Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Størrelse: px
Begynne med side:

Download "Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først"

Transkript

1 Køer

2 Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid det første Sammenlikning: Kundekø som venter på betjening/ ekspedering/ inngang Elementet som har ventet lengst er det som behandles først: FIFO First In, First Out

3 Innsetting og fjerning av data: enqueue og dequeue

4 Operasjonene på en kø enqueue: legge til et element bakerst i køen dequeue: fjerne første element i køen first: se på/finne første element i køen isempty: sjekk om køen har null elementer size: gir antall elementer som er lagret i køen tostring

5 Grensesnitt for en kø-adt i Java public interface Queue<E> { // Legge nytt element bakerst i køen public void enqueue(e element); // Fjerne første element fra køen; public E dequeue(); // Se på første element i køen; public E first(); // Avgjøre om køen er tom public boolean isempty(); // Antall elementer i køen public int size(); } public String tostring();

6 Anvendelser av kø Kryptering/dekryptering (avsnitt 5.2 i læreboka) Simulering av systemer med en eller flere køer av objekter som må vente på betjening (oblig. 1) Operativsystemer der brukere og/eller programvare må vente (i kø) for å få tilgang til en delt ressurs (RAM, prosessorer, disk, server, printer) Algoritmer som krever at data legges systematisk i kø for å kunne behandles i riktig rekkefølge (eks. radix-sortering og bredde-først traversering av trær og grafer)

7 Kø implementert med array Lagrer elementene i køen i en array Holder rede på indeksene til starten (front) og slutten (rear) på køen Innsetting og fjerning blir O(1) fordi: Vi lar køen sirkulere (med wraparound) i arrayen Slipper da å flytte alle elementer et hakk frem eller tilbake ved innsetting/fjerning Gjøres enkelt med modulusaritmetikk Se implementasjonen fra læreboka

8 mod (%) operatoren i Java Beregner resten ved heltallsdivisjon: 1%5 = 1, 2%5 = 2, 5%5 = 0, 8%5 = 3 Kan brukes til å beregne indeksene front og rear i en kø implementert som sirkulært array enqueue (der rear er første ledige indeks): rear = (rear + 1) % queue.length; dequeue (der front er indeks til start av køen): front = (front + 1) % queue.length;

9 Eksempel: Kø med array size = 1 front = 0 rear = 01 //Java Code Queue q = new Queue(); q.enqueue(6); Setter inn på rear = 0 rear = (rear + 1) % queue.length rear = (0 + 1) % 6 = 1

10 Eksempel: Kø med array forts. size = 5 front = 0 rear = //Java Code Queue q = new Queue(); q.enqueue(6); q.enqueue(4); q.enqueue(7); q.enqueue(3); q.enqueue(8);

11 Eksempel: Kø med array forts. size = 4 front = 12 0 rear = front = (0 + 1) % 6 = 1 front = (1 + 1) % 6 = 2 rear = (5 + 1) % 6 = 0 //Java Code Queue q = new Queue(); q.enqueue(6); q.enqueue(4); q.enqueue(7); q.enqueue(3); q.enqueue(8); q.dequeue();//front = 1 q.dequeue();//front = 2 q.enqueue(9);//rear = 0

12 Eksempel: Kø med array forts. size = 5 front = 2 rear = Rear = (0 + 1) % 6 = 1 //Java Code Queue q = new Queue(); q.enqueue(6); q.enqueue(4); q.enqueue(7); q.enqueue(3); q.enqueue(8); q.dequeue();//front = 1 q.dequeue();//front = 2 q.enqueue(9);//rear = 0 q.enqueue(5);

13 Kø implementert som lenket liste Kø-objektet har referanser/pekere til nodene først (front) og sist (rear) i køen, og en teller som inneholder antall elementer i kø Hver node i køen har: Referanse/peker til noden som står på neste plass bak i køen Referanse/peker til objekt som inneholder dataene Se avsnitt 5.4 i læreboka og demo i Java-koden som følger med læreboka

14 Simuleringer Bruker et system til å etterligne/imitere oppførselen til et annet system Nyttig hvis det er for dyrt/farlig/tidkrevende å eksperimentere med det virkelige systemet Bruksområder: Skalering og dimensjonering av modeller/prototyper Predikere fremtidig oppførsel (værvarsling) Forklare historiske data og fysiske fenomen Fysiske, matematiske eller datamaskinbaserte simuleringer

15 Simulering med datamaskiner Programutførelsen etterligner systemet Datastrukturer beskriver systemets objekter Handlinger i systemet beskrives med operasjoner på datastrukturen Reglene i systemet beskrives med algoritmer Stor fleksibilitet: Lett å endre modell (kode) og omgivelser (input) Raskt å teste et stort antall ganger Lett å legge inn statistisk usikkerhet (tilfeldige tall)

16 Tidsdrevet køsimulering: Postkontoret Simulerer aktiviteten på et postkontor i løpet av et bestemt antall tidsenheter (minutter?) Det er et fast antall betjente kasser/skranker Alle kunder som ankommer stiller seg i en og samme kø Betjening av første kunde i køen starter med en gang en kasse er ledig Vil simulere for å studere ventetider, kølengde og effektivitet (ingen kunder ved kassene)

17 Parametre i simuleringsmodellen Antall tidssteg som simuleringen skal gå Antall kasser som er åpne Lengste betjeningstid: Trekker tilfeldige tider mellom 1 og en gitt maks.tid Hvor ofte kundene ankommer: Maksimalt én kundeankomst per tidsenhet (?) Sannsynligheten P K for at en kunde kommer er gitt Trekker tilfeldig i hvert tidssteg om det kommer eller ikke kommer en kunde og stiller seg i kø

18 Algoritme for postkontoret 1 Sett alle kasser til å være ledige 2 Sett køen av kunder til å være tom 3 For hvert tidssteg: 3.1 Trekk et tilfeldig tall r mellom 0 og Hvis r < P k, sett ny kunde i kø 3.3 For hver kasse: Hvis kasse ledig, ta første kunde ut av køen Beregn og lagre tidspunkt for når kassen vil bli ledig igjen 3.4 Lagre statusinformasjon for tidssteget 4 Beregn og skriv ut resultater fra simulering

19 Implementasjon Egen klasse for kunder, som tar vare på ankomsttiden Egen klasse for kassene, som lagrer tidspunktet når kassen blir ledig Bruker java.util.random til å trekke tider og kundeankomster Lagrer og skriver ut informasjon om gjennomsnittlige ventetider for kundene og gjennomsnittlig antall kasser som stod tomme Se Javakoden

20 Prioritetskøer I vanlige FIFO-køer, setter vi inn elementer i den ene enden av køen, og tar ut elementer fra den andre enden. Av og til ønsker vi å prioritere elementene som ligger i køen. Noen må behandles med en gang, mens andre kan vente litt. En sykehuskø der pasientene blir prioritert etter hvor syke de er, er et eksempel på en prioritetskø.

21 Eksempel: Scheduling En data maskin har ofte mange jobber som skal kjøre samtidig En tradisjonell prosessor/cpu kan kun utføre én ting om gangen Løses med timesharing: Jobbene står i en kø. Første jobb tas ut av køen, kjører en liten stund (timeslice, typisk ms), legges så inn i køen igjen. Med rask CPU og korte timeslices ser det ut som om alle jobbene kjører samtidig Men: Korte jobber kan ta lang tid på grunn av mye venting Bedre løsning med prioritetskø (f.eks. nice i Linux) og scheduling: Senk prioriteten til jobber som allerede har kjørt lenge, slik at nye, korte jobber utføres raskt Kan løses enkelt ved å la prioriteten være det samme som lengden på jobbens timeslice, og la korte jobber få lenger prosessortid

22 Operasjoner på prioritetskø Vi må (minst) kunne utføre følgende to operasjoner på prioritetskøen: settinn(x, p) Setter inn nytt element x med prioritet p fjernmin() Fjerner elementet med høyest (eller lavest) prioritet fra prioritetskøen.

23 Mulige implementasjoner av prioritetskø 1. Lenket liste Setter nye elementer inn først i den lenkede listen O(1) Må traversere hele listen for å finne det minste elementet, O(N) 2. Sortert lenket liste Nye elementer må settes inn på riktig plass i listen, O(N). Tar alltid ut første element i listen, O(1). 3. Binært søketre (kap. 10 i læreboka) 4. Binær heap (kap. 11 i læreboka)

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 Delkapittel 3.1 Grensesnittet Liste Side 1 av 11 Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 3.1 En beholder 3.1.1 En beholder En pappeske er en beholder En beholder er noe vi kan legge ting

Detaljer

TOD063 Datastrukturer og algoritmer

TOD063 Datastrukturer og algoritmer TOD063 Datastrukturer og algoritmer Øving : 4 Utlevert : Veke 9 Innleveringsfrist : 19. mars 2010 Klasse : 1 Data og 1 Informasjonsteknologi Ta gjerne 1 og 2 først! Gruppearbeid: 2 personar pr. gruppe

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 12

PG4200 Algoritmer og datastrukturer Forelesning 12 PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs BOKMÅL Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Prøveeksamen tirsdag 23. november 2010 Tid for eksamen:

Detaljer

Generelt om operativsystemer

Generelt om operativsystemer Generelt om operativsystemer Operativsystemet: Hva og hvorfor Styring av prosessorer (CPU), elektronikk, nettverk og andre ressurser i en datamaskin er komplisert, detaljert og vanskelig. Maskinvare og

Detaljer

Inf1010 oppgavesamling

Inf1010 oppgavesamling Table of ontents Inf1010 oppgavesamling.. 1 Subklasser... 1 Grensesnitt.. 2 Rekursjon... 3 Datastrukturer... 3 GUI. 4 Sortering... 6 Tråder... 6 Inf1010 oppgavesamling Subklasser Klassehirarki for dyr

Detaljer

! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er:

! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er: Dagens temaer! Ulike kategorier input/output! Programmert! Avbruddstyrt! med polling.! Direct Memory Access (DMA)! Asynkrone vs synkrone busser! Med! Fordi! -enheter menes de enheter og mekanismer som

Detaljer

Læringsmål for forelesningen

Læringsmål for forelesningen Læringsmål for forelesningen Objektorientering Bruk av grensesnitt og implementasjoner i Collection-klasser Java-prog, kap. 14-16 i Big Java Og side 990-997 i Appendix D Collection-rammeverket og iterasjon

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

EKSAMEN I FAG TDT4100 Objekt-orientert programmering. Fredag 3. juni 2005 KL. 09.00 13.00

EKSAMEN I FAG TDT4100 Objekt-orientert programmering. Fredag 3. juni 2005 KL. 09.00 13.00 Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I FAG

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø rodsjo@stud.ntnu.no Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,

Detaljer

INF1010 - Seminaroppgaver til uke 3

INF1010 - Seminaroppgaver til uke 3 INF1010 - Seminaroppgaver til uke 3 Oppgave 1 I denne oppgaven skal vi lage et klassehiearki av drikker. Alle klassene i hiearkiet skal implementere følgende grensesnitt p u b l i c i n t e r f a c e Drikkbar

Detaljer

Datastrukturer og Algoritmer

Datastrukturer og Algoritmer TOD 063 Datastrukturer og Algoritmer Forside fra lærebokens Nord Amerikanske utgave Tar for seg praktisk problemstilling: Hvordan håndtere containere som blir lastet fra containerskip i en travel havn

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være

Detaljer

TOD063 Datastrukturer og algoritmer

TOD063 Datastrukturer og algoritmer TOD063 Datastrukturer og algoritmer Øving : 3 Utlevert : Uke 7 Innleveringsfrist : 26. februar 2010 Klasse : 1 Data og 1 Informasjonsteknologi Gruppearbeid: 2-3 personer pr. gruppe. Oppgave 1 Vi skal lage

Detaljer

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert. Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

Funksjonalitet og oppbygning av et OS (og litt mer om Linux)

Funksjonalitet og oppbygning av et OS (og litt mer om Linux) Funksjonalitet og oppbygning av et OS (og litt mer om Linux) Hovedfunksjoner i et OS OS skal sørge for: Styring av maskinvaren Deling av maskinens ressurser Abstraksjon vekk fra detaljer om maskinvaren

Detaljer

Tildeling av minne til prosesser

Tildeling av minne til prosesser Tildeling av minne til prosesser Tildeling av minne til prosesser OS må hele tiden holde rede på hvilke deler av RAM som er ledig/opptatt Når (asynkrone) prosesser/run-time system krever tildeling av en

Detaljer

AlgDat 12. Forelesning 2. Gunnar Misund

AlgDat 12. Forelesning 2. Gunnar Misund AlgDat 12 Forelesning 2 Forrige forelesning Følg med på hiof.no/algdat, ikke minst beskjedsida! Algdat: Fundamentalt, klassisk, morsomt,...krevende :) Pensum: Forelesningene, oppgavene (pluss deler av

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003 INF1000 HashMap Marit Nybakken marnybak@ifi.uio.no 2. november 2003 Dette dokumentet skal tas med en klype salt og forfatteren sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Ordliste. Obligatorisk oppgave 1 - Inf 1020

Ordliste. Obligatorisk oppgave 1 - Inf 1020 Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.

Detaljer

Dagens forelesning. Java 13. Rollefordeling (variant 1) Rollefordeling (variant 2) Design av større programmer : fordeling av roller.

Dagens forelesning. Java 13. Rollefordeling (variant 1) Rollefordeling (variant 2) Design av større programmer : fordeling av roller. Dagens forelesning Java 13 Design av større programmer : fordeling av roller INF 101-13. mars 2003 Flere eksempler på bruk av objekter MVC-prinsippet MVC-prinsippet Flere eksempler på programmer med objekter

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000 Drosjesentralen I-120: Obligatorisk oppgave 2, 2000 Frist Mandag 20. November 2000 kl.10:00, i skuff merket I120 på UA. Krav Se seksjon 4 for kravene til innlevering. Merk krav om generisk løsning for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 6. juni 2006 Tid for eksamen: 1430 1730 Oppgavesettet er på 6 sider. Vedlegg: INF1010 Objektorientert programmering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Fredag 4. desember 2015 Tid for eksamen: 14.30 (4 timer)

Detaljer

Flerveis søketrær og B-trær

Flerveis søketrær og B-trær Flerveis søketrær og B-trær Flerveis søketre * Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 subtrær/barn og 1 verdi Barna ligger sortert på verdi i forhold til den ene verdien

Detaljer

Backtracking som løsningsmetode

Backtracking som løsningsmetode Backtracking Backtracking som løsningsmetode Backtracking brukes til å løse problemer der løsningene kan beskrives som en sekvens med steg eller valg Kan enten finne én løsning eller alle løsninger Bygger

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

En algoritme for permutasjonsgenerering

En algoritme for permutasjonsgenerering Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere

Detaljer

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene

Detaljer

Antall sider (inkl. forsiden): 7. Alle trykte og håndskrevne

Antall sider (inkl. forsiden): 7. Alle trykte og håndskrevne Side 1 av 7 Bokmålstekst Emne: PROGRAMMERING (nytt pensum, 10 studiep.) Grupper: laa, lab, lac, lia, lib, lic Eksamensoppgaven best~r av: Tillatte hjelpemidler: Antall sider (inkl. forsiden): 7 Alle trykte

Detaljer

OPPGAVE 5b og 8b Java Kode

OPPGAVE 5b og 8b Java Kode OPPGAVE 5b og 8b Java Kode public class Kant boolean behandlereturavbil() BehandleReturAvBil behandler = new BehandleReturAvBil(this); String regnr; int kmstand, tanknivaa; boolean erskadet; // 1: Få verdiene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Kandidatnr Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG Eksamen i: PRØVEEKSAMEN INF1000 Eksamensdag: Prøveeksamen 22.11.2011 Tid for eksamen: 12:15-16:15 Oppgavesettet

Detaljer

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012 INF1000 - Uke 10 Ukesoppgaver 10 24. oktober 2012 Vanlige ukesoppgaver De første 4 oppgavene (Oppgave 1-4) handler om HashMap og bør absolutt gjøres før du starter på Oblig 4. Deretter er det en del repetisjonsoppgaver

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG EKSAMENSOPPGAVE Fag: Lærer: IAD20003 Algoritmer og datastrukturer André Hauge Grupper: D2A Dato: 21.12.2004 Tid: 0900-1300 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt. Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Versjon: 13.des 2011 Faglig

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Oblig 4Hybelhus litt mer tips enn i oppgaven

Oblig 4Hybelhus litt mer tips enn i oppgaven Oblig 4Hybelhus litt mer tips enn i oppgaven lørdag 19. okt 2013 Arne Maus Obligatorisk oppgave 4 Gulbrand Grås husleiesystem I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer,

Detaljer

Generelt om permanent lagring og filsystemer

Generelt om permanent lagring og filsystemer Generelt om permanent lagring og filsystemer Filsystem Den delen av OS som kontrollerer hvordan data lagres på og hentes frem fra permanente media Data deles opp i individuelle deler, filer, som får hvert

Detaljer

Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006

Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006 Side 1 av 11, prosesser, tråder, synkronisering, V. Holmstedt, HiO 2006 Prosesser og tråder Datamaskinen lager prosesser. En prosess organiserer arbeidet i et program ved å administrere tråder. Det er

Detaljer

Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå

Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå Vedlegg A.1 Filbehandling på bit-nivå Side 1 av 9 Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå A.1 Filbehandling på bit-nivå A.1.1 Sammendrag Klassen BitInputStream gjør det mulig å lese

Detaljer

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java:

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java: PG4200 Algoritmer og datastrukturer Lab 1 8.januar 2014 Innledning I dag skal vi undersøke en rekke velkjente databeholdere i Java: java.util.arraylist java.util.linkedlist java.util.hashset java.util.treeset

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Argumenter fra kommandolinjen

Argumenter fra kommandolinjen Argumenter fra kommandolinjen Denne veiledningen er laget for å vise hvordan man kan overføre argumenter fra kommandolinjen til et program. Hvordan transportere data fra en kommandolinje slik at dataene

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Real-time Operativsystem

Real-time Operativsystem Real-time Operativsystem c Ketil Danielsen November 8, 2002 Oversikt hvilke behov har vi (kap. 1-2) hvordan organiseres arbeidet (kap. 3) CPU scheduling (kap. 6) Minnescheduling (kap. 10) Scheduling av

Detaljer

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12.

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12. G høgskolen i oslo Emne: Algoritmer og datastrukturer Emnekode: 80131A Faglig veileder: UlfUttersrud Gruppe(r) : Dato: 09.12.2004 Eksamenstid: 9-14 Eksamensoppgaven består av: Tillatte hjelpemidler Antall

Detaljer

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det?

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det? Obligatorisk oppgave 3 Gulbrand Grås husleiesystem Oblig 3hus litt mer tips enn i oppgaven I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer, nummerert fra -3. I hver etasje

Detaljer

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004

Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Tips til arbeidet med obligatorisk oppgave 2 i MAT-INF 1100 høsten 2004 Knut Mørken 3. november 2004 Etter samtale med noen av dere de siste dagene skjønner jeg at noen strever med del 2 av oblig2. Problemene

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 17. august 2012 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

OO-eksempel. Modellen ser slik ut: Studenter + antstudenter : int = 0

OO-eksempel. Modellen ser slik ut: Studenter + antstudenter : int = 0 OO-eksempel I eksemplet er det deklarert tre klasser: 1) Fag (skal instansieres ett objekt for hvert fag) 2) Student (skal instansieres ett objekt for hver student) 3) Studenter (abstrakt klasse skal ikke

Detaljer

INF1000 Prøveeksamen Oppgave 7 og 9

INF1000 Prøveeksamen Oppgave 7 og 9 INF1000 Prøveeksamen Oppgave 7 og 9 Høst 2015 Siri Moe Jensen 7a) Skriv en klasse Gave med to variabler som forteller hva som er i gaven, og hvor mye den har kostet. Klassen skal ha en konstruktør med

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00 PG 4200 Algoritmer og datastrukturer Innlevering 1 Frist: 2.februar kl 21.00 Utdelt materiale: Alle filer som nevnes er inneholdt i zip-filen innlevering1.zip. Innlevering: Besvarelsen skal være i form

Detaljer

Algoritmer og datastrukturer Assignment 11 Side 1 av 5

Algoritmer og datastrukturer Assignment 11 Side 1 av 5 Assignment 11 Side 1 av 5 Oppgave 1 Utregning av ASCII summer, og hashfunksjon: Hashfunksjon: A(s) % n Nøkkel ASCII SUM (ASCII SUM) % 8 ANNE 290 2 PER 231 7 NINA 294 6 ANNI 294 6 ALI 214 6 KAREN 369 1

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Kandidatnr Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: 14.00 18.00

Detaljer

Definisjon av prosess

Definisjon av prosess Prosesser og tråder Definisjon av prosess Enkel definisjon En prosess er et program som kjører Mer presis definisjon En prosess er en samling av ressurser som er nødvendige for å utføre en oppgave beskrevet

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG Eksamensdato: 26. mai 25 Varighet: 3 timer ( 9: 12: ) Avdeling for informatikk og e-læring Fagnummer: Fagnavn: LO249D Operativsystemer med Linux Klasser: BADR 1. ING FU Studiepoeng:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 6. desember 2012 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Kapittel 14, Hashing Tema Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Hashing Hashing er en effektiv metode ved lagring og gjenfinning (søking) av informasjon Søkemetoder

Detaljer

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 Delkapittel 5.1 Binære trær side 1 av 71 Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 5.1 Binære trær 5.1.1 Binære trærs egenskaper Binære trær (eng: binary tree), og trær generelt, er en

Detaljer

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets)

Detaljer

Å lese tall fra en fil, klassen Scanner

Å lese tall fra en fil, klassen Scanner Å lese tall fra en fil, klassen Scanner 1. Et Scanner-objekt kan knyttes til et strømobjekt eller til en streng. 2. Kan skanne teksten etter data av ulike typer. 3. Kan kun skanne framover i teksten. Vis

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

TDT4100 Objektorientert programmering

TDT4100 Objektorientert programmering Eksamensoppgave i TDT4100 Objektorientert programmering Tirsdag 2. juni 2009, kl. 09:00-13:00 Oppgaven er utarbeidet av faglærer Hallvard Trætteberg og kvalitetssikrer Trond Aalberg. Kontaktperson under

Detaljer

Simulering på regneark

Simulering på regneark Anne Berit Fuglestad Simulering på regneark Trille terninger eller kaste mynter er eksempler som går igjen i sannsynlighetsregningen. Ofte kunne vi trenge flere forsøk for å se en klar sammenheng og få

Detaljer

. Ved sensur vl1 ahe bokstaverte deloppgaver (a, b, c,...) telle like mye.

. Ved sensur vl1 ahe bokstaverte deloppgaver (a, b, c,...) telle like mye. ~KSAMENSOPPGA VE Les gjennom hele oppgavesettet før du begynner A besvare deloppgavene.. Hold deg til de identifikator-navnene som er brukt i oppgaveteksten, dog med unntak av metodenes parametemavn som

Detaljer