Dagens tema INF1010 INF1010 INF1010 INF1010

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Dagens tema INF1010 INF1010 INF1010 INF1010"

Transkript

1 I eksemplene om lister og binære trær har vi hittil hatt pekerne inne i objektene i strukturen. ( Innbakt struktur ).Eksempel: Dagens tema Implementasjon av strukturer (lister, binære trær) class { ; ; // Neste person i listen Implementasjoner av listestrukturer Enveis og toveis pekerkjeder. Arraylister. Eksempel med toveis pekerkjeder: Josephus Køer: LIFO og FIFO, eksempel: Palindromer (Før pausen info om studentspeilet) Dette er et sett lysark for en forelesning. Mange sider er ukommentert og ufullstendige. Mange spørsmål er ubesvarte og det kan forekomme feil. Settet er tildels uegnet til selvstudium uten notater fra forelesningen. Jonathan Susanne Imran Nikita Elisabeth første Et objekt av klassen Register class Register { første; // Første person i listen Figur: Objektdiagram av et personregister med 5 personer null Stein Michael Storleer 17. april 2007 Ark 1 av 32 Stein Michael Storleer 17. april 2007 Ark 2 av 32 Vi har sett mange eksempler på metoder som opererer direkte på pekerne i personobjektene for å endre strukturen(eller traversere den) i lister og binære trær. Java tilbyr verktøy for å gjøre denne modelleringen mer objektorientert, ved at strukturen skilles ut fra objektene som inngår i den. Det er mange måter å gjøre dette på: strukturen direkte del av objektene (innbakte pekere) På de følgende figurer finnes skisser til objektdiagram av de forskjellige implementasjonsmåtene for objekter som skal kunne inngå i en binær trestruktur med foran og etterpeker. Først den måten vi hittil har brukt, der pekerne ligger i objektet. subklasser: strukturen (class listeelement) i egen klasse. class objekt extends element class element extends objekt Dataobjektene henges på strukturen ved hjelp av pekere foran etter I tillegg kan vi bruke grenesnitt (interface) for å abstrahere mer. Grensesnitt brukes også til å definere et grensesnitt for strukturen, jfr. obligatorisk oppgave 4. Stein Michael Storleer 17. april 2007 Ark 3 av 32 Stein Michael Storleer 17. april 2007 Ark 4 av 32

2 class { foran, etter class extends { <øvrige attributter> objektene som inngår i strukturen har pekere til generelle objekter (peker av type ) foran etter foran etter foran etter Stein Michael Storleer 17. april 2007 Ark 5 av 32 Stein Michael Storleer 17. april 2007 Ark 6 av 32 foran etter Nok et eksempel med innbakte pekere Har nå også en peker til den siste personen i listen: foran etter class Register { første; siste; foran etter foran etter Jonathan Susanne Imran Nikita Elisabeth null føste siste Et objekt av klassen Register Stein Michael Storleer 17. april 2007 Ark 7 av 32 Stein Michael Storleer 17. april 2007 Ark 8 av 32

3 Eks: en opersajon (metode) Innsetting av person når vi har sistepeker: Listestruktur med peker() class Liste { første; // I klassen Register: void settsist( pers) { if (første == null) { første = pers; siste = pers; else { siste. = pers; siste = pers; Hvilke andre listeoperasjoner må endres når vi introduserer sistepeker? //+ metoder som operer på lista class { ; ; Skrive ut alle elementene i listen: // I klassen Liste void skrivalle() { while (n!= null) { System.out.println(n.); Stein Michael Storleer 17. april 2007 Ark 9 av 32 Stein Michael Storleer 17. april 2007 Ark 10 av 32 Lister som rekursiv struktur En liste er en rekursiv struktur, siden en ikke tom liste består av et første element ( basistilfellet ) og en rest liste ( rekursjonen ). Skrive ut alle elementene i listen motsatt vei (siste først): Alternativt (mer objekt orientert?): // I klassen Liste void skrivmotsatt() { if (første!= null) { første.skrivrekursivt(); // I klassen Liste void skrivmotsatt() { skrivrek(første); void skrivrek( n) { if (n!= null) { skrivrek(n.); System.out.println(n.); // I klassen void skrivrekursivt() { if (!= null) {.skrivrekursivt(); System.out.println(); Rekursiv traversering av lister er altså mulig, men stort sett er det enklere (mer effektivt?) å bruke en vanlig while løkke. Stein Michael Storleer 17. april 2007 Ark 11 av 32 Stein Michael Storleer 17. april 2007 Ark 12 av 32

4 Alternative pekerkjede implementasjoner Sirkulære pekerkjeder Noen ganger er det hensiktsmessig å la pekeren til den siste noden peke tilbake til starten av listen (i steden for å være null): Pekerkjede med hode (ukeoppgave): Hode Per Liv Ola Per Liv Ola Sirkulær pekerkjede: Toveis pekerkjede: Per Per Liv Liv Ola Ola Sirkulær pekerkjede med hode, toveis pekerkjede med hode og hale, toveis sirkulær pekerkjede,... Eksempel: Josephus Gitt et antall personer i ring, der hver n te person drepes inntil det ikke er flere igjen. Hvor må man stå for å være sistemann (og overleve)? Under den jødiske romerske krigen ble den jødiske historikeren Josephus Flavius fanget i en hule sammen med 40 andre soldater og omringet av romere. Ifølge legenden ville jødene heller begå selvmord enn å overgi seg. De bestemte seg for å stille seg i en sirkel, og så skulle hver tredje person drepes inntil det ikke var flere igjen. Josephus ville ikke dø, så han fant raskt ut hvor han måtte stå for å være sistemann og dermed overleve. Stein Michael Storleer 17. april 2007 Ark 13 av 32 Stein Michael Storleer 17. april 2007 Ark 14 av 32 Generell ide: Lag en sirkulær liste med en node for hver person. Start på begynnelsen av listen. int josephus(int antall, int intervall) { første; siste; // Sirkulær liste med ett element første = new (1, null); første. = første; siste = første; Så lenge listen består av mer enn ett element: Hopp over intervall 1 noder Fjern node Til dette bruker vi følgende klasse: class { int nummer; ; (int i, n) { nummer = i; = n; // Setter inn tilsammen antall noder i listen for (int i = 2; i <= antall; i++) { siste. = new (i, første); siste = siste.; aktuell = siste; // Fjerner en og en til bare en står igjen alene for (int teller = antall; teller > 1; teller ) { // Hopper over intervall 1 noder for (int i = 1; i < intervall; i++) { aktuell = aktuell.; // aktuell. skal fjernes aktuell. = aktuell..; // Den overlevende er: return aktuell.nummer; Stein Michael Storleer 17. april 2007 Ark 15 av 32 Stein Michael Storleer 17. april 2007 Ark 16 av 32

5 Eksempel på kjøring josephus(7,3) Innsetting av person 1: første = new (1, null); første. = første; siste = første; Innsetting av person 2 7: Toveis pekerkjeder Ofte har vi behov for å finne noden før en gitt node. Toveis pekerkjeder løser dette ved å ha en forrige peker, i tillegg til pekeren: for (int i = 2; i <= 7; i++) { siste. = new (i, første); siste = siste.; aktuell = siste; Fjerning av en person: class { ; ; forrige; Per Liv Ola for (int i = 1; i < 3; i++) { aktuell = aktuell.; Ulempe: Mer peker administrasjon aktuell. = aktuell..; Stein Michael Storleer 17. april 2007 Ark 17 av 32 Stein Michael Storleer 17. april 2007 Ark 18 av 32 Generelle lister Eksempel: Innsetting først Et listegrenesnitt public interface Liste { int antall(); // finner og returnerer antall elementer i lista // I klassen Liste void settinn( elem) { ny = new (); ny. = elem; if (første == null) { else { første.forrige = ny; ny. = første; boolean ertom(); // returnerer true bare når lista er tom finn(int i); // returnerer objektet på plass nr i i lista int finn( elem); // returnerer objektet som er lik elem void settinn(int i, elem); // setter objektet elem inn på plass nr i i lista void skrivliste(); // skriver ut alle objektene i lista void taut( elem); // fjerner objektet som er lik elem fra lista void tømliste(); // fjerner alle elementene fra lista; etterpå skal ertom() returnere true. Stein Michael Storleer 17. april 2007 Ark 19 av 32 Stein Michael Storleer 17. april 2007 Ark 20 av 32

6 Pekerkjede implementasjon class LenketListe implements Liste { første; class { ; ; første Et objekt av klassen LenketListe null Søking gitt et nummer i lista public finn(int indeks) { int i = 0; while (i < indeks && n!= null) { i++; if (n!= null) { return n.; else { return null; Søking gitt et likt listeelement public int finn( elem) { int i = 0; while (n!= null &&!n..equals(elem)) { i++; if (n!= null) { return i; else { return 1; Stein Michael Storleer 17. april 2007 Ark 21 av 32 Stein Michael Storleer 17. april 2007 Ark 22 av 32 Innsetting public void settinn(int indeks, elem) { ny = new (elem); if (indeks == 0) { // Innsetting først ny. = første; else { int i = 0; // Finner noden FØR innsettingspunktet while (i < indeks 1) { i++; ny. = n.; n. = ny; Fjerning public void taut( elem) { forrige = null; while (n!= null &&!n..equals(elem)) { forrige = n; if (n!= null) { if (n == første) { første = første.; else { forrige. = n.; Stein Michael Storleer 17. april 2007 Ark 23 av 32 Stein Michael Storleer 17. april 2007 Ark 24 av 32

7 Traversering public void skrivliste() { while (n!= null) { System.out.println(n.); Tomme lister public boolean ertom() { return (første == null); Array implementasjon class ArrayListe implements Liste { [] liste; int lengde; int 5 lengde [] liste null..... public void tømliste() { første = null; Antall public int antall() { int antall = 0; while (n!= null) { antall++; return antall; Innsetting: Må flytte alle elementene fra og med innsettings posisjonen. I verste fall er arrayen full, og elementene må kopieres til en ny, større array. Søking: Enkelt med indeks oppslag. Søking etter et gitt element må traversere arrayen fra begynnelsen. Fjerning: Må flytte alle elementene etter innsettings posisjonen. Stein Michael Storleer 17. april 2007 Ark 25 av 32 Stein Michael Storleer 17. april 2007 Ark 26 av 32 Køer En kø er en liste der vi bestemmer hvilket objekt i lista som skal ut på grunnlag av hvor lenge objektet har vært i lista. FIFO kø ( rettferdig kø) En FIFO kø (First In, First Out) er en liste der vi tar ut det listeelementet som har vært lengst i lista. Ut Inn FIFO kø: Pekerkjede implementasjon class FIFOLenketListe extends LenketListe { siste; public void settinn( elem) { ny = new (elem); if (første == null) { siste = ny; else { siste. = ny; siste = ny; Foran Bak Vi kan da utvide den generelle pekerkjede implementasjonen med en siste peker metoden void settinn( elem) for innsetting sist metoden taut() for fjerning av første element public taut() { if (første == null) { return null; else { første = første.; return n.; // Eventuelle endringer i de andre metodene // på grunn av siste pekeren. Stein Michael Storleer 17. april 2007 Ark 27 av 32 Stein Michael Storleer 17. april 2007 Ark 28 av 32

8 LIFO køer (Stakker) En LIFO kø (Last In, First Out) er en liste der innsetting/uttak alltid skjer først i listen. Den som tas ut er den som kom sist inn. Dette kan sammenlignes med en stabel tallerkner: LIFO kø: Pekerkjede implementasjon Innsetting og sletting vil nå normalt skje på begynnelsen av listen: class LIFOLenketListe extends LenketListe { Inn Ut public void settinn( elem) { ny = new (elem); ny. = første; Andre eksempler: Metodekall i Java public taut() { // Som for FIFO køer! if (første == null) { return null; else { første = første.; return n.; En full buss Stein Michael Storleer 17. april 2007 Ark 29 av 32 Stein Michael Storleer 17. april 2007 Ark 30 av 32 Mulig løsning ❶ Les tekst strengen inn i både en LIFO og en FIFO kø. Eksempel: Palindromer Palindromer er ord/uttrykk/setninger som er like forlengs og baklengs. Noen eksempler: Otto, radar, regninger Agnes i senga Ni talar bra latin En af dem der red med fane Alle reisetrette skal ete laks etter te, sier Ella Madam, I am ill. I ve nine men in evil Lima. I m Adam Rolf Are vurderer om Arons ni drag i gardinsnora morer edru Vera Flor ❷ Sammenlign innholdet i de to køene tegn for tegn. public boolean sjekkpalindrom( setning) { FIFOLenketListe fifo = new FIFOLenketListe(); LIFOLenketListe lifo = new LIFOLenketListe(); for (int i = 0; i < setning.length(); i++) { char bokstav = Character.toLowerCase(setning.charAt(i)); if (! Character.isWhitespace(bokstav)) { fifo.settinn(new Character(bokstav)); lifo.settinn(new Character(bokstav)); while (! fifo.ertom()) { if (! fifo.taut().equals(lifo.taut())) { return false; return true; Stein Michael Storleer 17. april 2007 Ark 31 av 32 Stein Michael Storleer 17. april 2007 Ark 32 av 32

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak

INF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak LISTER Vanligste datastruktur Mange implementasjonsmåter (objektkjeder, array...) Operasjoner på listen definerer forskjellige typer lister (LIFO, FIFO,...) På norsk bruker vi vanligvis ordet «liste» for

Detaljer

Vanlige datastrukturer. I dette lysarksettet

Vanlige datastrukturer. I dette lysarksettet Vanlige datastrukturer I dette lysarksettet datastrukturer Datastrukturer i Med datastruktur mener vi måten objektene i et program er strukturert på. Særlig blir det aktuelt å snakke om struktur hvis vi

Detaljer

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {}

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {} En implementasjon av binærtre Dagens tema Eksempel på binærtreimplementasjon Rekursjon: Tårnet i Hanoi Søking Lineær søking Klassestruktur hovedstruktur abstract class { class Person extends { class Binaertre

Detaljer

Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen.

Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen. Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen. "Taher" type: String : type: :... type: : inf1010student null michael@ifi.uio.no INF1010 26. januar 2012 (uke 4) 2 class Eks01 { public

Detaljer

INF januar 2015 Stein Michael Storleer (michael) Lenkelister

INF januar 2015 Stein Michael Storleer (michael) Lenkelister INF1010 29. januar 2015 Stein Michael Storleer (michael) Lenkelister Lenke + lister = lenkelister Vi starter med lenkeobjektene Lager en kjede av objekter ved hjelp av pekere class { ; Legger Jl data innholdet

Detaljer

Studieaktiviteter i INF1010

Studieaktiviteter i INF1010 Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering

Detaljer

Dagens forelesning. INF1010 Datastrukturer Lister og køer Pekerkjedelister Øvelser. Innhold i dette lysarksettet

Dagens forelesning. INF1010 Datastrukturer Lister og køer Pekerkjedelister Øvelser. Innhold i dette lysarksettet Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering

Detaljer

Lenkelister. Lister og køer.

Lenkelister. Lister og køer. Lenkelister. Lister og køer. INF1010 Stein Michael Storleer 27. januar 2011 Dagens forelesning Lenkede lister Lenkede lister Eksempel på en lenket liste: personliste Operasjoner på lenkede lister (enkeltlenket)

Detaljer

INF1010. Om pensum INF1010 INF1010 INF1010 INF1010. Det vesentlige er å forstå og kunne lage programmer ved hjelp av eksemplene i bøkene.

INF1010. Om pensum INF1010 INF1010 INF1010 INF1010. Det vesentlige er å forstå og kunne lage programmer ved hjelp av eksemplene i bøkene. Om pensum Dagens forelesning handler om (de to datastrukturene) lister og binære trær. Etter forelesningen skal studentene kjenne til datastrukturene lister og binære trær og kunne lage programmer som

Detaljer

Operasjoner på lenkede lister (enkeltlenket) Eksempel på en lenket liste: personliste. INF januar 2010 (uke 3) 2

Operasjoner på lenkede lister (enkeltlenket) Eksempel på en lenket liste: personliste. INF januar 2010 (uke 3) 2 Velkommen til INF1010 Studieaktiviteter i INF1010 Programmering (oppgaveløsning) alene/kollokvier programmeringslab (plenums)øvelser forelesninger gruppe som repeterer stoff fra forelesning, og øvelser

Detaljer

Inf 1020 Algoritmer og datastrukturer

Inf 1020 Algoritmer og datastrukturer Inf 1020 Algoritmer og datastrukturer Et av de mest sentrale grunnkursene i informatikkutdanningen... og et av de vanskeligste! De fleste 3000-kursene i informatikk bygger på Inf1020 Kurset hever programmering

Detaljer

Velkommen til INF1010

Velkommen til INF1010 Velkommen til INF1010 Dagens forelesning Hvordan jobbe med INF1010 Pensum Datastrukturer Grafer (lister og trær) Objektorientert programmering Lister og køer Hva er en liste? FIFO- og LIFO-lister Lenkede

Detaljer

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010 Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering

Detaljer

INF1010 siste begreper før oblig 2

INF1010 siste begreper før oblig 2 INF1010 siste begreper før oblig 2 Sammenligning. Mer lenkede lister. Forskjellige listeimplementasjoner. Binære trær. Bittelitt om grensesnitt (interface). Dagens forelesning Flere temaer på grunn av

Detaljer

Versjon (vil bli endret).

Versjon (vil bli endret). Versjon 24.01.2012 (vil bli endret). Dette dokumentet bør leses før forelesningen 26. januar 2012 og er en del av «pensum». De er også laget med tanke på repetisjon. (Lysarkene som blir brukt egner seg

Detaljer

Liste som abstrakt konsept/datatype

Liste som abstrakt konsept/datatype Lister Liste som abstrakt konsept/datatype Listen er en lineær struktur (men kan allikevel implementeres ikke-lineært bak kulissene ) Hvert element har en forgjenger, unntatt første element i listen Hvert

Detaljer

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær Dagens tema INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 2: Binærtrær og abstrakte datatyper (ADT) Kort repetisjon Generelle trær

Detaljer

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

INF1010. Stein Michael Storleer (michael) Lenkelister

INF1010. Stein Michael Storleer (michael) Lenkelister INF1010 Stein Michael Storleer (michael) Lenkelister Lenke Datastrukturen lenkeliste class { = null ; foran foran = new () ; class { = null ; foran foran = new () ; foran. = new () ; class { = null ; foran

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

INF Notater. Veronika Heimsbakk 10. juni 2012

INF Notater. Veronika Heimsbakk 10. juni 2012 INF1010 - Notater Veronika Heimsbakk veronahe@student.matnat.uio.no 10. juni 2012 1 Tilgangsnivåer 2 CompareTo Modifier Class Package Subclass World public Y Y Y Y protected Y Y Y N no modifier Y Y N N

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 6. juni 2006 Tid for eksamen: 1430 1730 Oppgavesettet er på 6 sider. Vedlegg: INF1010 Objektorientert programmering

Detaljer

INF1010. Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: Introduksjon til Rekursiv programmering

INF1010. Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: Introduksjon til Rekursiv programmering Introduksjon til Rekursiv programmering To iterate is human; to recurse, divine. L. Peter Deutsch, Robert Heller Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: rekursjon

Detaljer

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)! Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag 1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave

Detaljer

INF1010 våren januar. Objektorientering i Java

INF1010 våren januar. Objektorientering i Java INF1010 våren 2017 25. januar Objektorientering i Java Om enhetstesting (Repetisjon av INF1000 og lær deg Java for INF1001 og INF1100) Stein Gjessing Hva er objektorientert programmering? F.eks: En sort

Detaljer

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

Grunnleggende Datastrukturer

Grunnleggende Datastrukturer Grunnleggende Datastrukturer Lars Vidar Magnusson 7.2.2014 Kapittel 10 Stakker og køer Lenkede lister Pekere og objekter Trerepresentasjoner Datastrukturer Vi er i gang med tredje del av kurset hvor vi

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Algoritmer og datastrukturer Kapittel 4 - Delkapittel 4.3

Algoritmer og datastrukturer Kapittel 4 - Delkapittel 4.3 Delkapittel 4.3 En toveiskø (deque) Side 1 av 5 Algoritmer og datastrukturer Kapittel 4 - Delkapittel 4.3 4.3 En toveiskø (deque) 4.3.1 Grensesnittet Toveiskø En stakk kan godt ses på som en kø der vi

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Generelle trær BINÆRTRÆR. Binærtrær

Generelle trær BINÆRTRÆR. Binærtrær BINÆRTRÆR Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse Eksempel: Ibsens skuespill Generelle trær

Detaljer

INF1010 e-postadresser

INF1010 e-postadresser INF1010 e-postadresser Ikke-faglige spørsmål til studieinfo@ifi.uio.no. Faglige spørsmål til blogen eller til @ifi.uio.no: brukernavn kristoeb josek stianf bendiko bmmender espeak richar daghf

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer.

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer. TRÆR Generelle trær Dagens plan: Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse (!) Eksempel: Ibsens

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

Stack. En enkel, lineær datastruktur

Stack. En enkel, lineær datastruktur Stack En enkel, lineær datastruktur Hva er en stack? En datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi

Detaljer

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 Delkapittel 3.1 Grensesnittet Liste Side 1 av 11 Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 3.1 En beholder 3.1.1 En beholder En pappeske er en beholder En beholder er noe vi kan legge ting

Detaljer

Lenkelister og beholdere av lenkelister

Lenkelister og beholdere av lenkelister Lenkelister og beholdere av lenkelister Et notat for INF1010 Stein Michael Storleer 4. februar 2013 Lister er den vanligste datastrukturen. Vi treffer på den overalt. Når vi har mange objekter i et program,

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

INF1010 våren Grensesnitt (interface)

INF1010 våren Grensesnitt (interface) INF1010 våren 2015 Torsdag 5. februar Grensesnitt (interface) Stein Gjessing Institutt for informatikk Dagens tema n n Norsk: Grensesnitt Engelsk: Interface n Les notatet Grensesnitt i Java av Stein Gjessing

Detaljer

Rekursjon. Binærsøk. Hanois tårn.

Rekursjon. Binærsøk. Hanois tårn. Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til

Detaljer

Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; }

Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; } Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; Hva skrives ut på skjermen når følgende kode utføres? int [] tallene =

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Dagens tema: Datastrukturer

Dagens tema: Datastrukturer Dagens tema: Datastrukturer Matriser Dynamiske matriser Ringbuffere Mengder Lister Enkle listeoperasjoner Programmering av en listepakke Lister med hode og hale Toveislister Onsdag 24.3 Avslutning av IN147A

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

INF1010 våren Grensesnitt

INF1010 våren Grensesnitt INF1010 våren 2013 Torsdag 24. januar Grensesnitt Stein Gjessing Institutt for informatikk Dagens tema n n Norsk: Grensesnitt Engelsk: Interface n Les notatet Grensesnitt i Java av Stein Gjessing 2 Hva

Detaljer

INF1010 våren Grensesnitt

INF1010 våren Grensesnitt INF1010 våren 2014 Onsdag 22. januar Grensesnitt Stein Gjessing Institutt for informatikk Dagens tema n n Norsk: Grensesnitt Engelsk: Interface n Les notatet Grensesnitt i Java av Stein Gjessing n Det

Detaljer

Fagnr: A. Ant. vedlegg: 1 (2 sider)

Fagnr: A. Ant. vedlegg: 1 (2 sider) Fag: Algoritmer og datastrukturer Fagnr: 50 3 A Faglig ansv.: Ulf Uttersrud Sensor: Tor Lønnestad Ant. sider: 3 Ant. oppgaver: 3 Ant. vedlegg: (2 sider) Dato: 0.2.200~ Eksamenstid: 9-4 RAd og tips: Bruk

Detaljer

Løsningsforslag. Oppgave 1.1. Oppgave 1.2

Løsningsforslag. Oppgave 1.1. Oppgave 1.2 Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Onsdag 4. juni 2014 Tid for eksamen: 9:00-15:00 Oppgavesettet er på

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) Rekursjon (kapittel 1.3) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler

Detaljer

INF1010. Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene 0, 1 og 2: Sekvensgenerering. Generalisering. n n n! INF1010 INF1010 INF1010

INF1010. Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene 0, 1 og 2: Sekvensgenerering. Generalisering. n n n! INF1010 INF1010 INF1010 Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene, og : Kombinatorisk søking Generering av permutasjoner Lett: Sekvensgenerering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne

Detaljer

Løsningsforslag til INF110 h2001

Løsningsforslag til INF110 h2001 Løsningsforslag til INF110 h2001 Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider inkludert vedlegget Vedlegg

Detaljer

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Eksamen - Algoritmer og datastrukturer - Høgskolen i Oslo og Akershus - 27.11.2012 Side 1 av 6 Algoritmer og datastrukturer Eksamen 27.11.2012 Eksamensoppgaver Råd og tips: Bruk ikke for lang tid på et

Detaljer

INF1010 notat: Binærsøking og quicksort

INF1010 notat: Binærsøking og quicksort INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

Obligatorisk oppgave 1 INF1020 h2005

Obligatorisk oppgave 1 INF1020 h2005 Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte

Detaljer

"behrozm" Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009

behrozm Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009 Rekursiv programmering BTeksempel Datastruktur I klassen Persontre (rotperson==) Rekursjon Noen oppgaver/problemer er rekursive «av natur» Eksempel på en rekursiv definisjon Fakultetsfunksjonen

Detaljer

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12.

G høgskolen i oslo. Emne: Algoritmer og datastrukturer. Emnekode: 80131A. Faglig veileder: UlfUttersrud. Gruppe(r) : Dato: 09.12. G høgskolen i oslo Emne: Algoritmer og datastrukturer Emnekode: 80131A Faglig veileder: UlfUttersrud Gruppe(r) : Dato: 09.12.2004 Eksamenstid: 9-14 Eksamensoppgaven består av: Tillatte hjelpemidler Antall

Detaljer

EKSAMEN. Emne: Algoritmer og datastrukturer

EKSAMEN. Emne: Algoritmer og datastrukturer 1 EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Algoritmer og datastrukturer Eksamen 24.02.2010 Eksamenstid: 5 timer Hjelpemidler: Alle trykte og skrevne + håndholdt kalkulator som ikke kommuniserer. Faglærer: Ulf Uttersrud Råd og tips: Bruk ikke for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 9. juni 2011 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Kapittel 14, Hashing Tema Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Hashing Hashing er en effektiv metode ved lagring og gjenfinning (søking) av informasjon Søkemetoder

Detaljer

Ordliste. Obligatorisk oppgave 1 - Inf 1020

Ordliste. Obligatorisk oppgave 1 - Inf 1020 Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.

Detaljer

INF1010. generiske metoder grensesni2 begrensende typeparametre grensesni2et Comparable<T> grensesni2et Iterable<T>

INF1010. generiske metoder grensesni2 begrensende typeparametre grensesni2et Comparable<T> grensesni2et Iterable<T> INF1010 generiske metoder grensesni2 begrensende typeparametre grensesni2et Comparable grensesni2et Iterable public sta>c void test(string descrip>on, T expected, T actual) { if (expected!= null

Detaljer

INF1010 Binære søketrær ++

INF1010 Binære søketrær ++ INF1010 Binære søketrær ++ Programeksempler med insetting, gjenfinning av noder i et binært søketre samt eksempler på hvordan lage en liste av et binærtre. Hva må du kunne om binære søketrær i INF1010

Detaljer

INF2220: Forelesning 7. Kombinatorisk søking

INF2220: Forelesning 7. Kombinatorisk søking INF2220: Forelesning 7 Kombinatorisk søking Oversikt Rekursjon - oppsummering Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne korteste

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid Chieh Yu de Vibe (ingridcy@ifi.uio.no)

Detaljer

Quicksort. Fra idé til algoritme.

Quicksort. Fra idé til algoritme. Quicksort Fra idé til algoritme. Quicksortalgoritme algoritmeidé 1. Del arrayen i to deler, slik at alle elementer i den ene delen er mindre enn alle elementer i den andre delen. Q U I C K S O R T A L

Detaljer

INF1010 Eksamenstips. Løsningsforslag prøveeksamen del 1.

INF1010 Eksamenstips. Løsningsforslag prøveeksamen del 1. INF1010 Eksamenstips Løsningsforslag prøveeksamen del 1. michael@ifi.uio.no INF1010 FSE 25. mai 2011 (uke 21) 2 Les igjennom hele oppgaven. Les igjennom hele oppgaven en gang til, marker i teksten ting

Detaljer

INF1020 Algoritmer og datastrukturer. Dagens plan

INF1020 Algoritmer og datastrukturer. Dagens plan Dagens plan Prioritetskø ADT Motivasjon Operasjoner Implementasjoner og tidsforbruk Heap-implementasjonen Strukturkravet Heap-ordningskravet Insert DeleteMin Tilleggsoperasjoner Build Heap Anvendelser

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

Introduksjon til objektorientert programmering

Introduksjon til objektorientert programmering Introduksjon til objektorientert programmering Samt litt mer om strenger og variable INF1000, uke6 Ragnhild Kobro Runde Grunnkurs i objektorientert programmering Strategi: Splitt og hersk Metoder kan brukes

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer Hva er en datastruktur? Datastrukturer Elementære Datastrukturer En datastruktur er en systematisk måte å lagre og organisere data på, slik at det er lett å aksessere og modifisere dataene Eksempler på

Detaljer

Kap 9 Tre Sist oppdatert 15.03

Kap 9 Tre Sist oppdatert 15.03 Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere

Detaljer

INF1010, 22. mai Prøveeksamen (Eksamen 12. juni 2012) Stein Gjessing Inst. for Informatikk Universitetet i Oslo

INF1010, 22. mai Prøveeksamen (Eksamen 12. juni 2012) Stein Gjessing Inst. for Informatikk Universitetet i Oslo INF, 22. mai 23 Prøveeksamen 23 (Eksamen 2. juni 22) Stein Gjessing Inst. for Informatikk Universitetet i Oslo Oppgave a Tegn klassehierarkiet for de 9 produkttypene som er beskrevet over. Inkluder også

Detaljer

OPPGAVE 5b og 8b Java Kode

OPPGAVE 5b og 8b Java Kode OPPGAVE 5b og 8b Java Kode public class Kant boolean behandlereturavbil() BehandleReturAvBil behandler = new BehandleReturAvBil(this); String regnr; int kmstand, tanknivaa; boolean erskadet; // 1: Få verdiene

Detaljer

Løsningsforslag eksamen INF1020 høsten 2005

Løsningsforslag eksamen INF1020 høsten 2005 Løsningsforslag eksamen INF1020 høsten 2005 Merk at dette er et løsningsforslag på selve oppgavene, og ikke slik vi forventer at en besvarelse skal se ut. Dette gjelder spesielt oppgave 3. Oppgave 1: Flervalgsoppgaver

Detaljer

Innhold. INF1000 Høst Unified Modeling Language (UML) Unified Modeling Language (UML)

Innhold. INF1000 Høst Unified Modeling Language (UML) Unified Modeling Language (UML) Innhold Unified Modelling Language UML INF1000 Høst 2015 Uke 8: Mer objektorientert programmering Siri Moe Jensen En ny type for-løkke Organisering av mengder av objekter HashMap Valg av representasjon

Detaljer

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.3

Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.3 Delkapittel 3.3 En lenket liste side 1 av 12 Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.3 3.3 En lenket liste 3.3.1 Lenket liste med noder En lenket liste (eller en pekerkjede som det også

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i : Eksamensdag : INF1000 Grunnkurs i objektorientert programmering Fredag 7. januar Tid for eksamen : 09.00

Detaljer