INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning
|
|
- Johannes Bråten
- 8 år siden
- Visninger:
Transkript
1 INF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning
2 I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj 15.1 Unifikasjon og subsumpsjon J&M, seksj Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte grammatikker (=Unifikasjonsgrammatikker) Delvis: J&M, seksj15.3, NLTK boka seksj 9.3 2
3 Trekk ( features ) trinn for trinn NLTK ch.9, ex. 8 S NP_SG VP_SG S NP_PL VP_PL NP_SG Det_SG N_SG NP_PL Det_PL N_PL VP_SG V_SG VP_PL V_PL Det_SG 'this' Det_PL 'these' N_SG 'dog' N_PL 'dogs' V_SG 'runs' V_PL 'run' Kategorier og trekk S NP[NUM=sg] VP[NUM=sg] S NP[NUM=pl] VP[NUM=pl] NP[NUM=sg] Det[NUM=sg] N[NUM=sg] NP[NUM=pl] Det[NUM=pl] N[NUM=pl] VP[NUM=sg] V[NUM=sg] VP[NUM=pl] V[NUM=pl] Det[NUM=sg] 'this' Det[NUM=pl] 'these' N[NUM=sg] 'dog' N[NUM=pl] 'dogs' V[NUM=sg] 'runs' V[NUM=pl] 'run' March 25,
4 Trekk trinn for trinn 2 Kategorier og trekk S NP[NUM=sg] VP[NUM=sg] S NP[NUM=pl] VP[NUM=pl] NP[NUM=sg] Det[NUM=sg] N[NUM=sg] NP[NUM=pl] Det[NUM=pl] N[NUM=pl] VP[NUM=sg] V[NUM=sg] VP[NUM=pl] V[NUM=pl] Saml sammen likheter S NP[NUM=?x] VP[NUM=?x] NP[NUM=?x] Det[NUM=?x] N[NUM=?x] VP[NUM=?x] V[NUM=?x] Det[NUM=sg] 'this' Det[NUM=pl] 'these' N[NUM=sg] 'dog' N[NUM=pl] 'dogs' V[NUM=sg] 'runs' V[NUM=pl] 'run' Det[NUM=sg] 'this' Det[NUM=pl] 'these' N[NUM=sg] 'dog' N[NUM=pl] 'dogs' V[NUM=sg] 'runs' V[NUM=pl] 'run' March 25,
5 Intuitiv tolkning CFG S NP VP Med trekk S NP[NUM=?x] VP[NUM=?x] Hvis words[i,j] er en NP og words[j,k] er en VP Så kan words[i,k] være en S Hvis words[i,j] er en NP og words[j,k] er en VP og NP sin NUM = VP sin NUM Så kan words[i,k] være en S March 25,
6 Mot en formalisering Formelt: Kan en kategori ha flere enn ett trekk? Hvilke verdier kan et trekk ta? Hva er de mulige grammatikkreglene? Hvordan skal vi tolke grammatikkreglene? Anvendelser: Hvordan skal en grammatikk med trekk for et gitt fenomen formuleres naturlig? Hva mer kan trekk brukes til? Generaliseringer Grammatikker for språk som ikke er kontekstfrie Semantiske representasjoner Komputasjonelt: Hvordan kan trekkgrammatikker parses? March 25,
7 Flere enn ett trekk i en kat., eks: tysk S NP[CASE=nom, NUM=?x, PERS=?y] VP[NUM=?x, PERS=y?] NP[CASE=?z,NUM=?x, PERS=3rd] Det[CASE=?z,NUM=?x, GEN=?u] N[CASE=?z,NUM=?x, GEN=?u] VP[NUM=?x] V[SUBC= dtv, NUM=?x] NP[CASE=dat] NP[CASE=acc] Det[NUM=sg, CASE=nom, GEN=mask] 'der' 7
8 Flere enn ett trekk i en kat., eks: tysk S NP[CASE=nom, NUM=?x, PERS=?y] VP[NUM=?x, PERS=?y] NP[CASE=?z,NUM=?x, PERS=3rd] Det[CASE=?z,NUM=?x, GEN=?u] N[CASE=?z,NUM=?x, GEN=?u] VP[NUM=?x] V[SUBC= dtv, NUM=?x] NP[CASE=dat] NP[CASE=acc] Det[NUM=sg, CASE=nom, GEN=mask] 'der' 8
9 I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj 15.1 Unifikasjon og subsumpsjon J&M, seksj Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte grammatikker (=Unifikasjonsgrammatikker) Delvis: J&M, seksj15.3, NLTK boka seksj 9.3 9
10 Trekkstrukturer Lang tradisjon i lingvistikk Eks.: fonologi En mengde trekk og verdier: For hvert trekk er det definert hvilke verdier som er mulige Et skritt videre: Hele trekkstrukturer som verdier 10
11 Trekkstrukturer som grafer Attribute Value Matrices (AVMs) Directed Acyclic Graphs (DAGs) To alternative notasjoner for det samme 11
12 Deling («Reentrancies») 12
13 Deling og programmering Likher mellom «reentrancy» og To variable peker til samme objekt (identitet), vs. To variable har samme verdi >>> a = [3,4,5] >>> b = [6,7,a,9] >>> c = a[:] >>> a.pop() 5 >>> a? >>> c? >>> b? >>> 13
14 Trekkstrukturer - formelt To endelige mengder F = {f 1, f 2,, f n } A = {a 1, a 2,, a n } En trekkstruktur over F og A er Atomær, dvs et element i A, eller Ikke-atomær. Det er et objekt. Dette inneholder En mengde trekk, dvs en delmengde av F: f 1, f 2,, f j Til hvert av disse trekkene er det en verdi, som igjen er en trekkstruktur (atomær eller ikke-atomær) En trekkstruktur kan ikke inneholde to par av trekk og verdier (f k, a k ), (f p, a p ) der f k = f p, men a k =/= a p To trekkstrukturer som inneholder de samme trekk-verdiparene kan være identiske, men behøver ikke være det 25. mars
15 I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj 15.1 Unifikasjon og subsumpsjon J&M, seksj Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte grammatikker (=Unifikasjonsgrammatikker) Delvis: J&M, seksj15.3, NLTK boka seksj
16 Unifikasjon av trekkstrukturer 25. mars
17 25. mars
18 25. mars
19 25. mars
20 Subsumpsjon og unifikasjon Subsumpsjon F subsummerer G F er minst like generell som G Hvis og bare hvis: F er atomær og F=G Ellers For hvert trekk x i F: F(x) subsumerer G(x) For alle stier p, q in F: Hvis F(p) = F(q), så G(p) = G(q) Unifikasjon H er unifikasjonen av F og G H = Hvis og bare hvis Og H er den mest generelle slike trekkstrukturen 25. mars
21 I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj 15.1 Unifikasjon og subsumpsjon J&M, seksj Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte grammatikker (=Unifikasjonsgrammatikker) Delvis: J&M, seksj15.3, NLTK boka seksj
22 NLTK - implementasjon >>> fs1 = nltk.featstruct(tense='past', NUM='sg') >>> fs1 [NUM='sg', TENSE='past'] >>> print fs1 [ NUM = 'sg' ] [ TENSE = 'past' ] >>> from nltk import FeatStruct >>> fs2 = FeatStruct(CAT='vp', AGR = fs1) >>> print fs2 [ AGR = [ NUM = 'sg' ] ] [ [ TENSE = 'past' ] ] [ ] [ CAT = 'vp' ] 25. mars
23 NLTK - implementasjon >>> fs3 = fs2.unify(featstruct( "[AGR =?x, SUBJ = [AGR =?x]]")) >>> print fs3 [ AGR = (1) [ NUM = 'sg' ] ] [ [ TENSE = 'past' ] ] [ ] [ CAT = 'vp' ] [ ] [ SUBJ = [ AGR -> (1) ] ] 25. mars
24 I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj 15.1 Unifikasjon og subsumpsjon J&M, seksj Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte grammatikker (=Unifikasjonsgrammatikker) Delvis: J&M, seksj15.3, NLTK boka seksj
25 Grammatikker to alternative format 1. Trekkstrukturer i reglene NLTK er et (begrenset) forsøk på å implementere dette formatet 2. Regler + likninger Jurafsky og Martin 25. mars
26 1. Regler med trekkstrukturer S NP VP NP Det N V serve V serves En ikke-terminal suppleres med en partiell trekkstruktur Mulig deling mellom trekkstrukturene i en regel Terminalene er uendret 25. mars
27 1B. NLTKs format S NP VP S NP[AGR=?x] VP[AGR=?x] NP Det N NP[AGR=?x] Det[AGR=?x] Nom[AGR=?x] V serves V[AGR=[NUM=SG, PERS=3rd]] serves NLTKs format er en implementasjon av denne formalismen Men som vi vil se senere, har implementasjonen en del begrensninger i forhold til formalismen 25. mars
28 Generalisering av formalisme 1 Vi trenger ikke egne symboler for ikke-terminalene Vi kan bruke et trekk for dem, f.eks. Cat Fordeler: Enklere teori Større fleksibilitet, f.eks. variable over kategorier Trekkstrukturgrammatikk Syntaktisk regel: En trekkstr. på v.s Null eller flere t.s. på h.s Deling mellom trekkstr.ene Leksikalsk regel: En trekkstr. på v.s En terminal på h.s. 25. mars
29 Tolkning av trekkstrukturgrammatikker Har definert: Trekkstrukturer og unifikasjon Grammatikkregler med trekkstrukturer Gjøre presist hvordan en trekkstrukturgrammatikk definerer et språk (mangler både fra J&M og NLTK-boka) Vi vil gi en semi-formell definisjon (ikke formalisere alle detaljer) 25. mars
30 Husk: CFG og trær Et lokalt tre: En node som ikke er et blad Alle døtrene Rekkefølgen mellom døtrene Kantene mellom mor og datter En regel B s1, s2,, sn tillater ( license ) et lokalt tre hvis og bare hvis det har formen: B s1 s2.. sn 25. mars
31 Trær En CFG G, generer et tre t hviss Toppen av t er merket med S Bladene er merket med terminaler Hvert lokalt tre er tillatt av en produksjonsregel T(G) for mengde av trær generert av G Utkomme ( yield ) av treet t er symbolene på bladene i riktig rekkefølge Forkortelse: hviss for hvis og bare hvis En streng w er avledbar fra G hviss w er utkomme til et tre i T(G). 25. mars
32 Trær med trekkstrukturer S, Hver ikke-terminal node inneholder en trekkstruktur NP, VP, DET, N, V, NP, DET, N, the restaurant serves many fish 25. mars
33 Betingelser på grammatikalitet S, Hvert lokalt tre må tillates av en grammatikkregel NP, VP, DET, N, V, NP, DET, N, the restaurant serves many fish 25. mars
34 Lokalt tre tillatt av regel eks 1 t1: S, Hvert lokalt tre må tillates av en grammatikkregel NP, VP, R1: S NP VP Regelen R1 svarer til et lokalt tre t2 R1 tillater t1 hvis t1 «utvider» t2, Mer formelt: hvis t2 subsummerer t1 25. mars
35 Subsumpsjone av trær Vi kan utvide definisjonen av subsumpsjon fra trekkstrukturer til trær med trekkstrukturer på nodene Et tre T subsummerer et tre T dersom T er atomær og T = T, eller T har en mor M og døtre D 1, D 2,, D n, og T har en mor M og like mange døtre D 1, D 2,, D n, der M subsummerer M, og D i subsummerer D i for i = 1, 2,, n, og Alle delinger i T er også delinger i T. 35
36 Lokalt tre tillatt av regel eks 2 t: DET, Hvert lokalt tre må tillates av en grammatikkregel the R: DET[AGR=[PERS= 3rd ]]-> the R svarer til det lokale treet t som subsummerer t t': DET, the 25. mars
37 Tolkning av grammatikk Et tre T med trekkstrukturer er tillatt av grammatikk G hvis og bare hvis. Hvis t 1, t 2,, t n er alle de lokale trærne i T, så fins det tilsvarende regler i G, si g 1, g 2,, g n s.a.: tre t i er tillatt av regel g i for i= 1, 2,, n Hvis T er et annet tre tillat av de samme reglene g 1, g 2,, g n, og T subsummerer T, så subsummerer også T T. "Det skal ikke være med mer i treet enn det reglene krever. " 25. mars
38 Grammatikker to alternative format 1. Trekkstrukturer i reglene 2. Regler + likninger S NP VP NP Det NOM V serves 25. mars
39 Lokalt tre tillatt av regel eks 1 S, Hvert lokalt tre må tillates av en grammatikkregel NP, VP, J&M-format: Det lokale treet lystrer alle likningene 25. mars
40 Lokalt tre tillatt av regel eks 2 DET, Hvert lokalt tre må tillates av en grammatikkregel the Regler + likninger: Det lokale treet lystrer alle likningene DET the <DET AGR PERS>=3rd Trekkstr. i regel DET[AGR=[PERS= 3rd ]]-> the DET, the 25. mars
41 Sammenlikning av formatene 1. Trekkstrukturer i reglene Utvid ikke-terminaler med partielle trekkstrukturer Variable i trekkstrukturene for deling («reentrancy») Brukt for eksempel i tidlig Head-driven Phrase Structure Grammars (HPSG) 2. Regler + likninger Legg likninger til CFG-reglene En likning mellom To stier, eller En sti og en atomær verdi Inspirert av PATR Lexical-Functional Grammar Blir det samme (før evt utvidelser) 25. mars
INF2820 Datalingvistikk V Gang 30.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 10. Gang 30.3 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 10. gang, 20.3.2014 Jan Tore Lønning I dag Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M,
DetaljerINF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 10. Gang 20.3 Jan Tore Lønning I dag grammatikker med trek og unifikasjon Fortsatt:) CKY og Chart: Parsing vs anerkjenning Grammatikker med trekk Tolkning av grammatikkene,
DetaljerINF2820 Datalingvistikk V Gang 5.3 Jan Tore Lønning
INF2820 Datalingvistikk V2018 8. Gang 5.3 Jan Tore Lønning I dag: CNF og trekkstrukturgrammatikker Chomsky Normal Form (CNF) Grammatikker med trekk Trekkstrukturer og trekkstrukturgrammatikker Tolkning
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 11. gang, 27.3.2014 Jan Tore Lønning I dag Repetere en del begreper: Trekkstrukturer Unifikasjon og subsumpsjon Trekkbaserte grammatikker Form: to alternative format Tolkning
DetaljerINF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning
INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2018 9. Gang 13.3 Jan Tore Lønning I dag to deler A. Trekkstrukturgramatikker Fortsatt fra sist B. Chart-parsing Fortsetter parsing fra for to uker siden 2 TREKKSTRUKTUR- GRAMMATIKKER
DetaljerINF2820 Datalingvistikk V Gang 23.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 10. Gang 23.3 Jan Tore Lønning I dag Trekkbaserte grammatikker, delvis repetisjon Formelle egenskaper: Alternative format for slike grammatikker Tolkning av grammatikkreglene
DetaljerINF2820 Datalingvistikk V Gang 6.4 Jan Tore Lønning
INF2820 Datalingvistikk V2016 11. Gang 6.4 Jan Tore Lønning Sist Med anbefalt lesing og rekkefølge Grammatiske trekk («features») NLTK boka, seksj 9.1 Trekkstrukturer («feature structures») J&M, seksj
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 8. Gang 9.3 Jan Tore Lønning I dag Avslutte parsing i denne omgang Chomsky Normal Form (CNF) Algoritme for omforming CKY Algoritme Implementasjon Begynne trekkgramatikker
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 9. gang, 13.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon (Earley s algoritme) Parsing vs anerkjenning For CKY og chart Trekkbaserte ( feature-based )grammatikker
DetaljerINF2820 Datalingvistikk V Gang 20.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 11. Gang 20.3 Jan Tore Lønning I dag (Fra sist Trekkstrukturer og unifikasjon (J&M, seksj 15.1, J&M, seksj. 15.2) Trekkstrukturer i NLTK NLTK-boka seksj. 9.2 Trekkbaserte
DetaljerINF2820 Datalingvistikk V Gang 16.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 9. Gang 16.3 Jan Tore Lønning I dag Kort repetisjon: Hoedideer i chart-parsing CKY og chart: anerkjenning vs parsing Formell språkteori: Chomsky-hierarkiet Er naturlige språk
DetaljerINF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning
INF2820 Datalingvistikk V2015 11. Gang 13.4 Jan Tore Lønning I dag Unifikasjonsgrammatikker Repetisjon og overblikk: Formalisme Lingvistisk anvendelse Utvidelse av lingvistisk anvendelse NLTKs implementering
DetaljerINF2820 Datalingvistikk V Gang 13.4 Jan Tore Lønning
INF2820 Datalingvistikk V2016 12. Gang 13.4 Jan Tore Lønning I dag Trekkbaserte grammatikker for naturlige språk med vekt på subkategorisering/argumenter, 3 tilnærminger a. Enkel løsning, grammatikk 1
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 12. gang, 3.4.2014 Jan Tore Lønning I dag Trekkbaserte grammatikker (unifikasjonsgrammatikker) for naturlige språk NLTKs implementering av slike Litt om lingvistiske modeller
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 5. Gang - 16.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker
Detaljer2/24/2012. Context-Free Grammars. I dag. Avledning. Eksempel: grammar1 PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 Context-Free Grammars Det mest sentrale verktøyet i datalingvistikk 24. februar 2012 3 2/24/2012 Speech
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 6. Gang - 20.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk (fortsatt fra sist) Kontekstfrie grammatikker og regulære språk Grammatikker og trær i NLTK
DetaljerINF2820 Datalingvistikk V2012
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 24. februar 2012 2 1 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning KONTEKSTFRIE GRAMMATIKKER OG PARSING 23. februar 2012 2 I dag Kontekstfrie grammatikker, avledninger og trær (delvis repetisjon) Parsing: ovenifra og ned
Detaljer2/6/2012. Begrensninger ved regulære språk. INF2820 Datalingvistikk V2012. Formelle språk som ikke er regulære KONTEKSTFRIE GRAMMATIKKER.
INF2820 Datalingvistikk V2012 Jan Tore Lønning Begrensninger ved regulære Regulære er ikke ideelle modeller for naturlige, dvs Verken regulære uttrykk eller NFA er ideelle for å beskrive naturlige fordi:
DetaljerINF2820 V2017 Oppgavesett 5 Gruppe 21.2
INF2820 V2017 Oppgavesett 5 Gruppe 21.2 Denne uka er det først noen teoretiske oppgaver. Deretter er det en del praktiske arbeidsoppgaver som vil forberede deg til arbeidet med innleveringsoppgavesett
DetaljerINF2820 Datalingvistikk V Gang 19.3 del 1 Jan Tore Lønning
INF2820 Datalingvistikk V2018 10. Gang 19.3 del 1 Jan Tore Lønning I dag: to deler A. Active chart-parsing Fortsatt fra sist B. Tekstklassifisering 2 CHART-PARSING 3 I dag chart-parsing Chart-parsing:
DetaljerINF2820 V2017 Oppgavesett 5 arbeidsoppgaver
INF2820 V2017 Oppgavesett 5 arbeidsoppgaver Dette er oppgaver du kan arbeide med på egen hånd. Du kan også arbeide med dem i gruppa 28.2 (hvis du har innleveringsoppgave 2 under kontroll) og spørre gruppelæreren
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning BEGRENSNINGER VED REGULÆRE SPRÅK OG KONTEKSTFRIE GRAMMATIKKER 2 I dag 1. Begrensninger ved regulære språk 2. Noen egenskaper ved naturlige språk 3. Kontekstfrie
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2015 6. Gang - 23.2 Jan Tore Lønning PARSING DEL 1 2 I dag Høyre- og venstreavledninger Recursive-descent parser (top-down) Begynne Shift-reduce parser (bottom-up) 25. februar
DetaljerOppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :
Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave
DetaljerINF2820 Datalingvistikk V Gang 13.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 9. Gang 13.3 Jan Tore Lønning I dag chart-parsing Fortsatt fra sist: Chart-parsing: hovedideer BU chart-parsing: algoritmen NLTKs ChartParser Enkel Python-implementasjon av
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 15. gang, 8.5.2014 Jan Tore Lønning Språk og grammatikk Språk (formelt): En endelig mengde A Ø En undermengde L A* Grammatikk: En endelig innretning som definerer L Klasser
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerSpørsmål 1.1 (10%) Lag en ikke-deterministisk endelig tilstandsautomat (NFA) som beskriver dette språket.
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF 2820 V2018: Innleveringsoppgave 3
INF 2820 V2018: Innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen fredag 23.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil 100 poeng. Til sammen kan en få inntil
DetaljerObligatorisk oppgave 4, INF2820, 2014
Obligatorisk oppgave 4, INF2820, 2014 Besvarelsene skal leveres i devilry innen 7.5 kl 1800. Filene det vises til finner du etter hvert på /projects/nlp/inf2820/ Oppgavene kan løses alene og det skal leveres
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 I dag Avledninger og normalformer Parsing: ovenifra og ned (top-down) Parsing: nedenifra
Detaljer3/8/2011. I dag. Dynamic Programming. Example. Example FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen CHARTPARSING (SEKSJ 13.4) FORMELLE EGENSKAPER VED SPRÅK (KAP. 16) 8. mars 2011 2 I dag Oppsummering fra sist: Dynamisk programmering CKY-algoritmen
DetaljerINF1820 2013-04-12 INF1820. Arne Skjærholt INF1820. Dagens språk: Russisk. dyes yataya l yektsiya. Arne Skjærholt. десятая лекция
Arne Skjærholt десятая лекция Dagens språk: Russisk. dyes yataya l yektsiya Arne Skjærholt десятая лекция N,Σ,R,S Nå er vi tilbake i de formelle, regelbaserte modellene igjen, og en kontekstfri grammatikk
Detaljer2/22/2011. Høyre- og venstreavledninger. I dag. Chomsky-normalform (CNF) Chomsky-normalform (CNF) PARSING. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen KONTEKSTFRIE GRAMMATIKKER OG PARSING 22. februar 2011 2 Høyre- og venstreavledninger Til hvert tre svarer det mange avledninger. For kontekstfrie
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsingalgoritmen Algoritmen uttrykt
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2018 6. Gang - 19.2 Jan Tore Lønning I dag Kontekstfrie grammatikker og naturlige språk Grammatikker og trær i NLTK Kontekstfrie grammatikker, avledninger og trær Hva er parsing?
DetaljerINF2820 Datalingvistikk V Gang 9.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 8. Gang 9.3 Jan Tore Lønning CHART-PARSING 2 I dag Bakgrunn Svakheter med andre parsere CKY og Chart Chart-parsing: hovedideer BU chart-parsing algoritmen Algoritmen uttrykt
DetaljerOppgave 1. La G1 være grammatikken med hovedsymbol S og følgende regler:
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er indikert. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2016 6. Gang - 24.2 Jan Tore Lønning PARSING DEL 1 2 I dag Hva er parsing? Høyre- og venstreavledninger Recursive-Descent parser (top-down) Shift-Reduce parser (bottom-up) Pythonimplementasjon:
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2015 7. Gang 2.3 Jan Tore Lønning PARSING DEL 2 2 I dag Recursive-descent parser, kort repetisjon Shift-reduce parser (bottom-up) Algoritme for anerkjenning Eksempelimplementasjon
Detaljer3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det
DetaljerINF2820 Datalingvistikk V Gang 6.3 Jan Tore Lønning
INF2820 Datalingvistikk V2017 8. Gang 6.3 Jan Tore Lønning I dag CKY-algoritmen fortsatt fra sist Python-implementasjon av CKY Chomsky Normal Form (CNF) Chart-parsing BU-algoritme for chart-parsing 3.
DetaljerINF2820 V2017 Oppgavesett 6 Gruppe 7.3
INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Nom Nom PP NP PP P NP Det Nom, N P NP, PN 0 book 1 the 2 flight 3
DetaljerINF 2820 V2015: Obligatorisk innleveringsoppgave 3
INF 2820 V2015: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen fredag 17.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Del 1 RD Parsing Oppgave 1:
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])
DetaljerINF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning
INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:
DetaljerINF INF1820. Arne Skjærholt. Negende les INF1820. Arne Skjærholt. Negende les
Arne Skjærholt egende les Arne Skjærholt egende les σύνταξις Syntaks, fra gresk for oppstilling, er studiet av hvordan vi bygger opp setninger fra ord. Pāṇini (ca. 400 år f.kr.) er den første som formulerer
DetaljerINF5830, H2009, Obigatorisk innlevering 2. 1 Oppgave: Unære produksjoner i CKY
INF5830, H2009, Obigatorisk innlevering 2 Innleveringsfrist 4.11 1 Oppgave: Unære produksjoner i CKY For bottom-up parsere, som CKY, har vi forutsatt at grammatikken er på CNF. For de ikke-leksikalske
DetaljerINF2820 Datalingvistikk V gang, 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 7. gang, 27.2 Jan Tore Lønning I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 20. februar 2014 2 Chomsky-normalform (CNF) En grammatikk
DetaljerINF 2820 V2016: Obligatorisk innleveringsoppgave 3
INF 2820 V2016: Obligatorisk innleveringsoppgave 3 Besvarelsene skal leveres i devilry innen torsdag 21.4 kl 18.00 Filene det vises til finner du i o /projects/nlp/inf2820/cfg Oppgave 1: Shift-reduce-effektivisering
DetaljerINF 2820 V2016: Innleveringsoppgave 3 del 1
INF 2820 V2016: Innleveringsoppgave 3 del 1 Pga tekniske problemer er oppgaveteksten delt i to. Dette er første del. Andre del legges ut mandag 13.3! Besvarelsene skal leveres i devilry innen fredag 24.3
DetaljerINF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning INF2820 Datalingvistikk 19. januar 2014 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker
DetaljerINF2820 Datalingvistikk V2014. Forelesning 4, 6.2 Jan Tore Lønning
INF2820 Datalingvistikk V2014 Forelesning 4, 6.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Regulære uttrykk: teoretiske og praktiske Begrensninger ved regulære språk Noen egenskaper
DetaljerINF2820 Datalingvistikk V Gang 26.2 Jan Tore Lønning
INF2820 Datalingvistikk V2018 7. Gang 26.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing 24. februar
DetaljerNorsyg en syntaksbasert dyp parser for norsk
en syntaksbasert dyp parser for norsk Petter Haugereid petterha@hf.ntnu.no Institutt for språk- og kommunikasjonsstudier NTNU Språkteknologi ved NTNU, seminar VI, 30. november 2006 Oversikt 1 2 Oversikt
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2014 13. gang, 10.4.2014 Jan Tore Lønning I dag Introduksjon til semantikk Formell semantikk grunnideene Logikk i NLTK 2 Semantikk Semantikk= studiet av mening Lingvistisk semantikk
DetaljerINF2820 Datalingvistikk V Gang Jan Tore Lønning
INF2820 Datalingvistikk V2017 5. Gang - 13.2 Jan Tore Lønning I dag Tekstnormalisering: lemmatisering og «stemming» Tagget tekst og tagging Begrensninger ved regulære språk Frasestruktur og kontekstfrie
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning INF2820 Datalingvistikk 20. januar 2016 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære språk OBS: Lov å
DetaljerINF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En
Detaljer2/24/2012. Dynamic Programming. I dag. Example. Example PARSING. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning TABELLPARSING OG CHART- PARSING 24. februar 2012 2 I dag Mellomspill: Chomsky Normal Form Tabellparsing: CKY-algoritmen Innlede Chart-Parsing Dynamic Programming
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning INF2820 Datalingvistikk 21. januar 2015 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Endelige tilstandsteknikker
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning MER OM PARSING, SÆRLIG TABELLPARSING 20. februar 2012 2 I dag Oppsummering og utfylling fra sist: Recursive-descent parser (top-down) Shift-reduce parser
DetaljerINF2820-V2018 Oppgavesett 10 Gruppe 18.4
INF2820-V2018 Oppgavesett 10 Gruppe 18.4 Chart-parsing med papir og penn Denne oppgaven tjener flere formål: Få bedre grep på chart-parsing See hvordan en chart-parser behandler venstrerekursjon Praktisk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 14. juni 2016 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0
DetaljerOppgave 1. Spørsmål 1.1 (10%) Gitt det regulære uttrykket: a((bcd)+(cd))*cd
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF 2820 V2016: Innleveringsoppgave 3 hele
INF 2820 V2016: Innleveringsoppgave 3 hele Dette er det komplette settet! Besvarelsene skal leveres i devilry innen fredag 24.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil
DetaljerINF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning
INF2820 Datalingvistikk V2017 Forelesning 1.1, 16.1 Jan Tore Lønning INF2820 Datalingvistikk 16. januar 2017 2 I dag: 1. Time: Datalingvistikk: motivasjon og eksempler Praktisk informasjon 2. Time: Regulære
Detaljer1/31/2011 SAMMENHENGER FSA OG REGULÆRE UTTRYKK. Regulære språk. Fra FSA til RE. Fra regulært uttrykk til NFA REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 Regulære språk Følgende er ekvivalente: a) L kan
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 31. januar 2011 2 SAMMENHENGER FSA OG REGULÆRE UTTRYKK 31. januar
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 25. januar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF2820 Datalingvistikk V2016. Jan Tore Lønning
INF2820 Datalingvistikk V2016 Jan Tore Lønning ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 3. februar 2016 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En innretning som
DetaljerINF2820 Datalingvistikk V2015. Jan Tore Lønning
INF2820 Datalingvistikk V2015 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 26. januar 2015 2 ENDELIGE AUTOMATER «FINITE STATE AUTOMATA» (FSA) 26. januar 2015
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2016 13. gang, 20.4.2016 Jan Tore Lønning I dag Introduksjon til semantikk Formell semantikk grunnideene Logikk i NLTK 2 Semantikk Semantikk= studiet av mening Lingvistisk semantikk
DetaljerOppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:
2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'
DetaljerINF2820 Datalingvistikk V Gang 27.2 Jan Tore Lønning
INF2820 Datalingvistikk V2017 7. Gang 27.2 Jan Tore Lønning I dag Fra sist: Høyre- og venstreavledninger Recursive-descent parser (top-down) Shift-reduce parser (bottom-up) Pythonimplementasjon: Shift-Reduce
DetaljerINF 2820 V2018: Innleveringsoppgave 2
INF 2820 V2018: Innleveringsoppgave 2 Besvarelsene skal leveres i devilry innen fredag 2.3 kl 18.00 Det blir 5 sett med innleveringsoppgaver. Hvert sett gir inntil 100 poeng. Til sammen kan en få inntil
Detaljer1/26/2012 LITT PYTHON. INF2820 Datalingvistikk V2012. Hvorfor Pyhton. Python syntaks. Python er objektorientert. Python datatyper.
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton Python syntaks NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 1. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
DetaljerINF2820 Datalingvistikk V2014. Jan Tore Lønning
INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 19. januar 2014 2 Naturlige språk En mann kjøpte en bil av en mann som hadde eid bilen i
DetaljerForelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf
Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde
DetaljerINF2820 Datalingvistikk V gang, Jan Tore Lønning
INF2820 Datalingvistikk V2015 13. gang, 27.4.2015 Jan Tore Lønning Semantikk noen poeng fra sist Vi legger vekt på at språket er om noe det denotasjonelle aspektet ved mening Det logiske forholdet mellom
DetaljerVektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave
MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte
DetaljerINF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen
INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk
DetaljerINF2820 Datalingvistikk V Gang 2.3 Jan Tore Lønning
INF2820 Datalingvistikk V2016 7. Gang 2.3 Jan Tore Lønning I dag CKY-algoritmen Python-implementasjon Chomsky Normal Form (CNF) 2. mars 2016 2 Dynamisk programmering I en beregning kan det inngå delberegninger
DetaljerForelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet
Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende
DetaljerOppgave 1 (samlet 40%)
2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne
DetaljerINF2820 Datalingvistikk V2012. Jan Tore Lønning
INF2820 Datalingvistikk V2012 Jan Tore Lønning LITT PYTHON 2 Hvorfor Pyhton NLTK Natural Language Tool Kit: Omgivelser for å eksperimentere med datalingvistikk Diverse datalingvistiske algoritmer Inkluderte
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og
Detaljer