Definisjon: Et sortert tre

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Definisjon: Et sortert tre"

Transkript

1 Binære søketrær

2 Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større eller lik verdien i noden Det binære søketreet er en sortert datastruktur: Nodene oppsøkes i stigende sortert rekkefølge ved en inorder (venstre-roten-høyre) traversering av søketreet

3

4 Alfabetisk sortert søketre Inorder traversering: Abigail, Abner, Adam, Adela, Agnes, Alex, Alice, Allen, Angela, Arthur, Audrey

5 Forenklinger i forhold til læreboken Læreboken implementerer binære søketrær med: Generisk ADT (som kan lagre 'alt') Både array og pekere Se avsnittene og lærebokas kode For å holde fokus på prinsippene og algoritmene, og ikke på Java, forenkler vi til: Bare implementasjon med pekere Ingen ADT, skreddersyr noder og algoritmer for hvert enkelt problem Noder som bare inneholder enkle data (heltall, tegn, strenger) og referanser til venstre og høyre barn

6 Søking i binært søketre Starter i roten av treet Følger en vei gjennom treet inntil: Verdien vi søker etter er funnet, eller Vi kommer til en bladnode uten å ha funnet verdien det søkes etter Maksimalt antall steg i søkingen blir omtrent lik høyden av treet (lengden av lengste vei fra roten frem til et blad)

7 Eksempel: Søk etter verdien x = 3

8 Rekursiv algoritme for søking etter en verdi x i et binært søketre Hvis roten er lik null: x finnes ikke i treet, ferdig Hvis x = verdien i roten: x er funnet, ferdig Ellers hvis x < verdien i roten: Søk etter x i rotens venstre subtre Ellers: Søk etter x i rotens høyre subtre

9 Søking: Implementasjon og effektivitet Implementeres effektivt med iterasjon: En while-løkke der vi i hvert steg enten går til høyre eller venstre i treet, se Java-koden Kan også kodes rekursivt: Enklere(?) kode, men langsommere enn iterasjon Effektivitet: Verste tilfelle: Verdien vi søker finnes ikke i treet Må da gå hele veien fra roten til et blad Søking i et tre med n noder er O(log n) hvis treet er noenlunde balansert Søking blir O(n) hvis treet blir en skjev «nesten-liste»

10 Innsetting av ny verdi i binært søketre Starter i roten av treet Følger en vei gjennom treet inntil: Vi kommer til posisjonen der verdien kunne ha ligget (som en bladnode) hvis den var i treet Setter inn den nye noden som en bladnode på denne posisjonen Maksimalt antall steg i innsettingen blir omtrent lik høyden av treet (lengden av lengste vei fra roten frem til et blad)

11

12 Rekursiv algoritme for innsetting av en verdi x i et binært søketre Hvis roten er lik null: Sett inn ny rotnode med verdien x Ellers hvis x < verdien i roten: Sett inn x i rotens venstre subtre Ellers: Sett inn x i rotens høyre subtre Se lærebokas animasjon av innsetting

13 Innsetting: Implementasjon og effektivitet Implementeres effektivt med iterasjon: En while-løkke der vi i hvert steg enten går til høyre eller venstre i treet Setter inn ny node som et blad, som blir venstre eller høyre barn til sist oppsøkte node i treet, se Java-koden Effektivitet: Verste tilfelle: Går den lengste veien fra roten til et blad Innsetting i et tre med n noder er O(log n) hvis treet er noenlunde balansert Innsetting blir O(n) hvis treet degenererer til en «nesten-liste»

14 Innsetting kan gi ubalanse Binært søketre etter innsetting av: (a) K B P D M R (b) B K D P M R (c) B D K M P R

15 Fjerning av en verdi fra binært søketre Starter i roten av treet Følger en vei gjennom treet inntil vi finner verdien som skal fjernes Kan ikke ha «hull» i treet Må flytte på én node slik at den «fyller hullet» etter noden som skal fjernes Maksimalt antall steg i fjerningen blir igjen omtrent lik høyden av treet (lengden av lengste vei fra roten frem til et blad)

16 Fjerning av node i binært søketre: Må skille på fire ulike tilfeller 1. Noden som skal fjernes er en en bladnode (har ingen barn) 2. Noden som skal fjernes mangler venstre subtre 3. Noden som skal fjernes mangler høyre subtre 4. Noden som skal fjernes har både høyre og venstre subtre

17 Tilfelle 1: Fjerning av bladnode Sett forgjengernoden til å peke på null Fjerning av verdien 3:

18 Tilfelle 2 og 3: Fjerning av node med ett tomt subtre Sett forgjengernoden til å peke på fjernet nodes etterfølger Fjerning av verdien 5:

19 Tilfelle 4: Fjerning av node med to subtrær Flytt minste node (lengst til venstre) i nodens høyre subtre, til posisjonen der noden som skal fjernes står Krever oppdateringer av forgjenger (hvis det ikke er roten som fjernes) og (oftest) høyre etterfølger Fjerning av verdien 2, noden med verdi 3 flyttes:

20 Fjerning: Implementasjon og effektivitet Implementeres med iterasjon: En while-løkke der vi i hvert steg enten går til høyre eller venstre i treet, inntil noden som skal fjernes er funnet Fjerningen medfører en del «pekerfikling», som skilles ut i en egen metode, for å håndtere alle spesialtilfellene, Se lærebokas animasjon av fjerning og Java-koden Effektivitet: Verste tilfelle: Går den lengste veien fra roten til et blad «Pekerfiklingen» er alltid O(1) Fjerning i et tre med n noder er O(log n) hvis treet er noenlunde balansert Fjerning av noder kan ødelegge balansen i treet

21 En anvendelse av søketrær: Svadageneratoren Leser en fil med tekst, f.eks. engelsk eller tysk Registrerer i binære trær: Alle sekvenser av 2 (evt. 3, 4 eller 5) påfølgende tegn som finnes i teksten Alle tegn som kommer rett etter en tegnsekvens og hvor ofte disse forekom Skriver ut en ny tekst som bare inneholder de leste tegnsekvensene, der frekvensen av tegnene som kommer etter hver sekvens er den samme som i innlest tekst utskriften vil da ligne på språket som er lest inn

22 Eksempel: «en pen gren.» Tegnsekvenser: "en", "n ", " p", "pe", "en", "n ", " g", "gr", "re", "en", "n." "en" > 2' ', 1'.' / \ / \ 1'e' < " p" "n " > 1'p', 1'g' / / \ 1'r' < " g" "gr" "pe" > 1'n' / \ 1'e' < + "n." "re" > 1'n'

23 Svadageneratoren: Java-kode Versjon 0.1: Innlesning av n-sekvenser Versjon 0.2: Innlesning og datastruktur Versjon 0.3: Innlesning og oppbygging av binære søketrær Versjon 1.0: Innlesning og utskrift av svada

24 Selv-balanserende søketrær Operasjonene på søketrær er oftest O(log n), men dette kan ikke garanteres Selvbalanserende søketrær implementerer innsetting og fjerning av verdier slik at ubalanse i treet rettes opp hvis nødvendig Er alltid O(log n) Men: Krever mer komplisert programkode med mye «pekerfikling» Varianter: AVL-tre, Red-black tree (Java Collections), Splaytree, Scapegoat tree,...

25

26 AVL-trær Hver node i søketreet lagrer en balansefaktor: Forskjellen i høyde mellom nodens høyre og venstre subtre 0: Subtrærne er like høye Negativ : Venstre høyest Positiv: Høyre høyest AVL-tre: Alle noder har balansefaktor lik -1, 0 eller +1 Retter opp ubalanse hvis balansefaktor blir -2 eller 2 ved en innsetting eller fjerning i søketreet Kan bevises at høyden av AVL-tre alltid er O(log n)

27

28 Innsetting i AVL-tre Sett inn ny node som i et vanlig søketre Justér treet etterpå slik at Balansefaktoren i alle nodene fortsatt er korrekt Noder flyttes rundt i treet hvis nødvendig, for å sikre at ingen noder kommer i ubalanse Pivotnode: Nærmeste node på veien ned til ny node som har balansefaktor som ikke er lik 0 ( + eller ) Noder flyttes i treet med rotasjoner rundt pivotnoden Flere ulike tilfeller som må spesialbehandles

29

30 Tilfelle 1: Ingen pivotnode Alle noder på søkeveien ned til den nye noden som er satt inn har balansefaktor lik 0 Innsettingen kan ikke forårsake ubalanse Ingen omstruktureringer er nødvendig Trenger bare å justere balansefaktoren for alle nodene som ligger på søkeveien

31 Tilfelle 1: Eksempel

32 Tilfelle 2: Ny node i pivotnodens korteste subtre Det finnes en pivotnode på veien ned til ny node Ny node er satt inn i pivotnodens korteste subtre Kan ikke forårsake ubalanse i treet Trenger ikke flytte noen noder Justerer balansefaktor for alle noder fra og med pivotnoden og ned til den nye noden som er satt inn

33 Tilfelle 2: Eksempel

34 Tilfelle 3: Ny node i pivotnodens høyeste subtre Det finnes en pivotnode på veien ned til ny node Ny node er satt inn i pivotnodens høyeste subtre Pivotnoden blir ubalansert Treet må omstruktureres for å opprettholde AVLegenskapene To (fire) tilfeller av omstrukturering: Enkel rotasjon (to symmetriske tilfeller) Dobbel rotasjon (to symmetriske tilfeller)

35 Eksempel som krever enkel rotasjon Ny node settes inn i venstre subtre til pivotnodens etterfølger på søkestien:

36 Enkel rotasjon (symmetrisk for noden p3 til høyre)

37 Enkel rotasjon: Eksempel

38 Eksempel som krever dobbel rotasjon Ny node settes inn i høyre subtre til pivotnodens etterfølger på søkestien:

39 Dobbel rotasjon (symmetrisk for noden p3 til høyre)

40 Dobbel rotasjon. Eksempel

41 AVL-trær: Implementasjon og effektivitet Innsetting i AVL-trær er relativt «fiklete» Fjerning med rebalansering er enda verre... Men: Rebalansering er i verste fall en O(log n) operasjon AVL-trær garanterer derfor alltid O(log n) effektivitet for søking, innsetting og fjerning Hvis vi vet at dataene kommer i random rekkefølge, er det tilstrekkelig å bruke vanlig binært søketre

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Selv-balanserende søketrær

Selv-balanserende søketrær Selv-balanserende søketrær Georgy Maksimovich Adelson-Velsky Evgenii Mikhailovich Landis Søketrær og effektivitet O(log n) effektivitet av binære søketrær kan ikke garanteres Treet til venstre har høyde

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Flerveis søketrær og B-trær

Flerveis søketrær og B-trær Flerveis søketrær og B-trær Flerveis (multi-way, n-ært) søketre Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 barn og 1 nøkkelverdi. Barna ligger sortert på verdi i forhold

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Datastrukturer for rask søking

Datastrukturer for rask søking Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

Liste som abstrakt konsept/datatype

Liste som abstrakt konsept/datatype Lister Liste som abstrakt konsept/datatype Listen er en lineær struktur (men kan allikevel implementeres ikke-lineært bak kulissene ) Hvert element har en forgjenger, unntatt første element i listen Hvert

Detaljer

INF2220: Gruppe me 2. Mathias Lohne Høsten 2017

INF2220: Gruppe me 2. Mathias Lohne Høsten 2017 INF0: Gruppe me Mathias Lohne Høsten 0 1 Rød-svarte trær Vanlige binære søketrær blir fort veldig ubalanserte. røv å sett inn 1,,, 4, 5,, 7,... (i den rekkefølgen) i et binært søketre. Da vil vi i praksis

Detaljer

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen

Hva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til

Detaljer

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)! Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre

Detaljer

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Lars Vidar Magnusson 21.2.2014 Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Rød-Svarte trær (red-black trees) er en variasjon binære søketrær som

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

Vi skal se på grafalgoritmer for:

Vi skal se på grafalgoritmer for: Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?

Detaljer

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert Kap.12 Flervegssøketre Sist oppdatert 12.04.10 Studerer 2-3 og 2-4 trær Motivasjon n maks = antall elementer i et fullt binært tre med nivåer 0 k ; (en node har ett element) n maks = 2 0 + 2 1 + + 2 k

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Kap 9 Tre Sist oppdatert 15.03

Kap 9 Tre Sist oppdatert 15.03 Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene. Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven

Detaljer

Vi skal se på grafalgoritmer for:

Vi skal se på grafalgoritmer for: Grafalgoritmer Vi skal se på grafalgoritmer for: raversering: Nåbarhet: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte innes det en vei fra en node til en annen node?

Detaljer

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær Dagens tema INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 2: Binærtrær og abstrakte datatyper (ADT) Kort repetisjon Generelle trær

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /

Detaljer

Hvor raskt klarer vi å sortere?

Hvor raskt klarer vi å sortere? Sortering Sorteringsproblemet Gitt en array med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer Praktiske opplysninger INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Tid og sted: Mandag kl. 12:15-14:00 Store auditorium, Informatikkbygningen Kursansvarlige

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre: Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson B-Trær Lars Vidar Magnusson 5.3.2014 Kapittel 18 B-trær Standard operasjoner Sletting B-Trær B-trær er balanserte trær som er designet for å fungere bra på sekundære lagringsmedium e.g. harddisk. Ligner

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

INF2220: Time 4 - Heap, Huffmann

INF2220: Time 4 - Heap, Huffmann INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-

Detaljer

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær side 1 av 21 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

Løsningsforslag. Oppgave 1.1. Oppgave 1.2

Løsningsforslag. Oppgave 1.1. Oppgave 1.2 Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return

Detaljer

Obligatorisk oppgave 1 INF1020 h2005

Obligatorisk oppgave 1 INF1020 h2005 Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte

Detaljer

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Hashing: Håndtering av kollisjoner

Hashing: Håndtering av kollisjoner Hashing: Håndtering av kollisjoner Innsetting av dataelement i hashtabell Algoritme: 1. Bruk en hashfunksjon til å beregne hashverdi basert på dataelementets nøkkelverdi 2. Sett inn dataelementet i hashtabellen

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 171 A EKSAMENSDATO: 19. august 1999 KLASSE: 97HINDA / 97HINDB ( 2DA / 2DB ) TID: 09.00-14.00 FAGLÆRER: Frode Haug ANT.

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

INF1010 Binære søketrær ++

INF1010 Binære søketrær ++ INF1010 Binære søketrær ++ Programeksempler med insetting, gjenfinning av noder i et binært søketre samt eksempler på hvordan lage en liste av et binærtre. Hva må du kunne om binære søketrær i INF1010

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer Løsningsforslag Eksamen 30. november 2010 Oppgave 1A Et turneringstre for en utslagsturnering med n deltagere blir et komplett binærtre med 2n 1 noder. I vårt tilfelle får

Detaljer

Algoritmer og Datastrukturer IAI 21899

Algoritmer og Datastrukturer IAI 21899 Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt

Detaljer

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer.

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer. TRÆR Generelle trær Dagens plan: Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse (!) Eksempel: Ibsens

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

INF1010 siste begreper før oblig 2

INF1010 siste begreper før oblig 2 INF1010 siste begreper før oblig 2 Sammenligning. Mer lenkede lister. Forskjellige listeimplementasjoner. Binære trær. Bittelitt om grensesnitt (interface). Dagens forelesning Flere temaer på grunn av

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid Chieh Yu de Vibe (ingridcy@ifi.uio.no)

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2001 KLASSE: 00HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet

Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN110 Algoritmer og datastrukturer Eksamensdag: 15. mai 1997 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID:

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID: Høgskolen i Gjøvik Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder LO 164A EKSAMENSDATO: 11. august 1995 TID: 09.00-14.00 FAGLÆRER:

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Dynamisk programmering Undervises av Stein Krogdahl

Dynamisk programmering Undervises av Stein Krogdahl Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) Rekursjon (kapittel 1.3) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 6. juni 2013 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Eksamen - Algoritmer og datastrukturer - Høgskolen i Oslo og Akershus - 27.11.2012 Side 1 av 6 Algoritmer og datastrukturer Eksamen 27.11.2012 Eksamensoppgaver Råd og tips: Bruk ikke for lang tid på et

Detaljer

Logaritmiske sorteringsalgoritmer

Logaritmiske sorteringsalgoritmer Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Stack Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi ta ut et element, tar

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Dagens tema. Sortering. Fortsettelse om programmering vha tråder.

Dagens tema. Sortering. Fortsettelse om programmering vha tråder. Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Løsningsforslag til INF110 h2001

Løsningsforslag til INF110 h2001 Løsningsforslag til INF110 h2001 Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider inkludert vedlegget Vedlegg

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik Avdeling for Teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. august 2001 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB

Detaljer