper

Detaljer

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.

Spørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket. 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 9. Gang 16.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

Syntax/semantics - I INF 3110/ /29/2005 1

Syntax/semantics - I INF 3110/ /29/2005 1 Syntax/semantics - I Program program execution Compiling/interpretation Syntax Classes of langauges Regular langauges Context-free langauges Scanning/Parsing Meta models INF 3/4-25 8/29/25 Program

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker

Detaljer

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker. INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer

Detaljer

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2

1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan

Detaljer

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk : Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.

1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper. INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer

Detaljer

Oppgave 1 (samlet 40%)

Oppgave 1 (samlet 40%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning INF2820 Datalingvistikk V2015 10. Gang 23.3 Jan Tore Lønning I dag Trekkbaserte grammatikker, delvis repetisjon Formelle egenskaper: Alternative format for slike grammatikker Tolkning av grammatikkreglene

Detaljer

Språktyper og syntaksanalyseteknikker. Dagens temaer. Hvordan lage en deterministisk automat? Fra jernbanediagram til ID-automat

Språktyper og syntaksanalyseteknikker. Dagens temaer. Hvordan lage en deterministisk automat? Fra jernbanediagram til ID-automat Dagens temaer Språktyper og syntaksanalyseteknikker Regulære språk og automater (fortsatt fra forrige uke) Syntaksanalyse o Skanner o Parsering top-down bottom-up o LL()-parsering Reursive desent orutsetninger

Detaljer

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1: INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2017 5. Gang - 13.2 Jan Tore Lønning I dag Tekstnormalisering: lemmatisering og «stemming» Tagget tekst og tagging Begrensninger ved regulære språk Frasestruktur og kontekstfrie

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2)

Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Dagens tema Syntaks (kapittel 2.1 + Komp. 47, kap. 1 og 2) 1/19 Forelesning 6 1.10.2003 Litt om kompilering og interpretering En kompilator oversetter et program til et annet språk, for eksempel maskinspråk.

Detaljer

Kap.4 del 2 Top Down Parsering INF5110 v2005. Arne Maus Ifi, UiO

Kap.4 del 2 Top Down Parsering INF5110 v2005. Arne Maus Ifi, UiO Kap.4 del 2 Top Down Parsering INF5110 v2005 Arne Maus Ifi, UiO LL(1) tabell for uttrykks-grammatikk Har fjernet venstrerekursjon: Har fjernet venstre-rekursjon: Alternativ def. av LL(1) grammatikker Sier

Detaljer

Litt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk

Litt om kompilering og interpretering. Dagens tema Syntaks (kapittel Komp. 47, kap. 1 og 2) Syntaks og semantikk Litt om kompilering og interpretering Dagens tema Syntaks (kapittel 2. + Komp. 47, kap. og 2) En kompilator oversetter et program til et annet språk, for eksempel maskinspråk. Et program interpreteres

Detaljer

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden INF 5110, 31. januar 2014 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006 ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker

Detaljer

Dagens Tema: Grammatikker

Dagens Tema: Grammatikker INF 5110, 8. februar 2011 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

Hvor er vi nå - kap. 3 (+4,5)? Forenklet skisse av hva en parser gjør PARSER. Kontekstfrie grammatikker og syntaksanalyse (parsering)

Hvor er vi nå - kap. 3 (+4,5)? Forenklet skisse av hva en parser gjør PARSER. Kontekstfrie grammatikker og syntaksanalyse (parsering) Hvor er vi nå - kap. 3 (+4,5)? Kontekstfrie grammatikker og syntaksanalyse (parsering) INF5110 - kap.3 i Louden + hjelpenotat (se hjemmesida) Arne Maus Ifi, UiO v2006 program Pre - processor Makroer Betinget

Detaljer

INF januar Forelesninger fremover:

INF januar Forelesninger fremover: Kontekstfrie grammatikker og syntaksanalyse (parsering) Kap. 3, 4 og 5 i Louden Kan også lese om dette i notat delvis brukt i INF 3/4110 Se kursets hjemmeside (foreløpig 2007): Pensum/læringskrav INF 5110

Detaljer

Dagens Tema: Grammatikker

Dagens Tema: Grammatikker INF 5110, 9. februar 2010 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning

INF2820 Datalingvistikk V forelesning, 30.1 Jan Tore Lønning INF2820 Datalingvistikk V2014 3. forelesning, 30.1 Jan Tore Lønning Idag Noen ord om Python Implementasjon av DFA J&Ms algoritme Oversatt til Python Rekursiv vs. Iterativ implementasjon Naiv NFA-algoritme

Detaljer

Statisk semantisk analyse - Kap. 6

Statisk semantisk analyse - Kap. 6 Statisk semantisk analyse - Kap. 6 Generelt om statisk semantisk analyse Attributt-grammatikker Symboltabell Datatyper og typesjekking 3/15/11 1 Generelt om semantisk analyse Oppgave: Sjekke alle krav

Detaljer

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden

Dagens Tema: Grammatikker Kap. 3 i K. C. Louden INF 5110, 1. februar 2012 Stein Krogdahl Dagens Tema: Grammatikker Kap. 3 i K. C. Louden Min Foil-stil: Ofte mer tekst enn man helt kan få med seg på forelesningen, for at de skal være gode til repetisjon

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

Statisk semantisk analyse - Kap. 6

Statisk semantisk analyse - Kap. 6 Statisk semantisk analyse - Kap. 6 Generelt om statisk semantisk analyse Attributt-grammatikker Symboltabell Datatyper og typesjekking 3110/4110-2004 5110-2009 3/3/2009 1 Generelt om semantisk analyse

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) 16/ Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) 16/ Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 16/2-2011 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) B B t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker:

Detaljer

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция

INF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgåvesettet er på 5 side(r) Vedlegg: 0

Detaljer

Semantisk Analyse del I

Semantisk Analyse del I Semantisk Analyse del I Attributtgrammatikker Kapittel 6.1-6.2 26.02.2013 1 Statisk semantisk analyse kapittel 6: Innhold Generelt om statisk semantisk analyse Attributt-grammatikker (kapittel 6.1-6.2)

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning INF2820 Datalingvistikk 19. januar 2014 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

Kap. 4: Ovenfra-ned (top-down) parsering

Kap. 4: Ovenfra-ned (top-down) parsering Kap. 4: Ovenfra-ned (top-down) parsering Dette bør leses om igjen etter kapittelet: First og Follow-mengder Boka tar det et stykke uti kap 4, vi tok det først (forrige foilbunke) LL(1)-parsering og boka

Detaljer

Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/ av Stein Krogdahl)

Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/ av Stein Krogdahl) Statisk semantisk analyse - Kap. 6 Foiler ved Birger Møller-Pedersen (Forelest 10/3 og 12/3-2015 av Stein Krogdahl) Oversikt over kapittelet Generelt om statisk semantisk analyse Attributt-grammatikker

Detaljer

Obligatorisk oppgave 4, INF2820, 2014

Obligatorisk oppgave 4, INF2820, 2014 Obligatorisk oppgave 4, INF2820, 2014 Besvarelsene skal leveres i devilry innen 7.5 kl 1800. Filene det vises til finner du etter hvert på /projects/nlp/inf2820/ Oppgavene kan løses alene og det skal leveres

Detaljer

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO

INF / Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO INF5110 12/2-2013 Kap. 5, Del 2 Stein Krogdahl, Ifi, UiO Dagens temaer: Noen foiler igjen fra forrige gang SLR(1), LR(1)- og LALR(1)-grammatikker NB: Oppgaver til kap 4 og 5 er lagt ut på undervisningsplanen

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å

Detaljer

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 22/2-2011 Stein Krogdahl, Ifi, UiO Oppgaver til kap 4: På slutten av dagens foiler ligger noen oppgaver med svarforslag. Disse vil bli forholdsvis

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 V2009 Stein Krogdahl, Ifi, UiO Torsdag 26/2: Første time Kap. 5 (avslutning?) Andreas Svendsen kommer andre time, snakker om oblig 1 (spesielt

Detaljer

Stoff som i boka står i kap 4, men som er

Stoff som i boka står i kap 4, men som er INF5110 V2011 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 9. Februar 2011 Stein Krogdahl, Ifi, UiO Oppgaver som gjennomgås gå tirsdag 15/2: - Spørsmålene på de to siste foilene

Detaljer

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning

INF2820 Datalingvistikk V2016. Forelesning 4, 10.2 Jan Tore Lønning INF2820 Datalingvistikk V2016 Forelesning 4, 10.2 Jan Tore Lønning I dag Ord Begrensninger med regulære språk Regulære uttrykk i praksis Utvidete regulære uttrykk Frasestruktur og kontekstfrie grammatikker

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

Dagens tema: Regulære språk og uttrykk

Dagens tema: Regulære språk og uttrykk IN 2 Programmeringsspråk Dagens tema: Regulære språk og uttrykk Ulike typer språk (Kompendium 47: 23) Hvorfor er regulære uttrykk så interessante? Ulike representasjoner av regulære språk (Kompendium 47:

Detaljer

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Torgeir Lebesbye torgeirl@ifi.uio.no Universitetet i Oslo Lars-Erik Bruce larsereb@ifi.uio.no Universitetet i Oslo

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning INF2820 Datalingvistikk V2015 11. Gang 13.4 Jan Tore Lønning I dag Unifikasjonsgrammatikker Repetisjon og overblikk: Formalisme Lingvistisk anvendelse Utvidelse av lingvistisk anvendelse NLTKs implementering

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning INF2820 Datalingvistikk 21. januar 2015 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 15. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

INF5110, onsdag 19. februar, Dagens tema: Parsering ovenfra-ned (top-down)

INF5110, onsdag 19. februar, Dagens tema: Parsering ovenfra-ned (top-down) INF5110, onsdag 19. februar, 2014 Dagens tema: Kapittel 4 Parsering ovenfra-ned (top-down) Vi har med alle foilene til kap. 4 her, også de som ble gjennomgått mot slutten av forelesning 7. februar Pensum

Detaljer

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.)

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.) Oppgave 1 Uavgjørbarhet INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/12-2005, 14.15 (lille aud.) L = {(M 1, M 2 ) M 1 og M 2 er Turingmaskiner som er ekvivalente, dvs. gir samme output for samme

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk 16. januar 2017 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære

Detaljer