Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!"

Transkript

1 Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre subtre er mindre enn verdien i noden selv. lle verdiene i høyre subtre er større enn verdien i noden selv. Eksempel på perfekt balansert tre: rk 1 av 28 Høyde: log 2 (N) Forelesning Forelesning rk 2 av 28 Rød-svarte trær Et rød-svart tre er et binært søketre der hver node er farget enten rød eller svart slik at: Roten er svart. Hvis en node er rød, må barna være svarte. Enhver vei fra en node til en null-peker må inneholde samme antall svarte noder. Disse fargeleggingsreglene sikrer at høyden på et rød-svart tre er maksimalt 2 log 2 (N + 1)! Oppgave Farg nodene i følgende tre slik at det blir et rød-svart tre: ett inn tallet 64 på riktig plass og med riktig farge. Forsøk så å sette inn tallet 81. Forelesning rk 3 av 28 Forelesning rk 4 av 28

2 Rotasjoner på binære søketrær jelder generelt, ikke bare for rød-svarte trær! Zig-zag rotasjon: Zig rotasjon: B B1 B2 B B1 + symmetrisk tilfelle... B2 + symmetrisk tilfelle... Forelesning rk 5 av 28 Forelesning rk 6 av 28 Innsetting i rød-svart tre 1. jør innsetting som i vanlig binært søketre, der den nye noden farges rød. 2. La og være forelder og besteforelder til. 3. Hvis er svart: lt ok, innsetting ferdig. 4. Hvis er rød: (a) Hvis og er begge venstre eller begge høyre barn: jør zig rotasjon med nødvendige fargeendringer. (b) Hvis er venstre og er høyre barn eller motsatt: jør zig-zag rotasjon med nødvendige fargeendringer. (c) ett til å være den nye roten i det roterte subtreet. (d) Hvis er roten i selve treet: Farg denne svart. Ellers: jenta fra steg 2. B-trær En annen type søketrær. Brukes først og fremst når ikke hele treet får plass i internminnet. Har stor bredde (hver node har mange barn) og er balansert. De øverste nivåene (iallfall rotnoden) lagres i internminnet, resten på disk. Brukes særlig i databasesystemer. Forelesning rk 7 av 28 Forelesning rk 8 av 28

3 Definisjon: B-trær av orden M 1. lle data (eller pekere til data) er lagret i bladnodene. 2. Interne noder lagrer inntil M 1 nøkler for bruk i søking; nøkkel i angir den minste verdien i subtre i Roten er enten en bladnode, eller har mellom 2 og M barn. 4. lle andre interne noder har mellom M/2 og M barn. 5. lle bladnoder har samme dybde og har mellom L/2 og L dataelementer (eller datapekere), der L er en konstant felles for alle bladnoder. Merk: Lærebokens (og våre) B-trær er ellers i litteraturen kjent som B + -trær. Tradisjonelle B-trær har data(pekere) i alle noder. Eksempel B-tre av orden 3 (også kalt et 2-3 tre): ,11,12 16,17 22,23,31 41,52 Her er M = 3 og L = 3. Vi forenkler tegningene litt: 58 58,59,61 8,11,12 16,17 22,23,31 41,52 58,59,61 Forelesning rk 9 av 28 Forelesning rk 10 av 28 Innsetting av element x øking etter element x 1. tart i roten. 2. å lenge vi ikke er i en bladnode: La nøkkel-verdiene bestemme hvilket barn vi skal gå til. 3. Let etter x i bladnoden. 1. Let etter riktig bladnode for x (som for søking). 2. Dersom det er plass, setter vi inn x og oppdaterer eventuelt nøkkel-verdiene langs veien vi gikk. Eksempel: ett inn 18 i treet i eksempelet over. 16:- 16:- 8,11,12 16,17, 18 22,23,31 41,52 58,59,61 Forelesning rk 11 av 28 Forelesning rk 12 av 28

4 3. Dersom bladnoden er full, deler vi den i to og fordeler de L + 1 nøklene jevnt på de to nye bladnodene. Eksempel: ett inn 1 i treet på forrige foil. 4. Dersom splittingen medfører at foreldernoden får for mange barn, splitter vi den også, gir den nye noden til besteforelderen, osv. Eksempel: ett inn 19 i treet på forrige foil. 16:22 11:16 11: - 18:- 1,8 11,12 16,17,18 22,23,31 41,52 58,59,61 1,8 11,12 16,17 18,19 22,23,31 41,52 58,59,61 Forelesning rk 13 av 28 Forelesning rk 14 av Dette kan medføre at vi til slutt må splitte roten i to. (Hvis roten får M + 1 barn.) Da lager vi en ny rot med den gamle roten og den nye noden som barn. Merk: Dette er den eneste måten et B-tre kan vokse i høyden på! Eksempel: ett inn 28 i treet på forrige foil. letting: eksempel Fjern først 17, deretter 23 fra følgende tre: 22:41 16: - 28:- 59:- 16:- 41:- 8,11,12 16,17 22,23 28,31 41,52, 58 59,61, 70 11: - 18:- 28:- 58:- 1,8 11,12 16,17 18,19 22,23 28,31 41,52 58,59,61 Forelesning rk 15 av 28 Forelesning rk 16 av 28

5 letting av element x 1. Finn riktig bladnode B for x ved søking. 2. Dersom B har minst L/2 + 1 elementer, kan vi enkelt slette x. 3. Hvis ikke, må vi kombinere B med en av nabosøsknene: (a) Dersom venstre (høyre) søsken har L/2 + 1 elementer eller mer, flytter vi det største (minste) elementet til B. (b) Dersom nabosøskenen har akkurat L/2 elementer, slår vi de to nodene sammen til én node (med L eller L 1 elementer) 4. Hvis foreldrenoden nå har et barn for lite, må vi gjøre det samme med denne. Osv Hvis roten til slutt bare har ett barn: lett roten, og la barnet bli ny rot. (Treet krymper nå ett nivå.) 6. Husk å oppdatere nøkkelverdiene underveis! Forelesning rk 17 av 28 Tidsforbruk Vi antar at M og L er omtrent like. iden hver interne node unntatt roten har minst M/2 barn, er dybden til et B-tre maksimalt log M/2 N. å hver node må vi utføre O(log M) arbeid (ved binærsøk i sortert array) for å avgjøre hvilken gren vi skal gå. Dermed tar søking O(log M log M/2 N) = O(log N) tid. Ved innsetting og sletting kan det hende at vi må utføre O(M) arbeid på hver node for å rydde opp (f.eks. flytte alle nøkkelverdiene i tabellen en plass til venstre). å innsetting og sletting kan ta O(M log M/2 N) = O( log M M ) log N) tid. Forelesning rk 18 av 28 Hvor stor skal M være? Hvor mange barn skal en node få lov å ha? Hvis hele B-treet får plass i internminnet, har empiriske målinger vist at M = 3 og M = 4 er de beste valgene (innsetting og sletting tar for lang tid hvis M blir for stor). Men B-trær har sin store styrke når ikke hele treet får plass i internminnet. iden en diskoperasjon tar nesten ganger mer tid enn en operasjon i internminnet, gjelder det å minimalisere antall diskaksesser. Hvis det er plass, er det en god idé å lagre alle internnoder i internminnet og alle bladnoder på harddisk. Da kan man velge M = 4 og L så stor at hver bladnode fyller en diskblokk (eventuelt et disk cluster). Hvor stor skal M være når hele treet ligger på disk? Treet blir bredere og får mindre dybde desto større M er. Mindre dybde betyr færre diskaksesser, mens vi kan se bort fra det ekstra oppryddingsarbeidet i nodene som en stor M medfører fordi det foregår i internminnet. I praksis velger man M så stor at en internnode fortsatt får plass på én diskblokk (eller cluster), typisk i området 32 M 256. Man velger L slik at det samme gjelder for bladnodene. nalyser viser at B-trær blir ln 2 = 69% fulle (samme fyllingsgrad som utvidbar hashing). Forelesning rk 19 av 28 Forelesning rk 20 av 28

6 bstrakte datatyper En DT består av: et sett med objekter spesifikasjon av operasjoner på disse Eksempler: DT: binært søketre Operasjoner: Innsetting, søking, fjerning,... DT: mengde Operasjoner: union, snitt, finn,... DT: stakk Operasjoner: push, pop, top,... Hvorfor bruke DTer? DTer skiller det som er viktig (funksjonaliteten) fra detaljene (den konkrete implementasjonen). Dermed kan vi: jenbruke DTen i andre programmer. Enklere overbevise oss om at programmet er riktig. Forandre innmaten (kodingen) av DTen uten å forandre resten av programmet fordi grensesnittet er det samme. Lage modulære programmer. I Java er det naturlig å spesifisere en DT som et interface. Forelesning rk 21 av 28 Forelesning rk 22 av 28 Lister, stakker og køer Lister (kap. 3.2) 1, 2, 3,..., n takker (kap. 3.3) takker En variant av lister, der vi bare har lov til å sette inn og slette elementer fra en bestemt ende av listen. public interface takkinterface { /* Legge et element på toppen av stakken */ void push(object x); Inn Køer (kap. 3.4) Inn Bak Ut Ut Foran /* Fjerne et element fra toppen av stakken */ void pop(); /* Returnere elementet på toppen av stakken */ Object top(); /* Lege en ny stakk/tømme stakken */ void create(); /* jekke om stakken er tom */ boolean isempty(); Ofte vil pop også returnere elementet som fjernes. En stakk er det samme som en LIFO-kø ( Last In First Out ). Forelesning rk 23 av 28 Forelesning rk 24 av 28

7 rray-implementasjon stakktopp Brukes ofte hvis antall elementer på stakken alltid er begrenset. ekerkjede-implementasjon Innsetting og sletting vil da normalt skje på begynnelsen av listen: public void push(object x) { stakktopp++; [stakktopp] = x; public void pop() { stakktopp--; public Object top() { return [stakktopp]; I tillegg: eventuell feilhåndtering Forelesning rk 25 av 28 Forelesning rk 26 av 28 takkoperasjonene - tidsforbruk Uansett hvor mange elementer vi har på stakken, er vi garantert konstant tidsforbruk, det vil si O(1) for alle operasjonene. Dette gjelder uansett om implementasjonen bruker en array eller en pekerkjede. Bedre er det ikke mulig å få det, derfor er stakken en veldig populær DT. amtidig kan mange naturlige problemer løses ved hjelp av en stakk. Typisk bruksmønster er mange stakk-operasjoner, men få elementer på stakken om gangen. Eksempel: Beregning av postfiks uttrykk Ved hjelp av en stakk er det lett å beregne et postfiks uttrykk på følgende måte: For hvert symbol i input: Hvis symbolet er et tall, legges det på stakken. Hvis symbolet er en operator, popper vi to tall fra stakken, anvender operatoren på disse to tallene og dytter svaret tilbake på stakken. Hvis input var et ekte postfiks uttrykk, vil nå svaret ligge som det eneste elementet på stakken. Eksempel: * * å mange maskiner kan disse oversettes til kun to-tre instruksjoner i maskinkode. Forelesning rk 27 av 28 Forelesning rk 28 av 28

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær Dagens tema INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 2: Binærtrær og abstrakte datatyper (ADT) Kort repetisjon Generelle trær

Detaljer

INF2220: Gruppe me 2. Mathias Lohne Høsten 2017

INF2220: Gruppe me 2. Mathias Lohne Høsten 2017 INF0: Gruppe me Mathias Lohne Høsten 0 1 Rød-svarte trær Vanlige binære søketrær blir fort veldig ubalanserte. røv å sett inn 1,,, 4, 5,, 7,... (i den rekkefølgen) i et binært søketre. Da vil vi i praksis

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) REPETISJON: ALGORITMER OG STOR O 2 REPETISJON RØD-SVARTE TRÆR 7 Rød-svarte trær Et rød-svart

Detaljer

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Inf 1020 Algoritmer og datastrukturer

Inf 1020 Algoritmer og datastrukturer Inf 1020 Algoritmer og datastrukturer Et av de mest sentrale grunnkursene i informatikkutdanningen... og et av de vanskeligste! De fleste 3000-kursene i informatikk bygger på Inf1020 Kurset hever programmering

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) ABSTRAKTE DATATYPER 2 Abstrakte datatyper En ADT består av: Et sett med objekter. Spesifikasjon

Detaljer

INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5)

INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) Map og hashing Ett minutt for deg selv: Hva vet du om maps/dictionarys og hashing fra tidligere?

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson B-Trær Lars Vidar Magnusson 5.3.2014 Kapittel 18 B-trær Standard operasjoner Sletting B-Trær B-trær er balanserte trær som er designet for å fungere bra på sekundære lagringsmedium e.g. harddisk. Ligner

Detaljer

Definisjon: Et sortert tre

Definisjon: Et sortert tre Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Flerveis søketrær og B-trær

Flerveis søketrær og B-trær Flerveis søketrær og B-trær Flerveis (multi-way, n-ært) søketre Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 barn og 1 nøkkelverdi. Barna ligger sortert på verdi i forhold

Detaljer

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert Kap.12 Flervegssøketre Sist oppdatert 12.04.10 Studerer 2-3 og 2-4 trær Motivasjon n maks = antall elementer i et fullt binært tre med nivåer 0 k ; (en node har ett element) n maks = 2 0 + 2 1 + + 2 k

Detaljer

Stack. En enkel, lineær datastruktur

Stack. En enkel, lineær datastruktur Stack En enkel, lineær datastruktur Hva er en stack? En datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi

Detaljer

Selv-balanserende søketrær

Selv-balanserende søketrær Selv-balanserende søketrær Georgy Maksimovich Adelson-Velsky Evgenii Mikhailovich Landis Søketrær og effektivitet O(log n) effektivitet av binære søketrær kan ikke garanteres Treet til venstre har høyde

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller Hashing INF2220 - Algoritmer og datastrukturer HØSTEN 200 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning : Hashing Hashtabeller (kapittel.) Hash-funksjoner (kapittel.2) Kollisjonshåndtering

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid Chieh Yu de Vibe (ingridcy@ifi.uio.no)

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 Delkapittel 9.4 Splay-trær Side 1 av 7 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 9.4 Splay-trær 9.4.1 Splay-rotasjoner Et splay-tre er et sortert binætre der treet restruktureres på en

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer.

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer. TRÆR Generelle trær Dagens plan: Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse (!) Eksempel: Ibsens

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

Liste som abstrakt konsept/datatype

Liste som abstrakt konsept/datatype Lister Liste som abstrakt konsept/datatype Listen er en lineær struktur (men kan allikevel implementeres ikke-lineært bak kulissene ) Hvert element har en forgjenger, unntatt første element i listen Hvert

Detaljer

Uke 5 Disjunkte mengder

Uke 5 Disjunkte mengder Uke 5 Disjunkte mengder MAW, kap.. 8 September 19, 2005 Page 1 Hittil Forutsetninger for og essensen i faget Metodekall, rekursjon, permutasjoner Analyse av algoritmer Introduksjon til ADT er Den første

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) Rekursjon (kapittel 1.3) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid

Detaljer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer Praktiske opplysninger INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Tid og sted: Mandag kl. 12:15-14:00 Store auditorium, Informatikkbygningen Kursansvarlige

Detaljer

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Kap 9 Tre Sist oppdatert 15.03

Kap 9 Tre Sist oppdatert 15.03 Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere

Detaljer

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Lars Vidar Magnusson 21.2.2014 Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Rød-Svarte trær (red-black trees) er en variasjon binære søketrær som

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til

Detaljer

Grunnleggende Datastrukturer

Grunnleggende Datastrukturer Grunnleggende Datastrukturer Lars Vidar Magnusson 7.2.2014 Kapittel 10 Stakker og køer Lenkede lister Pekere og objekter Trerepresentasjoner Datastrukturer Vi er i gang med tredje del av kurset hvor vi

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

INF1010 siste begreper før oblig 2

INF1010 siste begreper før oblig 2 INF1010 siste begreper før oblig 2 Sammenligning. Mer lenkede lister. Forskjellige listeimplementasjoner. Binære trær. Bittelitt om grensesnitt (interface). Dagens forelesning Flere temaer på grunn av

Detaljer

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Stack Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi ta ut et element, tar

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 10 1 / 27

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Definisjon av binær relasjon Definisjon av ekvivalens

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær side 1 av 21 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

INF1010 Binære søketrær ++

INF1010 Binære søketrær ++ INF1010 Binære søketrær ++ Programeksempler med insetting, gjenfinning av noder i et binært søketre samt eksempler på hvordan lage en liste av et binærtre. Hva må du kunne om binære søketrær i INF1010

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer Hva er en datastruktur? Datastrukturer Elementære Datastrukturer En datastruktur er en systematisk måte å lagre og organisere data på, slik at det er lett å aksessere og modifisere dataene Eksempler på

Detaljer

Sist gang (1) IT1101 Informatikk basisfag. Sist gang (2) Oppgave: Lenket liste (fysisk) Hva menes med konseptuelt og fysisk i forb med datastrukturer?

Sist gang (1) IT1101 Informatikk basisfag. Sist gang (2) Oppgave: Lenket liste (fysisk) Hva menes med konseptuelt og fysisk i forb med datastrukturer? IT1101 Informatikk basisfag Plan de siste ukene: I dag: siste om datastruktuter (kap. 7) Mandag 17/11: dobbel forelesning om filstrukturer (kap. 8) Torsdag 20/11: øvingsforelesning med Inge Mandag 24/11:

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort

Detaljer

Generelle trær BINÆRTRÆR. Binærtrær

Generelle trær BINÆRTRÆR. Binærtrær BINÆRTRÆR Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse Eksempel: Ibsens skuespill Generelle trær

Detaljer

INF2220: Time 4 - Heap, Huffmann

INF2220: Time 4 - Heap, Huffmann INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Eksamen - Algoritmer og datastrukturer - Høgskolen i Oslo og Akershus - 27.11.2012 Side 1 av 6 Algoritmer og datastrukturer Eksamen 27.11.2012 Eksamensoppgaver Råd og tips: Bruk ikke for lang tid på et

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 10. desember 1998, kl. 09.00-15.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Disjunkte mengder ADT

Disjunkte mengder ADT Binære relasjoner A A = {(x, y) x, y A}: mengden av ordnede par over A. Disjunkte mengder ADT Weiss kap. 8.1 8.5 Løser ekvivalensproblemet Lett og rask implementasjon Vanskelig tidsforbrukanalyse Ark 1

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak LISTER Vanligste datastruktur Mange implementasjonsmåter (objektkjeder, array...) Operasjoner på listen definerer forskjellige typer lister (LIFO, FIFO,...) På norsk bruker vi vanligvis ordet «liste» for

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Dagens tema INF1010 INF1010 INF1010 INF1010

Dagens tema INF1010 INF1010 INF1010 INF1010 I eksemplene om lister og binære trær har vi hittil hatt pekerne inne i objektene i strukturen. ( Innbakt struktur ).Eksempel: Dagens tema Implementasjon av strukturer (lister, binære trær) class { ; ;

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 171 A EKSAMENSDATO: 19. august 1999 KLASSE: 97HINDA / 97HINDB ( 2DA / 2DB ) TID: 09.00-14.00 FAGLÆRER: Frode Haug ANT.

Detaljer

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

INF1020 Algoritmer og datastrukturer. Dagens plan

INF1020 Algoritmer og datastrukturer. Dagens plan Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Datastrukturer for rask søking

Datastrukturer for rask søking Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene. Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik Avdeling for Teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. august 2001 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon

Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon 1 Enkle datastrukturer, trær, traversering og rekursjon Magnus Moan (Undertegnede) algdat@idi.ntnu.no Enkle datastrukturer, trær, traversering og rekursjon 2 Dagens plan Praktisk Enkle datastrukturer Stack

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2001 KLASSE: 00HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO BOKMÅL Eksamen i : UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1020 Algoritmer og datastrukturer Eksamensdag : Fredag 15. desember 2006 Tid for eksamen : 15.30 18.30 Oppgavesettet

Detaljer

København 20 Stockholm

København 20 Stockholm UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

... Dagens plan. Prioritetskø ADT

... Dagens plan. Prioritetskø ADT Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

Løsnings forslag i java In115, Våren 1999

Løsnings forslag i java In115, Våren 1999 Løsnings forslag i java In115, Våren 1999 Oppgave 1a Input sekvensen er: 9, 3, 1, 3, 4, 5, 1, 6, 4, 1, 2 Etter sortering av det første, midterste og siste elementet, har vi følgende: 2, 3, 1, 3, 4, 1,

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Eksamensoppgave i Algoritmer og datastrukturer ved Høgskolen i Oslo Side 1 av 5 Algoritmer og datastrukturer Eksamen 30.11.2010 Eksamenstid: 5 timer Hjelpemidler: Alle trykte og skrevne + håndholdt kalkulator

Detaljer

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer