Flerveis søketrær og B-trær

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Flerveis søketrær og B-trær"

Transkript

1 Flerveis søketrær og B-trær

2 Flerveis (multi-way, n-ært) søketre Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 barn og 1 nøkkelverdi. Barna ligger sortert på verdi i forhold til den ene nøkkelverdien. Flerveis søketre (av orden * m): Hver node har maksimalt m barn og m 1 sorterte nøkkelverdier. Barna ligger sortert på verdi «innimellom» de sortete nøkkelverdiene. Brukes oftest når vi ikke får plass til alle data i primærhukommelsen/ram: Må lese fra/skrive til (aksessere) sekundærhukommelsen (disk) Diskaksess er veldig mye langsommere RAM-aksess Filsystemer i operativsystemer og databaser bruker flerveis søketrær som er optimaliserte for diskaksess *: «orden» er ikke entydig definert i litteraturen

3 Definisjon: Flerveis søketre av orden m Alle noder i treet har maksimalt m subtrær/barn I en node med k subtrær, S 1, S 2,..., S k, er det slik at: Noden inneholder k 1 nøkkelverdier, v 1, v 2,..., v k 1 som er sorterte: v 1 v 2... v k 1 Verdiene i subtrærne, v(s i ), ligger sortert slik at v(s i ) < v i v(s i + 1 ), i = 1, 2,..., k 2 v k - 1 v(s k ) Merk at subtrærne til en node kan være tomme

4 Et flerveis søketre av orden m = 5

5 Et flerveis søketre av orden m = 4

6 Flerveis søketre av orden m = 5

7 Innsetting og søking i flerveis søketre Samme prinsipp som for binære søketrær: Følger en vei fra roten og nedover i treet I hver node sjekker vi om verdien vi søker/skal sette inn er lik, mindre eller større enn de sorterte nøkkelverdiene i noden Går videre fra en node til det subtreet der verdien skal ligge, hvis den finnes i treet Hvis treet har totalt n verdier og er balansert, er søking og innsetting meget raskt O(log n) Hvis treet blir svært ubalansert, og/eller nodene i liten grad er fylt opp med verdier, blir søking og innsetting langsomt O(n)

8 B-tre 1 Et flerveis søketre som alltid er perfekt balansert og minst halvveis fylt opp med verdier (Bayer/McCreight,1972) Garanterer O(log n) oppførsel for søking, innsetting og fjerning Antall verdier i hver node er gjerne svært stort (tilsvarende en diskblokk/page) B-trær (og varianter som B+-trær og B*-trær) brukes i de fleste filsystemer (Windows, Mac, Unix/Linux) og i store databasesystemer 1: B?

9 Definisjon av B-tre Et B-tre av orden m er et flerveis søketre der: Roten er enten et blad eller har minst to subtrær Alle noder (unntatt roten) inneholder minst m/2 verdier og maksimalt m - 1 verdier En node med k verdier (m/2 k m - 1) har enten 0 barn (en bladnode) eller k + 1 barn (indre node) Alle bladnoder ligger på samme nivå i treet

10 B-tre av orden m = 5

11 B-tre av orden m = 5

12

13 Effektivitet, B-tre av orden m = 201 Antall noder og verdier i hvert nivå i treet

14 Søking i B-trær «An algorithm for finding a key in B-tree is simple. Start at the root and determine which pointer to follow based on a comparison between the search value and key fields in the root node. Follow the appropriate pointer to a child node. Examine the key fields in the child node and continue to follow the appropriate pointers until the search value is found or a leaf node is reached that doesn't contain the desired search value» Er garantert O(log n)

15 Innsetting av ny verdi i B-tre Kravet om at alle blader skal være på samme nivå gir en karakteristisk oppførsel for B-trær: B-trær vokser ikke «nedover» ved at de får nye blader, som for binære søketrær Istedet vokser de «oppover» ved at de får ny rot Nye verdier settes inn i eksisterende bladnoder Når en bladnode er full deles den i to, og en verdi sendes «oppover» i treet YouTube: Demo av innsetting i B-tre av orden m = 3, med maksimalt 2 verdier og 3 barn per node Innsetting er alltid O(log n)

16 Algoritme for innsetting i B-tre Finn bladnoden der ny verdi skal settes inn Hvis bladnoden ikke er full: Sett inn ny verdi sortert i bladnoden Ellers, hvis bladnoden er full av verdier: Del bladnoden i to noder, med ~halvparten av verdiene i hver node Send midterste verdi et nivå oppover for innsetting i foreldernoden Hvis foreldernoden også blir full, fortsettes sending av verdi(er) oppover i treet på samme måte

17 Eksempel: Innsetting i B-tre av orden m = 5

18 Etter innsetting av 395

19 Etter innsetting av 382

20 Etter innsetting av 490

21 Fjerning av verdi i B-tre Kan resultere i noder med for få verdier (< m/2) Vil lage et «hull» i strukturen hvis verdien som fjernes er i en indre node Algoritmen for fjerning «reparerer» treet med: Flytting av verdier mellom noder (aka rotasjoner) Sammenslåinger (merging) av to noder til én ny node Fjerning av verdier er vist i læreboka for B-trær med orden m = 3 (se avsnitt 12.2) Fjerning i B-trær er relativt «fiklete», med flere spesialtilfeller, men er alltid O(log n)

22 Implementasjon/lagring av B-trær En node i et B-tre av orden m kan representeres med to arrayer av lengde hhv. m og m 1: En array med referanser til barna En sortert array med nøkkelverdier B-trær brukes mest når data må flyttes mellom primær og sekundær hukommelse: Pekere til barn (adresser i RAM) vil ikke virke Vanlig i stedet å representere hele treet som én lang array, der referansene til barna er arrayindekser og det er satt av like stor plass til alle noder virker både i RAM og på disk

23 B-trær og sekundærhukommelse Hvis dataene våre er for store til å få plass i RAM, må de flyttes frem og tilbake mellom RAM/disk (paging) Lesing og skriving til/fra disk (flytting av lese-/ skrivehode, rotasjon av disk, dataoverføring) er ofte flere tusen ganger tregere enn å lese/skrive RAM Disker leses og skrives i «blokker», typisk 4K bytes om gangen (Linux) B-treet kan minimalisere antall diskaksesser: Størrelsen på en node «tunes» til blokkstørrelsen, slik at alle dataene i noden håndteres med én read/write operasjon

24 B*-trær Utnytter plassen på hvert nivå i treet bedre B*-treet har alle egenskapene til et B-tre, men: I et B-tre av orden m har alle noder minst m/2 verdier I et B*-tre av orden m har alle noder minst 2 m/3 verdier Algoritmene for innsetting og fjerning er forskjellige: I stedet for å dele en node i to med en gang den er full, flyttes verdier over til søskennoder Når to søskennoder er fulle av verdier, deles de i tre nye noder

25 B+-trær Løser et problem forbundet med vanlige B-trær: Traversering av et B-tre (sekvensiell/sortert gjennomgang av dataene) er vanskelig å gjøre effektivt når vi må skyfle data til/fra sekundærhukommelsen Hver node må oppsøkes mange ganger i løpet av en traversering av B-treet B+-tre: Alle nøkkelverdier i indre noder lagres en gang til som sin egen inorder etterfølger i en bladnode Alle bladnodene lenkes sammen med «pekere» for å kunne gå gjennom alle dataene sekvensielt/sortert med minimalt antall diskaksesser Lagrer oftest bare nøkkelverdier i treet, sammen med et ekstra lag med noder på nederste nivå som inneholder pekere/ referanser til selve dataobjektene

26 Eksempel: B+-tre

27 Eksempel: B+-tre

Flerveis søketrær og B-trær

Flerveis søketrær og B-trær Flerveis søketrær og B-trær Flerveis søketre * Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 subtrær/barn og 1 verdi Barna ligger sortert på verdi i forhold til den ene verdien

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Algoritmer og datastrukturer Assignment 11 Side 1 av 5

Algoritmer og datastrukturer Assignment 11 Side 1 av 5 Assignment 11 Side 1 av 5 Oppgave 1 Utregning av ASCII summer, og hashfunksjon: Hashfunksjon: A(s) % n Nøkkel ASCII SUM (ASCII SUM) % 8 ANNE 290 2 PER 231 7 NINA 294 6 ANNI 294 6 ALI 214 6 KAREN 369 1

Detaljer

Generelt om permanent lagring og filsystemer

Generelt om permanent lagring og filsystemer Generelt om permanent lagring og filsystemer Filsystem Den delen av OS som kontrollerer hvordan data lagres på og hentes frem fra permanente media Data deles opp i individuelle deler, filer, som får hvert

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 Delkapittel 9.4 Splay-trær Side 1 av 7 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 9.4 Splay-trær 9.4.1 Splay-rotasjoner Et splay-tre er et sortert binætre der treet restruktureres på en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

UNIVERSITETET. Indeksering. Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Hashliknende strukturer.

UNIVERSITETET. Indeksering. Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Hashliknende strukturer. UNIVERSITETET IOSLO Indeksering Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Treliknende strukturer Hashliknende strukturer Bitmapindekser Institutt for Informatikk INF30 22.2.2011

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Filer i Linux og Bourne-again shell

Filer i Linux og Bourne-again shell Filer i Linux og Bourne-again shell Filbegrepet En fil * er en grunnleggende lagringsenhet i et OS Brukes for alle data som: Lagres utenfor RAM (primærminnet) På permanente media (sekundærminne) Definisjoner

Detaljer

Ordliste. Obligatorisk oppgave 1 - Inf 1020

Ordliste. Obligatorisk oppgave 1 - Inf 1020 Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Innhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1

Innhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1 Innhold Virtuelt minne Paging i mer detalj Felles rammeverk for hukommelseshierarki 02.04.200 Hukommelseshierarki-2 Virtuelt minne Lagringskapasiteten i RAM må deles mellom flere ulike prosesser: ûoperativsystemet

Detaljer

Tildeling av minne til prosesser

Tildeling av minne til prosesser Tildeling av minne til prosesser Tildeling av minne til en prosess Når en ny prosess opprettes har den et krav til hvor mye minne som skal reserveres for prosessen Memory Management System (MMS) i OS må

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Hukommelseshierarki. 16/3 cache 7.1 7.2. 23/3 virtuell hukommelse 7.3 7.5. in 147, våren 1999 hukommelseshierarki 1

Hukommelseshierarki. 16/3 cache 7.1 7.2. 23/3 virtuell hukommelse 7.3 7.5. in 147, våren 1999 hukommelseshierarki 1 Hukommelseshierarki når tema pensum 16/3 cache 7.1 7.2 23/3 virtuell hukommelse 7.3 7.5 in 147, våren 1999 hukommelseshierarki 1 Tema for denne forelesningen: en enkel hukommelsesmodell hukommelseshierarki

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Dagens tema. Flere teknikker for å øke hastigheten

Dagens tema. Flere teknikker for å øke hastigheten Dagens tema Flere teknikker for å øke hastigheten Cache-hukommelse del 1 (fra kapittel 6.5 i Computer Organisation and Architecture ) Hvorfor cache Grunnleggende virkemåte Direkte-avbildet cache Cache-arkitekturer

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Algoritmer og datastrukturer

Algoritmer og datastrukturer Algoritmer og datastrukturer Skrevet av: Are Nybakk Avgangsstudent Bachelor Ingeniør Datateknikk v/nith 2007-2008 Innhold Innledning...4 1 Matematikkgrunnlag... 1.1 Rekker og summer... 1.2 Funksjoner og

Detaljer

Tildeling av minne til prosesser

Tildeling av minne til prosesser Tildeling av minne til prosesser Tildeling av minne til prosesser OS må hele tiden holde rede på hvilke deler av RAM som er ledig/opptatt Når (asynkrone) prosesser/run-time system krever tildeling av en

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Eksamen i ALGORITMER OG DATASTRUKTURER Høgskolen i Østfold Avdeling for Informatikk og Automatisering Onsdag 11.desember, 1996 Kl. 9.00-15.00 Tillatte hjelpemidler: Alle trykte og skrevne. Kalkulator.

Detaljer

En harddisk består av et lite antall plater av et magnetisk materiale.

En harddisk består av et lite antall plater av et magnetisk materiale. , Master En består av et lite antall plater av et magnetisk materiale. Overflaten av en plate på innsiden av en. Lesehodet flyttet posisjon mens bildet ble tatt og kan derfor sees i to posisjoner. , Master

Detaljer

TDT4225 Lagring og behandling av store datamengder

TDT4225 Lagring og behandling av store datamengder Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen. Fredag 17. august 2012, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen. Kontaktperson under

Detaljer

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12.

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12. G høgskolen i oslo Emne: Algoritmer og datastrukturer Emnekode: 80131A Faglig veileder: UlfUttersrud Gruppe(r) : Dato: 09.12.2004 Eksamenstid: 9-14 Eksamensoppgaven består av: Tillatte hjelpemidler Antall

Detaljer

Algoritmer og teknikker for sjakkprogrammer - teori og praksis

Algoritmer og teknikker for sjakkprogrammer - teori og praksis A Microsoft Subsidiary Algoritmer og teknikker for sjakkprogrammer - teori og praksis Rune Djurhuus, stormester i sjakk 22. oktober 2008 Innhold Sjakkspillets kompleksitet Historien til computersjakk Søketre

Detaljer

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

Generelt om operativsystemer

Generelt om operativsystemer Generelt om operativsystemer Operativsystemet: Hva og hvorfor Styring av prosessorer (CPU), elektronikk, nettverk og andre ressurser i en datamaskin er komplisert, detaljert og vanskelig. Maskinvare og

Detaljer

Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen

Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen Faglig kontakt under eksamen: Kjell Bratbergsengen Tlf.: 906

Detaljer

Fakultet for informasjonsteknologi, Kontinuasjonsløsning på SIF8037 Distribuerte systemer og ytelsesvurdering (Distribuerte systemer kun)

Fakultet for informasjonsteknologi, Kontinuasjonsløsning på SIF8037 Distribuerte systemer og ytelsesvurdering (Distribuerte systemer kun) Side 1 av 5 NTNU Norges teknisk naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap Kontinuasjonsløsning

Detaljer

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no

Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø rodsjo@stud.ntnu.no Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner,

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

Løsningsskisse til Eksamensoppgave i TDT4145 Datamodellering og databasesystemer

Løsningsskisse til Eksamensoppgave i TDT4145 Datamodellering og databasesystemer Institutt for datateknikk og informasjonsvitenskap Løsningsskisse til Eksamensoppgave i TDT4145 Datamodellering og databasesystemer Eksamensdato: 23. mai 2013 Eksamenstid (fra-til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 12

PG4200 Algoritmer og datastrukturer Forelesning 12 PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid

Detaljer

OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik

OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik Forord Dette kompendie/hefte innholder oppgaveteksten for ulike ukeoppgaver i emnet Algoritmiske metoder ved Høgskolen i Gjøvik.

Detaljer

Diagnosekart for oblig 2, INF3/4130 h07

Diagnosekart for oblig 2, INF3/4130 h07 Diagnosekart for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 1. november 2007 Dette er et dokument jeg har skrivd for å gjøre det enklere å gi tilbakemelding på obligene, siden så mange ting går igjen

Detaljer

Funksjonalitet og oppbygning av et OS (og litt mer om Linux)

Funksjonalitet og oppbygning av et OS (og litt mer om Linux) Funksjonalitet og oppbygning av et OS (og litt mer om Linux) Hovedfunksjoner i et OS OS skal sørge for: Styring av maskinvaren Deling av maskinens ressurser Abstraksjon vekk fra detaljer om maskinvaren

Detaljer

Datamodellering og databaser http://www.aitel.hist.no/fag/_dmdb/ SQL, del 2

Datamodellering og databaser http://www.aitel.hist.no/fag/_dmdb/ SQL, del 2 http://www.aitel.hist.no/fag/_dmdb/ SQL, del 2 Eksempelbase side 2 Virtuelle tabeller (views) side 3-6 NULL-verdier side 7-14 UPDATE-setningen side 15-16 INSERT-setningen side 17 DELETE-setningen side

Detaljer

09.12.2003 9-14. ~ta11 oppgaver: 4. Nle skriftlige hjelpemidler-både trykte og håndskrevne, er tillatt

09.12.2003 9-14. ~ta11 oppgaver: 4. Nle skriftlige hjelpemidler-både trykte og håndskrevne, er tillatt I Kontrollert I høgskolen i oslo Emne Emnekode: Faglig veileder: Algoritmer og datastrukturer 80 131A UlUttersrud ppe(r): Dato: Eksamenstid:- 09.12.2003 9-14 Eksamensoppgaven består av: ta11 sider (inkl

Detaljer

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt. Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Versjon: 13.des 2011 Faglig

Detaljer

Å lese tall fra en fil, klassen Scanner

Å lese tall fra en fil, klassen Scanner Å lese tall fra en fil, klassen Scanner 1. Et Scanner-objekt kan knyttes til et strømobjekt eller til en streng. 2. Kan skanne teksten etter data av ulike typer. 3. Kan kun skanne framover i teksten. Vis

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

TDT4225 Lagring og behandling av store datamengder

TDT4225 Lagring og behandling av store datamengder Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Lørdag 18. mai 2013, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen og kvalitetssikrer Svein-Olaf Hvasshovd Kontaktperson

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.4

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.4 Delkapittel 5.4 Huffmantrær Side 1 av 50 Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.4 5.4 Huffmantrær 5.4.1 Datakomprimering D. Huffman Et Huffmantre er et fullt binærtre med spesielle egenskaper

Detaljer

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003 INF1000 HashMap Marit Nybakken marnybak@ifi.uio.no 2. november 2003 Dette dokumentet skal tas med en klype salt og forfatteren sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Håndtering av filer og kataloger

Håndtering av filer og kataloger Håndtering av filer og kataloger Fil- og katalognavn i Linux Filsystem-kommandoene bruker navn til å identifisere filer og kataloger Filnavn kan inneholde alle tegn untatt / og NULL-tegnet Lengde på filnavn

Detaljer

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 Delkapittel 5.1 Binære trær side 1 av 71 Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 5.1 Binære trær 5.1.1 Binære trærs egenskaper Binære trær (eng: binary tree), og trær generelt, er en

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Eksamen DAT 103. Oppgave 2. Kandidatnr.: 145 1) B 2) B 3) A 4) A 5) D 6) C 7) B 8) A 9) A 10) D

Eksamen DAT 103. Oppgave 2. Kandidatnr.: 145 1) B 2) B 3) A 4) A 5) D 6) C 7) B 8) A 9) A 10) D Eksamen DAT 103 Kandidatnr.: 145 Oppgave 1 1) B 2) B 3) A 4) A 5) D 6) C 7) B 8) A 9) A 10) D Oppgave 2 a) Et OS er den administrerende softwaren i en datamaskin. Den bygger på prinsippene om filhåndtering,

Detaljer

1. Relasjonsmodellen. 1.1. Kommentarer til læreboka

1. Relasjonsmodellen. 1.1. Kommentarer til læreboka Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Relasjonsmodellen Tore Mallaug 2.9.2013 Lærestoffet er utviklet for faget Databaser 1. Relasjonsmodellen Resymé: Denne leksjonen gir en kort

Detaljer

Datastrukturer og Algoritmer

Datastrukturer og Algoritmer TOD 063 Datastrukturer og Algoritmer Forside fra lærebokens Nord Amerikanske utgave Tar for seg praktisk problemstilling: Hvordan håndtere containere som blir lastet fra containerskip i en travel havn

Detaljer

AlgDat 12. Forelesning 2. Gunnar Misund

AlgDat 12. Forelesning 2. Gunnar Misund AlgDat 12 Forelesning 2 Forrige forelesning Følg med på hiof.no/algdat, ikke minst beskjedsida! Algdat: Fundamentalt, klassisk, morsomt,...krevende :) Pensum: Forelesningene, oppgavene (pluss deler av

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

Løsningsforslag Eksamen i TDT4190 Distribuerte systemer

Løsningsforslag Eksamen i TDT4190 Distribuerte systemer Institutt for datateknikk og informasjonsvitenskap Løsningsforslag Eksamen i TDT4190 Distribuerte systemer Faglig kontakt under eksamen: Norvald Ryeng Tlf.: 97 17 49 80 Eksamensdato: Fredag 6. juni 2014

Detaljer

INF2270. Minnehierarki

INF2270. Minnehierarki INF2270 Minnehierarki Hovedpunkter Bakgrunn Kort repetisjon Motivasjon Teknikker for hastighetsøkning Multiprosessor Økt klokkehastighet Raskere disker Økt hurtigminne Bruksområder Lagringskapasitet Aksesstider

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG Eksamensdato: 26. mai 25 Varighet: 3 timer ( 9: 12: ) Avdeling for informatikk og e-læring Fagnummer: Fagnavn: LO249D Operativsystemer med Linux Klasser: BADR 1. ING FU Studiepoeng:

Detaljer

Oblig 4Hybelhus litt mer tips enn i oppgaven

Oblig 4Hybelhus litt mer tips enn i oppgaven Oblig 4Hybelhus litt mer tips enn i oppgaven lørdag 19. okt 2013 Arne Maus Obligatorisk oppgave 4 Gulbrand Grås husleiesystem I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer,

Detaljer

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte 1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 Auka yting 3 Auka yting CPU 4 Parallellitet Essensielt for å øke ytelse To typer: 1) Instruksjonsnivåparallellitet Fleire instruksjonar utføres samtidig

Detaljer

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.

D: Ingen trykte eller håndskrevne hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt. Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til EKSAMENSOPPGAVE I FAG TDT4186 OPERATIVSYSTEMER Versjon: 17.jan 2013 Faglig

Detaljer

Håndtering av minne i et OS

Håndtering av minne i et OS Håndtering av minne i et OS Hva er det som skal håndteres? Minnehåndtering (memory management) utføres av de delene av systemet som har ansvar for å håndtere maskinens primærminne Primærminnet (aka hovedminne,

Detaljer

Dagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen

Dagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Dagens temaer Fra kapittel 4 i Computer Organisation and Architecture Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Register Transfer Language (RTL) Instruksjonseksekvering Pipelining

Detaljer

PRODUKTBESKRIVELSE TJENESTE. NRDB Nummerportabilitet

PRODUKTBESKRIVELSE TJENESTE. NRDB Nummerportabilitet PRODUKTBESKRIVELSE TJENESTE NRDB Nummerportabilitet Versjon 2.0 11/10/04 Nasjonal referansedatabase AS 15/10/04 Page 1 of 8 Innholdsfortegnelse 1 INNLEDNING...3 1.1 NUMMERPORTABILITET...3 1.2 VIDERESALG

Detaljer

Innhold. Oversikt over hukommelseshierakiet. Ulike typer minne. Innledning til cache. Konstruksjon av cache. 26.03.2001 Hukommelseshierarki-1 1

Innhold. Oversikt over hukommelseshierakiet. Ulike typer minne. Innledning til cache. Konstruksjon av cache. 26.03.2001 Hukommelseshierarki-1 1 Innhold Oversikt over hukommelseshierakiet Ulike typer minne Innledning til cache Konstruksjon av cache 26.03.2001 Hukommelseshierarki-1 1 Hukommelseshierarki Ønsker ubegrenset mye minne som er like raskt

Detaljer

Andre sett obligatoriske oppgaver i INF3100 V2013

Andre sett obligatoriske oppgaver i INF3100 V2013 Andre sett obligatoriske oppgaver i INF3100 V2013 Oppgavesettet skal i utgangspunktet løses av grupper på to og to studenter som leverer felles besvarelse. Vi godkjenner også individuelle besvarelser,

Detaljer

PRODUKTBESKRIVELSE TJENESTE. NRDB Videresalg Telefoni

PRODUKTBESKRIVELSE TJENESTE. NRDB Videresalg Telefoni PRODUKTBESKRIVELSE TJENESTE NRDB Videresalg Telefoni Versjon 2.0 11/10/04 Nasjonal referansedatabase AS 15/10/04 Page 1 of 8 Innholdsfortegnelse 1 INNLEDNING...3 1.1 NUMMERPORTABILITET...3 1.2 VIDERESALG

Detaljer

Opprydding og Vedlikehold av Windows

Opprydding og Vedlikehold av Windows Opprydding og Vedlikehold av Windows Innledning Hvis du synes at PC en går tregt kan det være på sin plass med en diskopprydding. Windows selv og de fleste programmer som arbeider under Windows benytter

Detaljer

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det?

1. Finn klassene (hvilke objekter er det i problemet) 1. Dataene som beskriver problemet (hvilke objekter har vi og hvor mange klasser er det? Obligatorisk oppgave 3 Gulbrand Grås husleiesystem Oblig 3hus litt mer tips enn i oppgaven I denne oppgaven skal vi se på hans studenthus Utsyn. Utsyn består av 3 etasjer, nummerert fra -3. I hver etasje

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Bruke DVD-RAM-plater

Bruke DVD-RAM-plater Denne håndboken inneholder et minimum av informasjon som er nødvendig for å bruke DVD-RAM-plater med DVD MULTI Drive under Windows XP. Windows, Windows NT og MS-DOS er registrerte varemerker som eies av

Detaljer

Oppgave: FIL File Paths

Oppgave: FIL File Paths Oppgave: FIL File Paths norwegian BOI 2015, dag 2. Tilgjengelig minne: 256 MB. 1.05.2015 Byteasar liker å leve farlig. Han løper med saks, leverer løsninger til konkurranseproblemer uten å teste med testdata,

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Forskjeller mellom masselager og hovedminne. Permanent? Allokasjonstabell. Filer. Sekvensielle filer. Operativsystemets rolle

Forskjeller mellom masselager og hovedminne. Permanent? Allokasjonstabell. Filer. Sekvensielle filer. Operativsystemets rolle IT1101 Informatikk basisfag, dobbeltime 17/11 Sist uke: datastrukturer Tabell Lenket liste Stakk Kø inært tre Sammenhengende blokk vs pekermetoden I dag: Filstrukturer Forskjell hovedminne og masselager

Detaljer

Vanlige spørsmål om EndNote (april 2013)

Vanlige spørsmål om EndNote (april 2013) Vanlige spørsmål om EndNote (april 2013) Her er svar på en del vanlig spørsmål og problemer som kan dukke opp når du arbeider med EndNote. Innhold Import av referanser... 1 Hvis EndNote låser seg:... 2

Detaljer

Operativsystemer og nettverk Løsningsforslag til eksamen 01.12.2014. Oppgave 1. a) Linux-kommando: java Beregn & b) Shellprogram:

Operativsystemer og nettverk Løsningsforslag til eksamen 01.12.2014. Oppgave 1. a) Linux-kommando: java Beregn & b) Shellprogram: Operativsystemer og nettverk Løsningsforslag til eksamen 01.12.2014 Oppgave 1 a) Linux-kommando: java Beregn & b) Shellprogram: java Beregn & java Beregn Eventuelt, hvis man vil gjøre det med bare en linje

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Unix/Linux en annen måte å gjøre ting på

Unix/Linux en annen måte å gjøre ting på Velkommen Operativsystemer Operativsystemer Unix/Linux en annen måte å gjøre ting på Institutt for informatikk Alle datamaskiner (unntatt de helt knøttsmå) har et operativsystem som administrerer datamaskinen

Detaljer

"How I hate this damned machine, I wish that I could sell it, It never does what I want it to, But only what I tell it".

How I hate this damned machine, I wish that I could sell it, It never does what I want it to, But only what I tell it. smug: selvtilfreds condescending: nedlatende "How I hate this damned machine, I wish that I could sell it, It never does what I want it to, But only what I tell it". En kort introduksjon til operativsystemet

Detaljer

Symmetrisk En hemmelig nøkkel ( passord ) som brukes både ved kryptering og dekryptering.

Symmetrisk En hemmelig nøkkel ( passord ) som brukes både ved kryptering og dekryptering. 1 Hva? Hva er informasjonssikkerhet? Information security encompasses the study of the concepts, techniques, technical measures, and administrative measures used to protect information assets from deliberate

Detaljer